Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information
Abstract
:1. Introduction
2. Proposed Methods
2.1. Research Framework
2.2. ANN and DNN Based PV Power Output Prediction
2.3. LSTM-Based PV Power Output Prediction
3. Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saw, L.H.; Poon, H.M.; Thiam, H.S.; Cai, Z.; Chong, W.T.; Pambudi, N.A.; King, Y.J. Novel Thermal Management System Using Mist Cooling for Lithium-ion Battery Packs. Appl. Energy 2018, 223, 146–158. [Google Scholar] [CrossRef]
- Ming, B.; Liu, P.; Cheng, L.; Zhou, Y.; Wang, X. Optimal Daily Generation Ccheduling of Large Yydro-Photovoltaic Hybrid Power Plants. Energy Convers. Manag. 2018, 171, 528–540. [Google Scholar] [CrossRef]
- Deshmukh, M.K.; Deshmukh, S.S. Modeling of Hybrid Renewable Energy Systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [Google Scholar] [CrossRef]
- Paska, J.; Biczel, P.; Kłos, M. Hybrid Power Systems-An Effective Way of Utilising Primary Energy Sources. Renew. Energy 2009, 34, 2414–2421. [Google Scholar] [CrossRef]
- Hoffmann, W. PV Solar Electricity Industry: Market Growth and Perspective. Sol. Energy Mater. Sol. Cells 2006, 90, 3285–3311. [Google Scholar] [CrossRef]
- Pierro, M.; Bucci, F.; De Felice, M.; Maggioni, E.; Moser, D.; Perotto, A.; Spada, F.; Cornaro, C. Multi-Model Ensemble for Day Ahead Prediction of Photovoltaic Power Generation. Sol. Energy 2016, 134, 132–146. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Wu, J.; Wang, J.; Cheng, M.; Li, G. Optimal Scheduling of Aggregated Thermostatically Controlled Loads with Renewable Generation in the Intraday Electricity Market. Appl. Energy 2017, 188, 456–465. [Google Scholar] [CrossRef]
- Ayón, X.; Moreno, M.Á.; Usaola, J. Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets. Energies 2017, 10, 450. [Google Scholar] [CrossRef]
- Rowlands, I.H. Solar PV Electricity and Market Characteristics: Two Canadian Case-studies. Renew. Energy 2005, 30, 815–834. [Google Scholar] [CrossRef]
- Yona, A.; Senjyu, T.; Funabashi, T.; Mandal, P.; Kim, C.-H. Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting. Appl. Sci. 2014, 4, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Inman, R.H.; Pedro, H.T.C.; Coimbra, C.F.M. Solar Forecasting Methods for Renewable Energy Integration. Prog. Energy Combust. Sci. 2013, 39, 535–576. [Google Scholar] [CrossRef]
- Kardakos, E.G.; Alexiadis, M.C.; Vagropoulos, S.I.; Simoglou, C.K.; Biskas, P.N.; Bakirtzis, A.G. Application of Time Series and Artificial Neural Network Models in Short-term Forecasting of PV Power Generation. In Proceedings of the 48th International Universities Power Engineering Conference, Dublin, Ireland, 2–5 September 2013; pp. 1–6. [Google Scholar]
- Cai, T.; Duan, S.; Chen, C. Forecasting Power Output for Grid-connected Photovoltaic Power System Without Using Solar Radiation Measurement. In Proceedings of the International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 16–18 June 2010; pp. 773–777. [Google Scholar]
- Yona, A.; Senjyu, T.; Funabashi, T.; Kim, C.H. Determination Method of Insolation Prediction with Fuzzy and Applying Neural Network for Long-term Ahead PV Power Output Correction. IEEE Trans. Sustain. Energy 2013, 2, 527–533. [Google Scholar] [CrossRef]
- Dumitru, C.-D.; Gligor, A.; Enachescu, C. Solar Photovoltaic Energy Production Forecast Using Neural Networks. Procedia Technol. 2016, 22, 808–815. [Google Scholar] [CrossRef] [Green Version]
- Izgi, E.; Öztopal, A.; Yerli, B.; Kaymak, M.K.; Şahin, A.D. Short-mid-term Solar Power Prediction by Using Artificial Neural Networks. Sol. Energy 2012, 86, 725–733. [Google Scholar] [CrossRef]
