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Abstract: Climate change is continuously bringing hotter summers and because of this fact, the use of
air-conditioning systems is also extending in European countries. To reduce the energy demand and
consumption of these systems, it is particularly significant to identify further technical solutions for
direct cooling. In this research work, a field study is carried out on the cooling energy performance
of an existing, operating ventilation system placed on the flat roof of a shopping center, located in
the city of Eger in Hungary. The running system supplies cooled air to the back office and storage
area of a shop and includes an air-to-air rotary heat wheel, a mixing box element, and a direct
expansion cooling coil connected to a variable refrigerant volume outdoor unit. The objective of
the study was to investigate the thermal behavior of each component separately, in order to make
clear scientific conclusions from the point of view of energy consumption. Moreover, the carbon
dioxide cross-contamination in the heat wheel was also analyzed, which is the major drawback of
this type heat recovery unit. To achieve this, an electricity energy meter was installed in the outdoor
unit and temperature, humidity, air velocity, and carbon dioxide sensors were placed in the inlet
and outlet section of each element that has an effect on the cooling process. To provide continuous
data recording and remote monitoring of air handling parameters and energy consumption of the
system, a network monitor interface was developed by building management system-based software.
The energy impact of the heat wheel resulted in a 624 kWh energy saving and 25.1% energy saving rate
for the electric energy consumption of the outdoor unit during the whole cooling period, compared
to the system without heat wheel operation. The scale of CO2 cross-contamination in the heat wheel
was evaluated as an average value of 16.4%, considering the whole cooling season.

Keywords: building energy efficiency; heat wheel; direct expansion cooling; ventilation system;
energy consumption

1. Introduction

The use of environmental control systems has significantly increased in the building sector in order
to reduce the energy consumption of heating, ventilation, and air-conditioning (HVAC) systems [1].
Air handling units (AHUs) are one of the most complex building service systems [2], and can include
heating, cooling, humidifier, mixing element, and heat recovery units, in order to provide the required
indoor air quality and thermal comfort in conditioned spaces [3].

In a typical AHU, chilled water in the cooling coils cools the air, and hot water (or steam) in the
heating coils heats the air, in order to maintain the desired temperature of the supply [4]. The supply
and return fans assist in moving the air for heat exchange, as well as circulating it in the HVAC system
at the required flow rate [5]. Several components are part of a typical system, i.e., the chiller, the boiler,
the supply and return fans, and the water pump that consumes a lot of energy [6].
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Direct expansion ventilation units are becoming more commonly used central air-conditioning
technical solutions, in which a refrigerant is directly delivered to the cooling (and heating) coil [7].
These systems have the potential to save cooling and heating energy use, since they do not require any
water pumps for their operation, compared to water-based central air conditioning systems [8,9].

Developers are working really hard to minimalize the energy consumption of their developed
devices; however, there are many imperfections in the actual available product catalogues, technical
data, and technical support service systems, especially for the annual energy designing provided by
the ventilation producers for building service and energy design engineers [10,11]. Therefore, it would
be particularly significant to have measured and recorded data obtained from field studies [12,13],
which may be utilized in the course of design work, and which would allow a proper estimation of
the expected realizable annual energy consumption of air handling elements in the function of the
temperature and relative humidity of ambient and indoor air and operating parameters [14].

Stamatescu et. al [15] presented the implementation and evaluation of a data mining methodology
based on collected data from a more than one-year operation. The case study was carried out on four
AHUs of a modern campus building for preliminary decision support for facility managers. The results
are useful for deriving the behavior of each piece of equipment in various mode of operation and can
be built upon for fault detection or energy efficiency applications. The imperfection of their work
is the missing data for air condition parameters (temperature and humidity) between the coils and
mixing box; before and after the fans, which cannot be neglected, since the electrical motor of the fans
increases the air temperature and decreases the relative humidity; and the air volume flow rate, which
changes during the operation. All these missing parameters have a significant effect on the energy
efficiency of the ventilation system.

Hong et. al [16] conducted a case study on a running AHU for data-driven predictive model
development. In order to develop the optimal model, input variables, the number of neurons and
hidden layers, and the period of the training data set were considered. The results and conclusions
presented for the one-year field study could have much better reflected the reality from the view point
of energy performance, if further temperature and relative humidity sensors had been placed between
the coils and humidifier element, before and after the fans. Only focusing on energy performance data
recording is not enough, since the desired indoor air quality and thermal comfort are also significant
parameters that need to be considered. To draw a more exact conclusion from this point of view, the
CO2 parameter should also have been monitored and recorded in the outdoor air inlet (OA) and supply
air outlet (SA) sections in the investigated AHU.

