The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China
Abstract
:1. Introduction
2. Methodology
2.1. Objective Function and Constrains
2.1.1. Objective Function
2.1.2. Constrains
2.2. Solving Method for the Model
3. Case Study
3.1. Description of the Case
3.2. Assumptions
3.3. Simulation Results and Analysis
3.3.1. Integration of Wind Power and Its Curtailment and Dispatch Cost of the Power System
3.3.2. Flexibility Impacts on the Operations of Coal Fired Units
3.3.3. The Net Benefit of the Power System and the Impacts of Penalty Rate
3.3.4. Sensitivity Analysis
3.3.5. Further Analyses and Discussions
3.3.6. Limitation Assessment of This Study
4. Conclusions and Policy Recommendations
4.1. Conclusions
4.2. Policy and Strategy Recommendations
4.2.1. To Scale up the Flexibility of Coal Fired Units
4.2.2. To Change the Operation Mode of Coal Fired Units and the Dispatch Mode of the Power System
4.2.3. To Promote the Flexibility Services on the Basis of the System Value of Wind Power Integration
4.2.4. To Improve the Compensation Mechanism of the Flexibility Services
Author Contributions
Funding
Conflicts of Interest
Appendix A
Time | Dispatch Cost/Million RMB | Time | Dispatch Cost/Million RMB |
---|---|---|---|
0:00 | 6.933 | 12:00 | 7.705 |
1:00 | 6.755 | 13:00 | 7.765 |
2:00 | 6.663 | 14:00 | 7.772 |
3:00 | 6.593 | 15:00 | 7.846 |
4:00 | 6.609 | 16:00 | 8.372 |
5:00 | 6.788 | 17:00 | 8.854 |
6:00 | 7.168 | 18:00 | 8.743 |
7:00 | 7.343 | 19:00 | 8.525 |
8:00 | 7.934 | 20:00 | 8.298 |
9:00 | 8.294 | 21:00 | 8.179 |
10:00 | 8.405 | 22:00 | 7.707 |
11:00 | 8.265 | 23:00 | 7.339 |
Appendix B
References
- Mitchell, C. Momentum is increasing towards a flexible electricity system based on renewables. Nat. Energy 2016, 1, 6. [Google Scholar] [CrossRef]
- Antal, M.; Karhunmaa, K. The German energy transition in the British, Finnish and Hungarian news media. Nat. Energy 2018, 3, 994–1001. [Google Scholar] [CrossRef]
- Davidson, M.R.; Zhang, D.; Xiong, W.M.; Zhang, X.L.; Karplus, V.J. Modelling the potential for wind energy integration on China’s coal-heavy electricity grid. Nat. Energy 2016, 1, 7. [Google Scholar] [CrossRef]
- The National Development and Reform Commission (NDRC); National Energy Administration (NEA). Energy Production and Consumption Revolution Strategy (2016–2030). (In Chinese). Available online: http://www.ndrc.gov.cn/gzdt/201704/W020170425548780357458.pdf (accessed on 21 February 2018).
- Energy Transition Trends 2019. Available online: https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Internationales/China/CREO/Energy_transition_trends_2019_engl.pdf (accessed on 25 April 2019).
- International Energy Agency (IEA). Key World Energy Statistics 2018. Available online: https://webstore.iea.org/key-world-energy-statistics-2018 (accessed on 27 April 2019).
- Gu, Y.; Xu, J.; Chen, D.; Wang, Z.; Li, Q. Overall review of peak shaving for coal-fired power units in China. Renew. Sustain. Energy Rev. 2016, 54, 723–731. [Google Scholar] [CrossRef]
- China Electric Power Planning and Engineering Institute. Report on China’s Electric Power Development 2017; China Market Press: Beijing, China, 2018; pp. 40–44. [Google Scholar]
- China Electricity Council (CEC). China Power Industry Development Report; China Market Press: Beijing, China, 2018; pp. 78–106. [Google Scholar]
- State Council. Opinions on Further Deepening the Reform of Power System (Document No. 9). (In Chinese). Available online: http://tgs.ndrc.gov.cn/zywj/201601/t20160129_773852.html (accessed on 5 October 2018).
- Vithayasrichareon, P.; Riesz, J.; MacGill, I. Operational flexibility of future generation portfolios with high renewables. Appl. Energy 2017, 206, 32–41. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Status of Power System Transformation 2018, Advanced Power Plant Flexibility; OECD/IEA: Paris, France, 2018; Available online: https://webstore.iea.org/status-of-power-system-transformation-2018 (accessed on 2 August 2018).
- Agora Energiewende, Flexibility in Thermal Power Plants—With a Focus on Existing Coal-Fired Power Plants. Available online: https://www.agora-energiewende.de/fileadmin2/Projekte/2017/Flexibility_in_thermal_plants/115_flexibility-report-WEB.pdf (accessed on 8 December 2018).
- Thermal Power Plant Flexibility, a Publication under the Clean Energy Ministerial Campaign. Available online: http://www.ea-energianalyse.dk/reports/thermal_power_plant_flexibility_2018_19052018.pdf (accessed on 20 December 2018).
- Schill, W.-P.; Pahle, M.; Gambardella, C. Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation. Nat. Energy 2017, 2, 6. [Google Scholar] [CrossRef]
- Shortt, A.; Kiviluoma, J.; Malley, M.O. Accommodating variability in generation planning. IEEE Trans. Power Syst. 2013, 28, 158–169. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.A.; Kirsten, T.; Prchlik, L. Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew. Sustain. Energy Rev. 2018, 82, 1497–1513. [Google Scholar] [CrossRef]
- Garðarsdóttir, S.Ó.; Göransson, L.; Normann, F.; Johnsson, F. Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system. Appl. Energy 2018, 209, 277–289. [Google Scholar] [CrossRef]
- Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S. Impacts of Wind and Solar on Fossil-Fueled Generators; National Renewable Energy Laboratory (NREL): Oak Ridge, TN, USA, 2012. Available online: https://www.nrel.gov/docs/fy12osti/53504.pdf (accessed on 21 December 2018).
- Brinckerhoff Parsons. Technical Assessment of the Operation of Coal & Gas Fired Plants; Deparment of Energy and Climate Change (DECC): London, UK, 2014. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/387566/Technical_Assessment_of_the_Operation_of_Coal_and_Gas_Plant_PB_Power_FIN....pdf (accessed on 2 December 2018).
- IEAGHG. Operating Flexibility of Power Plants with CCS, 2012/6; IEAGHG: Cheltenham, UK, 2012; Available online: https://hub.globalccsinstitute.com/sites/default/files/publications/104631/operating-flexibility-power-plants-ccs.pdf (accessed on 15 June 2018).
- Kumar, N.; Besuner, O.; Lefton, S.A.; Agan, D.; