Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Investigated Central Ventilation System
2.2. Description of the Developed Measurement System
3. Evaluation of the Data Recorded
3.1. Calculation Formulas for Measured Data Evaluation
3.2. Formulas for Energy Calculations
3.3. Formulas for Carbon Dioxode Cross-Contamination in the Heat Wheel
4. Results and Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | |
A | Constant value (-) |
AHU | Air Handling Unit (-) |
CO2 | Carbon dioxide (ppm) |
cpa | Specific heat of air at constant pressure (kJ/(kg·°C)) |
cpw | Specific heat of water vapor at constant pressure (kJ/(kg·°C)) |
EER | Energy efficiency ratio (-) |
h | Enthalpy (kJ/kg) |
m | Constant value (-) |
Air mass flow rate (kg/h) | |
P | Pressure (Pa); electric energy consumption of the outdoor unit (kWh) |
RH | Relative humidity (%) |
t | Temperature (°C) |
tn | Constant value (-) |
VRV | Variable refrigerant volume (-) |
Air volume flow rate (m3/h) | |
x | Absolute humidity (gwater/kgdry air) |
Greek Letters | |
Ɛs | Sensible effectiveness (-) |
τ | Time (hr) |
Subscripts | |
DX | Supply outlet section direct expansion evaporator |
EI | Exhaust air inlet |
HWE | Exhaust inlet section of the heat wheel |
HWS | Supply outlet section of the heat wheel |
O | Outdoor |
s | Saturation |
SI | Supply air inlet |
SO | Supply air outlet |
w | Water vapor |
References
- Zhong, C.; Yan, K.; Dai, Y.; Jin, N.; Lou, B. Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks. Energies 2019, 12, 527. [Google Scholar] [CrossRef]
- Misevičiūtė, V.; Valančius, K.; Motuzienė, V.; Rynkun, G. Analysis of exergy demand for air heating of an air handling unit. Energy Effic. 2017, 10, 989–998. [Google Scholar]
- Cui, X.; Mohan, B.; Islam, M.R.; Chua, K.J. Investigating the energy performance of an air treatment incorporated cooling system for hot and humid climate. Energy Build. 2017, 151, 217–227. [Google Scholar] [CrossRef]
- Ukai, M.; Tanaka, H.; Tanaka, H.; Okumiya, M. Performance analysis and evaluation of desiccant air-handling unit under various operation condition through measurement and simulation in hot and humid climate. Energy Build. 2018, 172, 478–492. [Google Scholar] [CrossRef]
- Shea, R.P.; Kissock, K.; Selvacanabady, A. Reducing university air handling unit energy usage through controls-based energy efficiency measures. Energy Build. 2019, 194, 105–112. [Google Scholar] [CrossRef]
- Kusiak, A.; Zeng, Y.; Xu, G. Minimizing energy consumption of an air handling unit with a computational intelligence approach. Energy Build. 2013, 60, 355–363. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, G.; Zhou, J.; Wu, J.; Shen, W. A techno-economic comparison of a direct expansion ground-source and a secondary loop ground-coupled heat pump system for cooling in a residential building. Appl. Therm. Eng. 2012, 35, 29–39. [Google Scholar] [CrossRef]
- Jorissen, F.; Boydens, W.; Helsen, L. Validated air handling unit model using indirect evaporative cooling. J. Build. Perform. Simul. 2018, 11, 48–64. [Google Scholar] [CrossRef]
- Wallin, J.; Claesson, J. Improving heat recovery using retrofitted heat pump in air handling unit with energy wheel. Appl. Therm. Eng. 2014, 62, 823–829. [Google Scholar] [CrossRef]
- Yun, G.Y.; Choi, J.; Kim, J.T. Energy performance of direct expansion air handling unit in office buildings. Energy Build. 2014, 77, 425–431. [Google Scholar] [CrossRef]
- Ukai, M.; Okumiya, M. Comparison of Behaviour and Energy Performance of Desiccant Air Handling Unit under Various Control Method. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 4th Asia Conference of International Building Performance Simulation Association (ASIM2018), Hong Kong, China, 3–5 December 2018; IOP Publishing: Bristol, UK, 2019; Volume 238, p. 012027. [Google Scholar]