Based on a literature review of the field, there are some case studies in which the heat recovery unit
has also been considered in the ventilation system. Noussan et. al [17] presented results obtained from
an operation data analysis of an AHU serving a large university classroom. The main drivers of energy
consumption are highlighted, and the classroom occupancy is found to have a significant importance
in the energy balance of the system. The availability of historical operation data allowed a comparison
of the actual operation of the AHU and the expected performance from nominal parameters to be
performed. Calculations were made considering the operation analysis of the heat recovery unit over
different years; however, the existing system does not include any heat or energy recovery devices, so
there are no exact measured data from this point of view.

Bareschino et. al [18] compared three alternative hygroscopic materials for desiccant wheels
considering the operation of the air handling unit they are installed in. Their results demonstrated
that a primary energy saving of about 20%, 29%, and 15% can be reached with silica-gel, milgo, and
zeolite-rich tuff desiccant wheel-based air handling units, respectively. The results were given based
on a simulation and there is no exact measured data, which would be significant for making precise
and clear energetic conclusions.

In this work, a field study is carried out on an existing, operating ventilation system that
includes an air-to-air rotary heat wheel, a mixing box element, and a direct expansion cooling coil
connected to a variable refrigerant volume outdoor unit. One of the main objectives of the present
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paper is to investigate the cooling energy performance and thermal behavior of each air handling
component separately. To achieve this, an advanced data recording and remote monitoring system
was considerately developed by building management system-based software. The system includes
an electricity energy meter installed in the outdoor unit, as well as temperature, humidity, air velocity,
and CO2 sensors placed in the inlet and outlet section of all the air handling elements that have an
effect on the cooling process. The purpose of the CO2 measurements was to investigate the CO2

cross-contamination, which occurs from the exhaust air flow to the supply air flow in the air-to-air rotary
heat wheel, resulting in indoor air quality degradation. The novelty of this research is the accurate
determination of the seasonal effectiveness and the energy saving impact of the heat wheel on the
electric energy consumption of the outdoor unit. Moreover, the relative average and maximum value
of CO2 cross-contamination in the rotary heat recovery using the developed measurement system in
the cooling period are presented. A further innovation in this study is the analytical evaluation method
developed, which shows a good agreement between the calculated and measured energy consumption.

2. Materials and Methods

The selected air handling unit (AHU) is located on the flat roof of a shopping center, located in
the city of Eger in Hungary, which has supplied fresh air to the back-office and storage area of a shop
since 2017.

2.1. Description of the Investigated Central Ventilation System

The main air handling components of the system are an air-to-air rotary heat wheel, a mixing box
element, and direct expansion cooling/heating (DX) coil connected to a variable refrigerant volume
outdoor unit. Figure 1 shows the elements of the investigated AHU.
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Figure 1. Photo from the investigated air handling units (AHU).

The specification of the AHU can be seen in Table 1.

Table 1. Specification of the investigated AHU [19].

Parameter Value Unit

Width × Height × Length 1450 × 1340 × 2897 mm
Air flow 1060 m3/h

External Pressure Drop 280 Pa
Weight 595 kg

Figure 2 shows the outdoor unit which is connected with refrigerant pipes to the DX coil and is
located in the AHU.
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Figure 2. Photo from the outdoor unit.

Technical data of the unit can be seen in Table 2.

Table 2. Technical data of the outdoor unit [19].

Parameter Value Unit

Total Cooling Capacity 10.9 kW
Refrigerant R410a -

EER 3.99 -
Fin Material Aluminium -

Tube Material Copper -

Table 3 shows the specification of the air-to-air recovery heat wheel in the cooling period.

Table 3. Specification of the investigated heat wheel [19].

Parameter Value Unit

Heat recovered 2 kW
Effectiveness 74.9 %

Diameter 600 mm

2.2. Description of the Developed Measurement System

In total, six temperature and relative humidity sensors, three CO2 sensors and three air velocity
sensors were placed in the inlet and outlet section of each air handling element and an electricity
energy meter was installed in the outdoor unit. The placement of the measurement points can be seen
in Figure 3. The technical data of the installed sensors and instrument can be read in Table 4.
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Table 4. Specification of the sensors and instrument.

