A Study on the Optimal Ratio of Research and Development Investment in the Energy Sector: An Empirical Analysis in South Korea
Abstract
:1. Introduction
2. Backgrounds
2.1. Global Trends in the Energy Industry
2.2. ER&D and Economic Growth
2.3. Global Status of ER&D
3. Methodology
4. Research Findings
4.1. Data
4.2. Analysis Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chikishev, E.; Chainikov, D.; Anisimov, I. Increasing the use of natural gas on motor transport by an efficient location of the NGV RS (on the example of Tyumen). IOP Conf. Ser. Earth Environ. Sci. 2017, 50, 012004. [Google Scholar] [CrossRef]
- Larionova, M.V. G20: Engaging with International Organizations to Generate Growth. Int. Organ. Res. J. 2017, 12, 54–86. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, E. Contribution of R&D to economic growth in the United States. Science 1972, 175, 477–486. [Google Scholar] [PubMed]
- Bilbao-Osorio, B.; Rodríguez-Pose, A. From R&D to innovation and economic growth in the EU. Growth Chang. 2004, 35, 434–455. [Google Scholar]
- Griffin, P.W.; Hammond, G.P.; Norman, J.B. Industrial energy use and carbon emissions reduction: A UK perspective. Wiley Interdisc. Rev. Energy Environ. 2016, 5, 684–714. [Google Scholar] [CrossRef]
- Křístková, Z. Impact of R&D Investment on Economic Growth of the Czech Republic-A Recursively Dynamic CGE Approach. Prague Econ. Pap. 2012, 21, 412–433. [Google Scholar]
- Dooley, J.J. Unintended consequences: Energy R&D in a deregulated energy market. Energy Policy 1998, 26, 547–555. [Google Scholar]
- Schuelke-Leech, B.-A. Volatility in federal funding of energy R&D. Energy Policy 2014, 67, 943–950. [Google Scholar]
- Wong, S.L.; Chang, Y.; Chia, W.M. Energy consumption, energy R&D and real GDP in OECD countries with and without oil reserves. Energy Econ. 2013, 40, 51–60. [Google Scholar]
- Bor, Y.J.; Chuang, Y.C.; Lai, W.W.; Yang, C.M. A dynamic general equilibrium model for public R&D investment in Taiwan. Econ. Model. 2010, 27, 171–183. [Google Scholar]
- Scully, G.W. What is the Optimal Size of Government in the United States; Policy Report No.188; Policy Reports: Dallas, TX, USA, 1994; ISBN 1-56808-051-4.
- Fujimori, S.; Kubota, I.; Dai, H.; Takahashi, K.; Hasegawa, T.; Liu, J.Y.; Hijioka, Y.; Masui, T.; Takimi, M. The Effectiveness of the International Emissions Trading under the Paris Agreement. In Post-2020 Climate Action; Springer: Singapore, 2017; pp. 65–75. [Google Scholar]
- Morimoto, S. Analyzing Approaches to Set GHG Reduction Target in Anticipation of Potential ‘Further Measures’ for International shipping. In Proceedings of the 2017 International Conference on Maritime Energy Management (MARENER), Copenhagen, Denmark, 24–25, January 2017. [Google Scholar]
- Nemet, G.F.; Jakob, M.; Steckel, J.C.; Edenhofer, O. Addressing policy credibility problems for low-carbon investment. Glob. Environ. Chang. 2017, 42, 47–57. [Google Scholar] [CrossRef]
- Jiang, K.J.; Tamura, K.; Hanaoka, T. Can we go beyond INDCs: Analysis of a future mitigation possibility in China, Japan, EU and the US. Adv. Clim. Chang. Res. 2017, 8, 117–122. [Google Scholar] [CrossRef]
- Steinberg, D.; Bielen, D.; Eichman, J.; Eurek, K.; Logan, J.; Mai, T.; McMillan, C.; Parker, A.; Vimmerstedt, L.; Wilson, E. Electrification and Decarbonization: Exploring US Energy Use and Greenhouse Gas Emissions in Scenarios with Widespread Electrification and Power Sector Decarbonization; No. NREL/TP-6A20-68214; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2017.