- Sulaiman, S.I.; Rahman, T.K.A.; Musirin, I. Partial Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System. Int. J. Comput. Electr. Eng. 2009, 1, 40–45. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, N.; Zhao, Y.; Zhan, J. Photovoltaic System Power Forecasting Based on Combined Grey Model and BP Neural Network. In Proceedings of the International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 4623–4626. [Google Scholar]
- Son, J.; Park, Y.; Lee, J.; Kim, H. Sensorless PV Power Forecasting in Grid-Connected Buildings through Deep Learning. Sensors 2018, 18, 2529. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, I. Chandra, a Artificial Neural Ntwork Bsed Mdels for Frecasting Eectricity Gneration of Gid Connected Solar PV Power Plant. Int. J. Glob. Energy Issues 2004, 21, 119–130. [Google Scholar] [CrossRef]
- Shi, J.; Lee, W.J.; Liu, Y.; Yang, Y.; Wang, P. Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines. IEEE Trans. Ind. Appl. 2012, 48, 1064–1069. [Google Scholar] [CrossRef]
- Da Silva Fonseca, J.G.; Oozeki, T.; Takashima, T.; Koshimizu, G.; Uchida, Y.; Ogimoto, K. Use of Support Vector Regression and Numerically Predicted Cloudiness to Forecast Power Output of a Photovoltaic Power Plant in Kitakyushu, Japan. Proc. Photovolt. Res. Appl. 2012, 20, 874–882. [Google Scholar] [CrossRef]
- Bouzerdoum, M.; Mellit, A.; Massi Pavan, A. A Hybrid Model (SARIMA-SVM) for Short-term Power Forecasting of a Small-scale Grid-connected Photovoltaic Plant. Sol. Energy 2013, 98, 226–235. [Google Scholar] [CrossRef]
- Mellit, A.; Shaari, S. Recurrent Neural Network-Based Forecasting of The Daily Electricity Generation of a Photovoltaic Power System. In Proceedings of the Ecological Vehicle and Renewable Energy, Monte-Carlo, Monaco, 26–29 March 2009; pp. 26–29. [Google Scholar]
- Mandal, P.; Madhira, S.T.S.; Ul haque, A.; Meng, J.; Pineda, R.L. Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques. Procedia Comput. Sci. 2012, 12, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Nasser, M.; Mahmoud, K. Accurate Photovoltaic Power Forecasting Models Using Deep LSTM-RNN. In Neural Computing and Applications; Springer: London, UK, 2017; pp. 1–14. [Google Scholar]
- Chattopadhyay, K.; Kies, A.; Lorenz, E.; von Bremen, L.; Heinemann, D. The Impact of Different PV Module Configurations on Storage and Additional Balancing Needs for a fully Renewable European Power System. Renew. Energy 2017, 113, 176–189. [Google Scholar] [CrossRef]
- Jurasz, J.; Ciapała, B. Solar–hydro Hybrid Power Station as a Way to Smooth Power Output and Increase Water Retention. Sol. Energy 2018, 173, 675–690. [Google Scholar] [CrossRef]
- Ding, M.; Wang, L.; Bi, R. An ANN-based Approach for Forecasting The Power Output of Photovoltaic System. Procedia Environ. Sci. 2011, 11, 1308–1315. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Z.; Su, Y. Analysis of Daily Solar Power Prediction with Data-driven Approaches. Appl. Energy 2014, 126, 29–37. [Google Scholar] [CrossRef]
- Jiahao, K.; Jun, L.; Qifan, L.; Wanliang, F.; Zhenhuan, C.; Linlin, L.; Tieying, G. Photovoltaic Power Forecasting Based on Artificial Neural Network and Meteorological Data. In Proceedings of the IEEE Region 10 Conference, Xi’an, China, 22–25 October 2013; pp. 1–4. [Google Scholar]
- Hiyama, T.; Kitabayashi, K. Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environmental Information. IEEE Trans. Energy Convers. 1997, 12, 241–247. [Google Scholar] [CrossRef]
- Wang, G.; Su, Y.; Shu, L. One-day-ahead Daily Power Forecasting of Photovoltaic Systems Based on Partial Functional Linear Regression Models. Renew. Energy 2016, 96, 469–478. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Su, Y.; Shu, L. Forecasting The Daily Power Output of a Grid-connected Photovoltaic System Based on Multivariate Adaptive Regression Splines. Appl. Energy 2016, 180, 392–401. [Google Scholar] [CrossRef]