Model Device Working Range Accuracy

Honeywell VF20-3B65NW Temperature sensor −40–150 ◦C ±0.4 ◦C
Honeywell LFH20-2B65 Humidity sensor 10–90% ±3%
Honeywell AQS-KAM-20 CO2 sensor 0–2000 ppm ±50 ppm
Honeywell AV-D-10 Air velocity sensor 2–20 m/s ±0.2 m/s
Inepro Metering Pro 380 Electricity energy meter 5–100 A ±1%

The recording of the measured data took place in an hourly period. With regards to the
measurement accuracy, temperature sensors are normally used with a ±0.4 ◦C accuracy, humidity
sensors with a ±3% accuracy, an air velocity sensor with a ±0.2 m/s accuracy, carbon dioxide sensors
with a ±50 ppm accuracy, and an electric energy meter with a 1% of full scale accuracy. Among the
monitoring air handling data, the air temperature and relative humidity data of the inlet and outlet
sections of the DX cooling coil, energy recovery unit, and outdoor were used to investigate the energy
performance and thermal behaviour of these air handling elements in the AHU in the cooling season.

The specification of the sensors and electricity energy meter used for monitoring of the investigated
AHU can be seen in Table 4.

For the monitoring and recording of the various air condition parameters and the electrical
energy consumption of the outdoor unit, the CentraLine Building Management System (BMS) software
(version 2019) solution from Honeywell was implemented on a central server. Figure 4 shows a picture
of the target building, along with a representative BMS screen for the investigated air handling unit.
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Figure 4. A screenshot of the investigated AHU in the Building Management System (BMS).

Access to the BMS software was remotely enabled. Within this technical context, the necessary
data were collected for this field study. Data were collected online at hourly intervals, saved, and
stored on a computer from a distance.

3. Evaluation of the Data Recorded

To investigate the energy performance of the AHU, using the measurements, the following
mathematical approaches were implemented.



Energies 2019, 12, 4267 6 of 16

3.1. Calculation Formulas for Measured Data Evaluation

Using the measured air temperature and relative humidity data, the specific humidity could be
calculated to obtain the enthalpy of the air. To achieve this, the water vapor saturation pressure (Pws)
was first calculated with Equation (1) [20]:

Pws = A·10(
mt

t+tn )·100, (1)

where Pws is the saturation pressure of the water vapor in Pa; t is the air temperature in ◦C; and
A, m, and tn are constant values in -. Since the temperature range during the measurements was
between −20 and +50 ◦C, the constant values (in 0.083% maximum error) were as follows: A = 6.116441;
m = 7.591386; tn = 240.7263 [20]. The constant value of 100 in Equation (1) represents the conversion of
the saturation pressure of water vapor from hPa to Pa.

To obtain the moisture content, the partial pressure of water vapor in the air at a given relative
humidity was also calculated with Equation (2) [20]:

Pw = Pws·
RH
100

, (2)

where Pw is the partial pressure of water vapor in Pa and RH is the relative humidity of the air in %.
The constant value of 100 in Equation (2) represents the conversion of relative humidity from % to -.

The moisture content was calculated with Equation (3) [21]:

x = 0.622·
Pw

Po − Pw,
(3)

where x is the moisture content of the air in kg/kg, Po is the barometric pressure in Pa, and the 0.622
constant value is the molecular weight ratio of water vapor to dry air.

The enthalpy was calculated with Equation (4) [21]:

h = cpa·t + x·(cpw·t + 2500), (4)

where h is the enthalpy of the air in kJ/kg, cpa is the specific heat of air at constant pressure in kJ/(kg·◦C),
cpw is the specific heat of water vapor at constant pressure in kJ/(kg·◦C), and the constant value of 2500
represents the evaporation heat in kJ/(kg·◦C).

3.2. Formulas for Energy Calculations

Considering the fact that there is balanced ventilation, the effectiveness values of the heat wheel
were determined from the air temperature measured values using Equation (5) [22,23]:

εs =
(tHWS − to)

(tHWE − to)
, (5)

where εS is the real sensible effectiveness of the heat wheel given by the measured data in -, tHWS is the
air temperature in the supply outlet section of the heat wheel in ◦C, tHWE is the air temperature in the
exhaust inlet section of the heat wheel in ◦C, and to is the ambient air temperature which is equal to the
air temperature in the supply inlet section of the heat wheel in ◦C.