- Goh, T.; Ang, B.W.; Su, B.; Wang, H. Drivers of stagnating global carbon intensity of electricity and the way forward. Energy Policy 2018, 113, 149–156. [Google Scholar] [CrossRef]
- Taptich, M.N.; Horvath, A.; Chester, M.V. Worldwide greenhouse gas reduction potentials in transportation by 2050. J. Ind. Ecol. 2016, 20, 329–340. [Google Scholar] [CrossRef]
- Patel, P.; Gunderson, V. Deep decarbonization faces deep challenges. MRS Bull. 2017, 42, 632–633. [Google Scholar] [CrossRef]
- Raghavan, K.V. Transition to Lower Carbon Energy Regime: Engineering Challenges in Building and Transportation Sectors. In Energy Engineering; Springer: Singapore, 2017; pp. 133–148. [Google Scholar]
- Zhang, N.; Wang, B.; Liu, Z. Carbon emissions dynamics, efficiency gains, and technological innovation in China’s industrial sectors. Energy 2016, 99, 10–19. [Google Scholar] [CrossRef]
- Aden, N. Necessary but not sufficient: The role of energy efficiency in industrial sector low-carbon transformation. Energy Effic. 2018, 11, 1083–1101. [Google Scholar] [CrossRef]
- Griffith, R.; Redding, S.; Reenen, J.V. Mapping the two faces of R&D: Productivity growth in a panel of OECD industries. Rev. Econ. Stat. 2004, 86, 883–895. [Google Scholar]
- Kwon, T.H. The current policy issues for Renewable Portfolio Standard in South Korea. In Heading towards Sustainable Energy Systems: Evolution or Revolution? Proceedings of the 15th IAEE European Conference, Vienna, Austria, 3–6 September 2017; International Association for Energy Economics: Cleveland, OH, USA, 2017. [Google Scholar]
- Normile, D. South Korea’s nuclear U-turn draws praise and darts. Science 2017, 357, 15. [Google Scholar] [CrossRef]
- Dai, H.; Xie, Y.; Liu, J.; Masui, T. Aligning renewable energy targets with carbon emissions trading to achieve China’s INDCs: A general equilibrium assessment. Renew. Sustain. Energy Rev. 2017, 82, 4121–4131. [Google Scholar] [CrossRef]
- Park, S.; Kang, B.; Choi, M.I.; Jeon, S.; Park, S. A Micro-Distributed ESS-Based Smart LED Streetlight System for Intelligent Demand Management of the Micro-grid. Sustain. Cities Soc. 2017, 39, 801–813. [Google Scholar] [CrossRef]
- Coe, D.T.; Helpman, E. International R&D spillovers. Eur. Econ. Rev. 1995, 39, 859–887. [Google Scholar]
- Coccia, M. Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia. Technovation 2012, 32, 370–379. [Google Scholar]
- Lichtenberg, F.R.; Siegel, D. The impact of R&D investment on productivity—New evidence using linked R&D–LRD data. Econ. Inq. 1991, 29, 203–229. [Google Scholar]
- Van Elk, R.; Verspagen, B.; Ter Weel, B.; Van der Wiel, K.; Wouterse, B. A Macroeconomic Analysis of the Returns to Public R&D Investments; CPB Netherlands Bureau for Economic Policy Analysis: Hague, The Netherlands, 2015. [Google Scholar]
- Wang, H.; Wu, D. An Explanation for China’s Economic Growth: Expenditure on R&D Promotes Economic Growth—Based on China’s Provincial Panel Data of 1997–2013. J. Serv. Sci. Manag. 2015, 8, 809. [Google Scholar]
- Bianchi, M.; Croce, A.; Dell’Era, C.; Di Benedetto, C.A.; Frattini, F. Organizing for Inbound Open Innovation: How External Consultants and a Dedicated R&D Unit Influence Product Innovation Performance. J. Prod. Innov. Manag. 2016, 33, 492–510. [Google Scholar]
- Stemberkova, R.; Zdralek, P.; Matulova, P.; Maresova, P.; Kuca, K. The Importance of the Evaluation of R&D in Relation to the Competitiveness of the Czech Republic. In Business Challenges in the Changing Economic Landscape; Springer: Cham, Switzerland, 2016; Volume 2, pp. 55–67. [Google Scholar]