- Angrisani, G.; Roselli, C.; Sasso, M.; Tariello, F. Dynamic performance assessment of a solar-assisted desiccant-based air handling unit in two Italian cities. Energy Convers. Manag. 2016, 113, 331–345. [Google Scholar] [CrossRef]
- Kim, S.H.; Moon, H.J. Case study of an advanced integrated comfort control algorithm with cooling, ventilation, and humidification systems based on occupancy status. Build. Environ. 2018, 133, 246–264. [Google Scholar] [CrossRef]
- Li, N.; Xia, L.; Shiming, D.; Xu, X.; Chan, M. Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network. Appl. Energy 2012, 91, 290–300. [Google Scholar] [CrossRef]
- Stamatescu, G.; Stamatescu, I.; Arghira, N.; Fagarasan, I. Data-Driven Modelling of Smart Building Ventilation Subsystem. J. Sens. 2019, 2019, 3572019. [Google Scholar] [CrossRef]
- Hong, G.; Kim, B.S. Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy. Energies 2018, 11, 407. [Google Scholar] [CrossRef]
- Noussan, M.; Carioni, G.; Degiorgis, L.; Jarre, M.; Tronville, P. Operational performance of an Air Handling Unit: Insights from a data analysis. Energy Procedia 2017, 134, 386–393. [Google Scholar] [CrossRef]
- Bareschino, P.; Pepe, F.; Roselli, C.; Sasso, M.; Tariello, F. Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy. Energies 2019, 12, 1543. [Google Scholar] [CrossRef]
- Daikin Ventilation Catalogue. Daikin Europe Naamloze Vennootschap, Zandvoordestraat 300, 8400 Oostende, Belgium, RPR Oostende. 2019. Available online: https://www.daikin.eu/content/dam/document-library/catalogues/Ventilation%20catalogue%20-%20ECPEN13-203_Catalogues_English.pdf (accessed on 8 August 2019).
- Oyj, V. Vaisala, Humidity Conversion Formulas. Helsinki, Finland. 2013. Available online: https://www.hatchability.com/Vaisala.pdf (accessed on 8 November 2019).
- Rajput, R.K. Thermal Engineering, 6th ed.; Firewall/Laxmi Publications Ltd.: New Delhi, India, 2006; ISBN 81-7008-834-8. [Google Scholar]
- European Committee for Standardization. Ventilation for Buildings—Performance Testing of Components/Products for Residential Ventilation—Part 7: Performance Testing of Components/Products of Mechanical Supply and Exhaust Ventilation Units (Including Heat Recovery) for Mechanical Ventilation Systems Intended for Single Family Dwellings; EN 13141-7:2010; CEN: Brussels, Belgium, 2010. [Google Scholar]
- American Society of Heating. Method of Testing Air-To-Air Heat Exchangers, ASHRAE Standard 84-1991; American Society of Heating, Refrigerating and Air Conditioning Engineers Inc.: Atlanta, GA, USA, 1991. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Width × Height × Length | 1450 × 1340 × 2897 | mm |
Air flow | 1060 | m3/h |
External Pressure Drop | 280 | Pa |
Weight | 595 | kg |
Parameter | Value | Unit |
---|---|---|
Total Cooling Capacity | 10.9 | kW |
Refrigerant | R410a | - |
EER | 3.99 | - |
Fin Material | Aluminium | - |
Tube Material | Copper | - |
Parameter | Value | Unit |
---|---|---|
Heat recovered | 2 | kW |
Effectiveness | 74.9 | % |
Diameter | 600 | mm |
Model | Device | Working Range | Accuracy |
---|---|---|---|
Honeywell VF20-3B65NW | Temperature sensor | −40–150 °C | ±0.4 °C |
Honeywell LFH20-2B65 | Humidity sensor | 10–90% | ±3% |
Honeywell AQS-KAM-20 | CO2 sensor | 0–2000 ppm | ±50 ppm |
Honeywell AV-D-10 | Air velocity sensor | 2–20 m/s | ±0.2 m/s |
Inepro Metering Pro 380 | Electricity energy meter | 5–100 A | ±1% |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassai, M. Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel. Energies 2019, 12, 4267. https://doi.org/10.3390/en12224267
Kassai M. Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel. Energies. 2019; 12(22):4267. https://doi.org/10.3390/en12224267
Chicago/Turabian StyleKassai, Miklos. 2019. "Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel" Energies 12, no. 22: 4267. https://doi.org/10.3390/en12224267
APA StyleKassai, M. (2019). Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel. Energies, 12(22), 4267. https://doi.org/10.3390/en12224267