To get information about the seasonal energy performance of the heat recovery during the cooling
period, the average of the sensible effectiveness was calculated with Equation (6):

εs_AV =

∑n
i=1 εs_i

n
, (6)
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where εs_AV is the average of the sensible effectiveness of the heat wheel given by the measured data in
the cooling season in - and n is the number of measurements.

The maximum value of the sensible effectiveness was also analyzed during the whole cooling
season, which was calculated with Equation (7):

εs_MAX = MAX (εs_i . . . εs_n), (7)

where εs_MAX is the maximum value of the sensible effectiveness of the heat wheel given by the
measured data in the cooling season in -.

To calculate the energy saving of the heat wheel in the cooling season, Equation (8) was used:

QHW_saved =
.

ms·(ho − hHWS)·τ, (8)

where QHW_saved is the energy saving of the heat wheel in kWh;
.

ms is the air mass flow rate delivered
by the fans in kg/s, which is calculated by the multiplication of the measured air velocity in m/s and the
internal cross-section of air duct in 0.7398 m2 and approached a 1.2 kg/m3 constant air density; ho is the
ambient air enthalpy which is equal to the air enthalpy in the supply inlet section of the heat wheel in
kJ/kg; hHWS is the air enthalpy in the supply outlet section of the heat wheel in kJ/kg; and τ is the time
in hours. The average air volume flow rate was evaluated as 1060 m3/h during the cooling season.

To calculate the cooling energy consumption of the DX coil, Equation (9) was used:

QDX_HW =
.

ms·(hHWS − hDX)·τ, (9)

where QDX_HW is the cooling energy consumption of the DX coil in kWh, and hDX is the air enthalpy in
the supply outlet section of the DX coil in kJ/kg, which is equal to the supply air condition.

In order to investigate more the energy saving impact of the heat wheel on the DX coil, the cooling
energy consumption of DX coil was also determined by Equation (10), neglecting the air-to-air rotary
heat wheel operation, when the DX coil directly cools the hot ambient air to the supply air conditions.

QDX_WO_HW =
.

ms·(ho − hDX)·τ, (10)

where QDX_WO_HW is the cooling energy consumption of the DX coil without the heat wheel operation
in kWh.

The calculated electric energy consumption of the outdoor unit was calculated with Equation (11):

PVRV_HW =
QDX_HW

EER
, (11)

where PVRV_HW is the calculated electric energy consumption of the outdoor unit with the heat wheel
operation in kWh, and EER is the energy efficiency ratio, given by the producer in -.

Moreover, the real electric energy consumption of the outdoor unit (PVRV_HW_M) was also measured
during the cooling season, in order to see the agreement between values of the measured data and
calculations using the recorded air condition parameters (PVRV_HW). The difference between the
measured and calculated electric energy consumption was determined with Equation (12):

∆PVRV_HW = PVRV_HW_M − PVRV_HW , (12)

where ∆PVRV_HW is the difference between the measured and calculated electric energy consumption
of the outdoor unit with the heat wheel operation in kWh.
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The rate of deviation of the measured and calculated electric energy consumption of the outdoor
unit related to the measured data was calculated with Equation (13):

∆PVRV_HW_REL =
∆PVRV_HW

PVRV_HW
·100, (13)

where ∆PVRV_HW_REL is the rate of deviation of the measured and calculated electric energy consumption
of the outdoor unit in %.

The electric energy consumption of the outdoor unit without the heat wheel operation was
calculated with Equation (14):

PVRV_WO_HW =
QDX_WO_HW

EER
, (14)

where PVRV_WO_HW is the electrical energy consumption of the outdoor unit without the heat wheel
operation in kWh when it directly cools the hot ambient air to the supply air conditions via the DX coil
during the cooling season.

The energy saving of the heat wheel in terms of the electric energy consumption of the outdoor
unit was calculated with Equation (15):

∆PVRV_HW_saved = PVRV_WO_HW − PVRV_HW , (15)

where ∆PVRV_HW_saved is the amount of energy saved by the heat wheel in terms of the calculated
electric energy consumption of the outdoor unit compared to that without the heat recovery operation
in kWh.

The energy saving impact of the heat wheel on the electric energy consumption of the outdoor
unit, compared to the system without the heat wheel operation, was calculated with Equation (16):

∆PVRV_HW_saved_REL =
∆PVRV_HW_saved

PVRV_WO_HW
·100, (16)

where ∆PVRV_HW_saved_REL is the energy saving rate of the heat wheel for the electric energy consumption
of the outdoor unit, compared to the system without heat the wheel operation, in %.