- Organization for Economic Cooperation and Development (OECD). Main Science and Technology Indicators. 2017. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=MSTI_PUB (accessed on 25 May 2018).[Green Version]
- Korea Institute of S&T Evaluation and Planning (KISTEP). Survey of Research and Development in Korea; KISTEP: Seoul, South Korea, 2017. (In Korean) [Google Scholar]
- Gwartney, J.; Holcombe, R.; Lawson, R. The scope of government and the wealth of nations. Cato J. 1998, 18, 163. [Google Scholar]
- Davies, A. Human development and the optimal size of government. J. Socio-Econ. 2009, 38, 326–330. [Google Scholar] [CrossRef]
- Pevcin, P. Does Optimal Size of Government Spending Exist? University of Ljubljana: Ljubljana, Slovenia, 2004; Volume 10, pp. 101–135. [Google Scholar]
- Facchini, F.; Melki, M. Optimal Government Size and Economic Growth in France (1871–2008): An Explanation by the State and Market Failures; Sorbonne University: Paris, France, 2011. [Google Scholar]
- Langford, I.H.; Bateman, I.J.; Jones, A.P.; Langford, H.D.; Georgiou, S. Improved estimation of willingness to pay in dichotomous choice contingent valuation studies. Land Econ. 1998, 74, 65–75. [Google Scholar] [CrossRef]
- Perry, R.W.; Skalski, J.R.; Brandes, P.L.; Sandstrom, P.T.; Klimley, A.P.; Ammann, A.; MacFarlane, B. Estimating survival and migration route probabilities of juvenile Chinook salmon in the Sacramento–San Joaquin River Delta. N. Am. J. Fish. Manag. 2010, 30, 142–156. [Google Scholar] [CrossRef]
- Jones, B.A.; Ripberger, J.; Jenkins-Smith, H.; Silva, C. Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method. Energy Policy 2017, 111, 362–370. [Google Scholar] [CrossRef]
- Ratner, J.B. Government capital and the production function for US private output. Econ. Lett. 1983, 13, 213–217. [Google Scholar] [CrossRef]
- Adofu, I.; Taiga, U.U.; Tijani, Y. Manufacturing Sector and Economic Growth in Nigeria (1990–2013). Donnish J. Econ. Int. Financ. 2015, 1, 001–006. [Google Scholar]
- Hibbs, D.A. Problems of statistical estimation and causal inference in time-series regression models. Sociol. Methodol. 1973, 5, 252–308. [Google Scholar] [CrossRef]
- Cochrane, D.; Orcutt, G.H. Application of least squares regression to relationships containing auto-correlated error terms. J. Am. Stat. Assoc. 1949, 44, 32–61. [Google Scholar]
- Pakes, A.; Schankerman, M. The rate of obsolescence of patents, research gestation lags, and the private rate of return to research resources. In R&D, Patents, and Productivity; University of Chicago Press: Chicago, IL, USA, 1984; pp. 73–88. [Google Scholar]
- Kim, E.J. Analysis of growth factors of Korean manufacturing industry. Policy Res. 1999, 18, 1–227. (In Korean) [Google Scholar]
- Sengupta, R.; Gupta, M. Developmental sustainability implications of the economic reforms in the energy sector. In India and Global Climate Change: Perspectives on Economics and Policy from a Developing Country; Routledge: Abingdon-on-Thames, UK, 2003; Volume 36. [Google Scholar]
- Watson, G.S.; Durbin, J. Exact tests of serial correlation using noncircular statistics. Ann. Math. Stat. 1951, 22, 446–451. [Google Scholar] [CrossRef]
- Savin, N.E.; White, K.J. The Durbin-Watson test for serial correlation with extreme sample sizes or many regressors. Econ. J. Econ. Soc. 1977, 45, 1989–1996. [Google Scholar] [CrossRef]