- Li, Y.; Su, Y.; Shu, L. An ARMAX Model for Forecasting The Power Output of a Grid Connected Photovoltaic System. Renew. Energy 2014, 66, 78–89. [Google Scholar] [CrossRef]
- Mora-López, L.; Martinez-Marchena, I.; Piliougine, M.; Sidrach-deCardona, M. Machine Learning Approach for Next Day Energy Production Forecasting in Grid Connected Photovoltaic Plants. In Proceedings of the World Renewable Energy Congress-Sweden, Linköping, Sweden, 8–13 May 2011; pp. 2869–2874. [Google Scholar]
- Al-Messabi, N.; Li, Y.; El-Amin, I.; Goh, C. Forecasting of Photovoltaic Power Yield Using Dynamic Neural Networks. In Proceedings of the International Joint Conference on Neural Networks, Brisbane, Australia, 10–15 June 2012; pp. 1–5. [Google Scholar]
- Chen, C.; Duan, S.; Cai, T.; Liu, B. Online 24-h Solar Power Forecasting Based on Weather Type Classification Using Artificial Neural Network. Sol. Energy 2011, 85, 2856–2870. [Google Scholar] [CrossRef]
- Yona, A.; Senjyu, T.; Saber, A.Y.; Funabashi, T.; Sekine, H.; Kim, C.H. Application of Neural Network to 24-hour-ahead Generating Power Forecasting for PV System. In Proceedings of the IEEE Power and Energy Society General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, Niigata, Japan, 5–8 November 2008; pp. 1–6. [Google Scholar]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning Long Term Dependencies with Gradient Descent is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Gensler, A.; Henze, J.; Sick, B.; Raabe, N. Deep Learning for Solar Power Forecasting—An Approach Using AutoEncoder and LSTM Neural Networks. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 9–12 October 2016; pp. 002858–002865. [Google Scholar]
- Wang, Y.; Shen, Y.; Mao, S.; Chen, X.; Zou, H. LASSO & LSTM Integrated Temporal Model for Short-term Solar Intensity Forecasting. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Wang, F.; Yu, Y.; Zhang, Z.; Li, J.; Zhen, Z.; Li, K. Wavelet Decomposition and Convolutional LSTM Networks Based Improved Deep Learning Model for Solar Irradiance Forecasting. Appl. Sci. 2018, 8, 1286. [Google Scholar] [CrossRef]
- Sorkun, M.C.; Paoli, C.; Incel, Ö.D. Time Series Forecasting on Solar Irradiation Using Deep Learning. In Proceedings of the 10th International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 30 November–2 December 2017; pp. 151–155. [Google Scholar]
- Wheather Data Release Portal. Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 21 November 2018).
- Garro, B.A.; Rodríguez, K.; Vázquez, R.A. Classification of DNA Microarrays Using Artificial Neural Networks and ABC Algorithm. Appl. Soft Comput. 2015. [Google Scholar] [CrossRef]
- Pastur-Romay, L.A.; Cedrón, F.; Pazos, A.; Porto-Pazos, A.B. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications. Int. J. Mol. Sci. 2016, 17, 1313. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training Feedforward Networks with The Marquardt Algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv, 2014; arXiv:1412.6980. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Sola, J.; Sevilla, J. Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Xiao, J. On Geometric Features for Skeleton-Based Action Recognition Using Multilayer LSTM Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Santa Rosa, CA, USA, 24–31 March 2017. [Google Scholar]
- Williams, R.J.; Zipser, D. Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. BackPropag. Theory Archit. Appl. 1995, 1, 433–486. [Google Scholar] [CrossRef]
- Graves, A. Generating Sequences with Recurrent Neural Networks. arXiv, 2013; arXiv:1308.0850. [Google Scholar] [CrossRef]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar] [CrossRef]
- Astronomy Space Information of Korea Astronomy and Space Science Institute. Available online: https://astro.kasi.re.kr/life/pageView/6 (accessed on 21 November 2018).