The value of the actual energy efficiency ratio of the outdoor unit given obtained the field study
was determined with Equation (17) for the investigated cooling season to compare the data provided
by the producer:

EERM =
QDX_HW

PVRV_HW_M
·100, (17)

where EERM is the evaluated energy efficiency ratio (-) based on the measurement during the whole
investigated cooling season.

3.3. Formulas for Carbon Dioxode Cross-Contamination in the Heat Wheel

The scale of carbon dioxide (CO2) cross-contamination in the air-to-air rotary heat recovery wheel
was also investigated by measurements in the heat wheel during the operation of the air handling unit
in the cooling period. To achieve this, the CO2 concentration difference between the supply inlet and
outlet sections of the heat wheel was first determined with Equation (18):

∆CCO2_cross = CCO2_HWS −CCO2_o, (18)

where ∆CCO2_cross is the scale of the CO2 cross-contamination in the heat wheel in a given hour in ppm;
CCO2_HWS is the CO2 concentration in the supply outlet section of the heat wheel in ppm; and CCO2_o
is the CO2 concentration of the ambient air in ppm, which is equal to the CO2 concentration in the
supply inlet section of the heat wheel in ppm.
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Having completed the measurements, the average of the CO2 cross-contamination values was
taken, and the ratio of the result and the supplied average CO2 concentration was calculated by
Equation (19):

∆CCO2_cross_AV =

∑n
i=1 ∆CCO2_cross_i

n
, (19)

where ∆CCO2_cross_AV is the average of the CO2 cross-contamination values in ppm and n is the number
of measurements.

Since CO2 cross-contamination occurs from the exhaust section to the supply section in the heat
wheel, the average of the measured CO2 values in the exhaust inlet section of the heat wheel was also
calculated with Equation (20) using the data measured:

CCO2_HWE_AV =

∑n
i=1 CCO2_HWE_i

n
, (20)

where CCO2_HWE_AV is the average value of the CO2 concentration in the exhaust inlet section of the
heat wheel in ppm and n is the number of measurements.

Equation (21) was used to obtain the relative average of differences:

∆CCO2_REL =
∆CCO2_cross_AV

CCO2_HWE_AV
·100, (21)

where ∆CCO2_REL is the relative average of CO2 cross-contamination in %, considering the CO2

concentration content in the exhaust inlet section of the heat wheel in ppm.
The maximum value of CO2 cross-contamination was also analyzed during the whole cooling

season, which was calculated with Equation (22):

CCO2_REL_MAX =

[
MAX

(
CCO2_cross_i

CCO2_HWE_i
. . .

CCO2_cross_n

CCO2_HWE_n

)]
·100, (22)

where CCO2_REL_MAX is the maximum value of CO2 cross-contamination in the heat wheel in the cooling
season given by the measured data in %.

4. Results and Discussion

The reference period of the study is the year 2019, more specifically, the cooling period from
June 1st to August 31st for a total of 92 days and 25,296 data samples for each of the used measurement
points. The AHU is intermittently operated 12 h/day from 8:00 till 20:00 7 days/week. Since this
research work focused on the ventilation energy saving of the heat recovery unit’s DX cooling coil, the
mixing box was shut off during the data recording.

The air handling parameters obtained from the field study for the investigated AHU are illustrated
in Figures 5–7 with a monthly timescale. Since the ambient air temperature was the highest in June
during the whole cooling season, this relevant month was selected to present the measured data
resulting from the data collection.

Figure 5 shows the temperature of the outdoor air (to), the air in the supply outlet sections of the
heat wheel (tHWS) and DX coil (tDX), and the exhaust inlet section of the heat wheel (tHWE) over time at
hourly intervals in June.

Considering the hottest periods in the cooling season, the ambient air temperature decreased by
about 4–5 ◦C due to the pre-cooling effect of the heat wheel, and by an additional 18–20 ◦C, provided
by air cooling of the DX coil.

Figure 6 shows the measured relative humidity of the outdoor air (RHo), the air in the supply
outlet sections of the heat wheel (RHHWS) and DX coil (RHDX), and the exhaust inlet section of the heat
wheel (RHHWE) over time at hourly intervals in June.
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Figure 6. The air relative humidity values in the air handling processes.

The ambient air relative humidity decreased by about 60% due to the air cooling process. In this
way, the supplied air relative humidity was around 90%.