- Dorn, D.; Katz, L.F.; Patterson, C.; Van Reenen, J. Concentrating on the Fall of the Labor Share. Am. Econ. Rev. 2017, 107, 180–185. [Google Scholar] [Green Version]
- Sengupta, R. Third Industrial Revolution and India’s Approach to Sustainable Energy Development. In Global Economic Cooperation; Springer: New Delhi, India, 2016; pp. 141–163. [Google Scholar]
- Schill, W.P.; Zerrahn, A.; Kunz, F.; Kemfert, C. Decentralized solar prosumage with battery storage: System orientation required. DIW Econ. Bull. 2017, 7, 141–151. [Google Scholar]
- Buessler, S.; Badariotti, D.; Weber, C. Evaluating the complex governance arrangements surrounding energy retrofitting programs: The case of collective ownership buildings in France. Energy Res. Soc. Sci. 2017, 32, 131–148. [Google Scholar] [CrossRef]
- Pichet, É. Finance Laws: Stability of Fiscal and Budgetary Policies and Control of the Structural Balance; Bordeaux IV University: Pessac, France, 2016. [Google Scholar]
- Connor, P.M.; Baker, P.E.; Xenias, D.; Balta-Ozkan, N.; Axon, C.J.; Cipcigan, L. Policy and regulation for smart grids in the United Kingdom. Renew. Sustain. Energy Rev. 2014, 40, 269–286. [Google Scholar] [CrossRef]
- Newbery, D.M. Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system–Lessons from the UK’s Electricity Market Reform. Appl. Energy 2016, 179, 1321–1330. [Google Scholar] [CrossRef]
- Rehman, S.; Hussain, Z. Renewable Energy Governance in India: Challenges and Prospects for Achieving the 2022 Energy Goals; University Library of Munich: Munich, Germany, 2017. [Google Scholar]
- Alemán-Nava, G.S.; Casiano-Flores, V.H.; Cárdenas-Chávez, D.L.; Díaz-Chavez, R.; Scarlat, N.; Mahlknecht, J.; Dallemand, J.F.; Parra, R. Renewable energy research progress in Mexico: A review. Renew. Sustain. Energy Rev. 2014, 32, 140–153. [Google Scholar] [CrossRef] [Green Version]
Countries | NDC Targets | Carbon Emissions (Gt) | |
---|---|---|---|
2014 | 2030 Targets | ||
United States | 26–28% reduction by 2025 compared to 2005 | 5.7 | 5.0 |
Japan | 26% reduction by 2030 compared to 2013 | 3.3 | 2.5 |
EU | 40% reduction by 2030 compared to 1990 | 1.2 | 0.9 |
China | 60–65% reduction by 2030 compared to 2005 | 9.8 | 10.1 |
Variable | Coefficient | t-Value | |
---|---|---|---|
Constant | 6.2250 | * | 2.25 |
lnLt | −0.1890 | −1.09 | |
lnKt | 0.4553 | ** | 4.05 |
lnERDt-p (Energy) | 0.0279 | * | 2.51 |
lnNERDt-p (non-Energy) | 0.1795 | ** | 3.74 |
Economic crisis | −0.0010 | −0.07 | |
Rho | 0.3975 | ||
Observed value | 16 | ||
Adjusted R-squared | 0.9871 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Cho, Y.; Shin, J. A Study on the Optimal Ratio of Research and Development Investment in the Energy Sector: An Empirical Analysis in South Korea. Energies 2019, 12, 288. https://doi.org/10.3390/en12020288
Lee J, Cho Y, Shin J. A Study on the Optimal Ratio of Research and Development Investment in the Energy Sector: An Empirical Analysis in South Korea. Energies. 2019; 12(2):288. https://doi.org/10.3390/en12020288
Chicago/Turabian StyleLee, Juyong, Youngsang Cho, and Jungwoo Shin. 2019. "A Study on the Optimal Ratio of Research and Development Investment in the Energy Sector: An Empirical Analysis in South Korea" Energies 12, no. 2: 288. https://doi.org/10.3390/en12020288
APA StyleLee, J., Cho, Y., & Shin, J. (2019). A Study on the Optimal Ratio of Research and Development Investment in the Energy Sector: An Empirical Analysis in South Korea. Energies, 12(2), 288. https://doi.org/10.3390/en12020288