- Dean, J.; Corrado, G.S.; Monga, R.; Chen, K.; Devin, M.; Le, Q.V.; Mao, M.Z.; Ranzato, M.A.; Senior, A.; Tucker, P.; et al. Large Scale Distributed Deep Networks. Adv. Neural Inf. Process. Syst. 2012. [Google Scholar] [CrossRef]
- Masters, D.; Luschi, C. Revisiting Small Batch Training for Deep Neural Networks. arXiv 2018, arXiv:1804.07612v1. [Google Scholar]
- Li, M.; Zhang, T.; Chen, Y.; Smola, A.J. Efficient Mini-batch Training for Stochastic Optimization. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 661–670. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256. [Google Scholar]
- Cui, S. Solar Energy prediction and task scheduling for wireless sensor nodes based on long short term memory. J. Phys. 2018, 1074, 1–14. [Google Scholar] [CrossRef]
- Zhang, G.P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting & Control; Wiley: New York, NY, USA, 2015; ISBN 8131716333. [Google Scholar]
- Yu, L.; Zhou, L.; Tan, L.; Jiang, H.; Wang, Y.; Wei, S.; Nie, S. Application of a New Hybrid Model with Seasonal Auto-regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhen, China. PLoS ONE 2014, 9, e98241. [Google Scholar] [CrossRef] [PubMed]
- Yule, G.U. Why do we Sometimes get Nonsense-Correlations between Time-Series?—A Study in Sampling and the Nature of Time-Series. J. R. Stat. Soc. 1926, 89, 1–63. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) Over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J. GEFCom2014 Probabilistic Solar Power Forecasting Based on k-nearest Neighbor and Kernel Density Estimator. In Proceedings of the Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
Categories | Techniques Used | References |
---|---|---|
Short-term prediction | ENN | Dumitru C.-D. et al. [15] |
ANN | Izgi, E. et al. [16], Sulaiman S. et al. [17] | |
RNN | Mellit, A., and Shaari, S. [24], Mandal, P. et al. [25], Abdel-Nasser et al. [26] | |
DNN | Wang, S. et al. [18], Son, J. et al. [19], Ashraf, I., and Chandra, A. [20] | |
SVM | Shi, J, et al. [21], Da Silva Fonseca, J. G. et al. [22], Bouzerdoum, M. et al. [23] | |
Long-term Prediction | Hybrid Systems | Chattopadhyay, K et al. [27], Jurasz, J. and Ciapala, B. [28] |
ANN | Ding, M. et al. [29], Long, H et al. [30] | |
DNN | Jiahao, K. et al. [31], Hiyama, T., and Kitabayashi, K. [32] | |
PFLRM and RPFLRM | Wang, G. et al. [33] | |
MAR, LR, ARMAX | Li, Y. et al. [34], Li, Y. et al. [35], Mora-López, L. et al. [36] | |
Dynamic Neural Network | Al-Messab, N. et al. [37] | |
RBFNN | Chen, C. et al. [38], Yona, A. et al. [39] |
Categories | Features | Notations | |
---|---|---|---|
Inputs | Meteorological factor | Temperature (t) | |
Humidity (k) | |||
Cloudiness (c) | |||
Radiation (r) | |||
Seasonal factor | Month of year (a) | ||
Day of month (b) | |||
Output | - | Predicted PV power output (s) |
Input Values | Output Value | ||||||
---|---|---|---|---|---|---|---|
Hour | Temperature (°C) | Humidity (%) | Cloudiness Index | Radiation (W/m2) | Month of Year (-) | Day of Month (-) | Actual PV Power Output (kW) |
06 | 23.4 | 93 | 1 | 0 | M | D | 0 |
07 | 24.3 | 90 | 1 | 93.1 | M | D | 2 |
08 | 26 | 85 | 1 | 249.7 | M | D | 5 |
09 | 27.5 | 78 | 1 | 346.1 | M | D | 6 |
10 | 29.7 | 68 | 1 | 408.9 | M | D | 9 |
11 | 30.8 | 65 | 1 | 447.1 | M | D | 11 |
12 | 33.6 | 52 | 2 | 677.7 | M | D | 18 |
13 | 33 | 55 | 3 | 656.5 | M | D | 20 |
14 | 33.1 | 53 | 3 | 663.9 | M | D | 18 |
15 | 31.4 | 55 | 4 | 592.5 | M | D | 17 |
16 | 32.1 | 53 | 3 | 423.5 | M | D | 11 |