Figure 7 shows the enthalpy of the outdoor air (ho), the air in the supply outlet sections of the
heat wheel (hHWS) and DX coil (hDX), and the exhaust inlet section of the heat wheel (hHWE) over time
at hourly intervals in June.

Considering the hottest periods in the cooling season, the ambient air enthalpy decreased by
about 8–10 kJ/kg due to the pre-cooling effect of the heat wheel, and by an additional 30–35 kJ/kg,
provided by air cooling of the DX coil.
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Figure 7. The air enthalpy values in the air handling processes.
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Figure 8. The sensible effectiveness values as a function of outdoor air temperature in June.

Based on the results, the average sensible effectiveness of the heat wheel was 79.6% during the
whole cooling season and the maximum value of 97.6% was recorded in June.

Figure 9 shows the energy saving of the air-to-air rotary heat wheel (QHW_saved) in terms of the
energy consumption of the DX coil, and the cooling energy consumption of the DX coil with the heat
wheel operation (QDX_HW) and without the heat wheel operation (QDX_WO_HW), when the DX coil
directly cools the hot ambient outdoor air to the supply air conditions during the cooling season.



Energies 2019, 12, 4267 12 of 16

Energies 2019, 12, x FOR PEER REVIEW 11 of 16 

 

 311 

Figure 8. The sensible effectiveness values as a function of outdoor air temperature in June. 312 

Based on the results, the average sensible effectiveness of the heat wheel was 79.6% during the 313 
whole cooling season and the maximum value of 97.6% was recorded in June. 314 

Figure 9 shows the energy saving of the air-to-air rotary heat wheel (QHW_saved) in terms of the 315 
energy consumption of the DX coil, and the cooling energy consumption of the DX coil with the heat 316 
wheel operation (QDX_HW) and without the heat wheel operation (QDX_WO_HW), when the DX coil 317 
directly cools the hot ambient outdoor air to the supply air conditions during the cooling season.  318 

 319 

 320 

Figure 9. The energy recovery and auxiliary cooling energy consumption for ventilation. 321 

Based on the results, the energy saving of the heat wheel was 2491 kWh in terms of the energy 322 
consumption of the DX coil, the cooling energy consumption of the DX coil with the heat wheel 323 
operation was 7434 kWh, and that without the heat wheel operation was 9926 kWh.  324 

Figure 10 shows the electric energy consumption of the outdoor unit based on the direct real 325 
electric energy consumption measurements (PVRV_HW_M) and the calculations made using the 326 
recorded air condition parameters with (PVRV_HW) and without the heat wheel operation (PVRV_WO_HW) 327 
for the whole cooling period. 328 

0

10

20

30

40

50

60

70

80

90

100

25
,0

26
,2

27
,0

27
,7

28
,0

28
,2

28
,6

28
,9

29
,3

29
,5

29
,9

30
,1

30
,5

30
,6

30
,9

31
,3

32
,0

32
,2

32
,4

32
,6

33
,0

33
,1

33
,4

33
,6

34
,0

34
,5

34
,8

35
,6

36
,0

s
 [

%
]

to [°C]

2491

7434

9926

0

2000

4000

6000

8000

10000

12000

1 2 3QHW_saved QDX_HW QDX_WO_HW

Figure 9. The energy recovery and auxiliary cooling energy consumption for ventilation.

Based on the results, the energy saving of the heat wheel was 2491 kWh in terms of the energy
consumption of the DX coil, the cooling energy consumption of the DX coil with the heat wheel
operation was 7434 kWh, and that without the heat wheel operation was 9926 kWh.

Figure 10 shows the electric energy consumption of the outdoor unit based on the direct real
electric energy consumption measurements (PVRV_HW_M) and the calculations made using the recorded
air condition parameters with (PVRV_HW) and without the heat wheel operation (PVRV_WO_HW) for the
whole cooling period.Energies 2019, 12, x FOR PEER REVIEW 12 of 16 
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Figure 10. The electric energy consumption of the outdoor unit.

The real electric energy consumption of the outdoor unit based on the measurements was 1889 kWh
and the calculations resulted in 1863 kWh consumption with and 2488 kWh consumption without the
heat wheel operation for the whole cooling period.

Since the difference (∆PVRV_HW) is only 26 kWh and rate of deviation (∆PVRV_HW_REL) is 1.36%
between the values of the measured and calculated electric energy consumption of the variable
refrigerant volume (VRV) outdoor unit with the heat wheel operation, Figure 10 shows very good
agreement between the experimental and numerical results. The evaluated energy efficiency ratio is
3.94 based on the measurements (EERM) conducted for the whole investigated cooling season, which is
only 0.05 less than the value of 3.99 given by the producer. The energy impact of the heat wheel results
in 624 kWh energy being saved (∆PVRV_HW_saved), which is equivalent to a 25.1% energy saving rate
(∆PVRV_HW_saved_REL) in terms of the electric energy consumption of the outdoor unit for the whole
cooling period, compared to the system without the heat wheel operation.
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Figure 11 shows the measured CO2 concentration of the outdoor air (CCO2_o), the air in the supply
outlet section of the heat wheel (CCO2_HWS), and the exhaust inlet section of the heat wheel (CCO2_HWE)
over time at hourly intervals in June. There are a few hours in Figure 11 when the recorded CO2 values
of the air were lower in the supply outlet section than in the exhaust inlet section of the heat wheel,
probably due to the uncertainties and transient response characteristics of the CO2 sensors.
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Figure 11. The carbon dioxide values in the investigated supply and exhaust sections of the heat wheel.

Having completed the measurements of the whole cooling period, the average CO2

cross-contamination value (∆CCO2_cross_AV) was 63.9 ppm. The average value of the CO2 concentration
in the exhaust inlet section of the heat wheel (CCO2_HWE_AV) was 390.1 ppm. Based on the results,
the relative average of CO2 cross-contamination (∆CCO2_REL) was 16.4% and the maximum value
(CCO2_REL_MAX) was recorded as 30.1%, considering the whole cooling season. To determine how the
obtained values influence the indoor air quality inside of the conditioned spaces, further indoor air
quality measurements are necessary (with the use of further measurement devices and questionnaires),
which can act as a continuation of this research work, but exceed the limitation of this recent ongoing
research project.

5. Conclusions

In this research work, a field study was carried out on the cooling energy performance of an
existing, operating ventilation system under the operation of an air-to-air rotary heat wheel and direct
expansion cooling coil, connected to a variable refrigerant volume outdoor unit. The major findings
obtained from the study can be summarized as follows:

1. The operation of the heat wheel has a significant cooling energy saving impact on the electric
energy consumption of the outdoor unit. Comparing the measured ventilation system with an air
handling unit without a heat wheel operation, the cooling energy consumption is 25.1% higher;

2. Based on the measurements, the real sensible effectiveness and the CO2 cross-contamination of
the heat wheel are not in accordance with the design assumptions for the cooling period;

3. The sensible effectiveness of the heat wheel performed 4.7% higher than the data (74.9%) given
in the technical data book of the producer;

4. Having completed the measurements for the whole cooling period, the amount of CO2

cross-contamination in the heat wheel was much higher (with 16.4% relative average and 30.1%
maximum values) than predicted during the designing phase.
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Future work will focus on heating and annual energy performance investigations by conducting
further field studies on the system. Moreover, simulation model development will also be considered
for an annual energy consumption investigation of the existing ventilation system and model validation
is planned based on data given by an annual field study. The long-term goal is to develop a simulation
model which is suitable for determination of the energy consumption of ventilation systems in the
design phase with a high accuracy.
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Nomenclature

Abbreviations
A Constant value (-)
AHU Air Handling Unit (-)
CO2 Carbon dioxide (ppm)
cpa Specific heat of air at constant pressure (kJ/(kg·◦C))
cpw Specific heat of water vapor at constant pressure (kJ/(kg·◦C))
EER Energy efficiency ratio (-)
h Enthalpy (kJ/kg)
m Constant value (-)
.

m Air mass flow rate (kg/h)
P Pressure (Pa); electric energy consumption of the outdoor unit (kWh)
RH Relative humidity (%)
t Temperature (◦C)
tn Constant value (-)
VRV Variable refrigerant volume (-)
.

V Air volume flow rate (m3/h)
x Absolute humidity (gwater/kgdry air)
Greek Letters
εs Sensible effectiveness (-)
τ Time (hr)
Subscripts
DX Supply outlet section direct expansion evaporator
EI Exhaust air inlet
HWE Exhaust inlet section of the heat wheel
HWS Supply outlet section of the heat wheel
O Outdoor
s Saturation
SI Supply air inlet
SO Supply air outlet
w Water vapor
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