17 | 30.9 | 62 | 3 | 323.4 | M | D | 8 |
18 | 29.3 | 63 | 3 | 196.3 | M | D | 3 |
19 | 27.2 | 71 | 1 | 45.5 | M | D | 0 |
Improvement Ratios (%) | ||||||||
ANN | ARIMA | S-ARIMA | DNN | DNN2 | LSTM | LSTM2 | ||
Against | ANN | - | +68.657 | +66.468 | +75.283 | +68.897 | +85.882 | +58.666 |
ARIMA | - | - | −6.984 | +21.138 | +1.374 | +54.957 | −23.075 | |
S-ARIMA | - | - | - | +26.287 | +7.889 | +57.898 | −17.894 | |
DNN | - | - | - | - | −22.843 | +42.883 | −38.746 | |
DNN2 | - | - | - | - | - | +56.506 | −27.753 | |
LSTM | - | - | - | - | - | - | −62.912 | |
LSTM2 | - | - | - | - | - | - | - | |
(a) Performance improvements among the methods applied for the easy seasons | ||||||||
Improvement Ratios (%) | ||||||||
ANN | ARIMA | S-ARIMA | DNN | DNN2 | LSTM | LSTM2 | ||
Against | ANN | - | +60.905 | +56.147 | +67.765 | +73.693 | +74.017 | +63.058 |
ARIMA | - | - | −12.169 | +29.548 | +31.549 | +34.559 | −3.159 | |
S-ARIMA | - | - | - | +33.493 | +35.357 | +37.272 | +8.717 | |
DNN | - | - | - | - | +3.492 | +7.314 | −45.443 | |
DNN2 | - | - | - | - | - | +4.061 | −50.706 | |
LSTM | - | - | - | - | - | - | −57.086 | |
LSTM2 | - | - | - | - | - | - | - | |
(b) Performance improvements among the methods applied for the hard seasons |
Month of Year | Week of Month | MAE | ||||||
---|---|---|---|---|---|---|---|---|
ANN | ARIMA | S-ARIMA | DNN | DNN2 | LSTM | LSTM2 | ||
1 | 4.539 | 1.214 | 1.216 | 1.409 | 1.049 | 0.686 | 0.998 | |
Spring | 2 | 2.099 | 1.013 | 1.049 | 0.823 | 0.848 | 0.414 | 1.122 |
(April) | 3 | 2.677 | 0.916 | 0.933 | 0.710 | 0.782 | 0.409 | 1.174 |
4 | 2.015 | 0.934 | 0.929 | 0.533 | 0.785 | 0.283 | 1.062 | |
1 | 2.451 | 0.390 | 0.384 | 0.511 | 0.791 | 0.318 | 0.864 | |
Summer | 2 | 2.328 | 0.425 | 0.407 | 0.486 | 0.878 | 0.330 | 0.894 |
(August) | 3 | 2.132 | 0.353 | 0.335 | 0.493 | 0.845 | 0.239 | 0.799 |
4 | 2.610 | 1.131 | 1.300 | 0.468 | 0.605 | 0.263 | 0.924 | |
1 | 2.359 | 0.655 | 0.815 | 0.753 | 0.747 | 0.468 | 1.035 | |
Autumn | 2 | 2.040 | 0.592 | 0.582 | 0.736 | 0.683 | 0.296 | 0.955 |
(October) | 3 | 2.200 | 0.484 | 0.447 | 0.957 | 0.489 | 0.244 | 1.185 |
4 | 1.997 | 1.982 | 2.767 | 0.502 | 0.596 | 0.584 | 0.924 | |
1 | 1.883 | 0.941 | 1.267 | 0.422 | 1.045 | 0.319 | 0.801 | |
Winter | 2 | 1.902 | 0.741 | 0.777 | 0.755 | 0.804 | 0.389 | 0.857 |
(March) | 3 | 2.005 | 0.874 | 0.842 | 0.666 | 0.775 | 0.285 | 0.994 |
4 | 2.001 | 0.571 | 0.493 | 0.478 | 1.356 | 0.301 | 1.197 |
RMSE | |||||||
---|---|---|---|---|---|---|---|
ANN | ARIMA | S-ARIMA | DNN | DNN2 | LSTM | LSTM2 | |
Spring (April) | 3.617 | 1.254 | 1.256 | 1.023 | 1.258 | 0.780 | 1.797 |
Summer (August) | 1.669 | 0.889 | 0.843 | 0.701 | 0.995 | 0.563 | 1.262 |
Autumn (October) | 3.118 | 1.251 | 1.240 | 1.044 | 1.061 | 0.698 | 1.677 |
Winter (March) | 8.015 | 1.829 | 1.450 | 1.096 | 1.592 | 0.874 | 1.816 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, K. Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information. Energies 2019, 12, 215. https://doi.org/10.3390/en12020215
Lee D, Kim K. Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information. Energies. 2019; 12(2):215. https://doi.org/10.3390/en12020215
Chicago/Turabian StyleLee, Donghun, and Kwanho Kim. 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information" Energies 12, no. 2: 215. https://doi.org/10.3390/en12020215
APA StyleLee, D., & Kim, K. (2019). Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information. Energies, 12(2), 215. https://doi.org/10.3390/en12020215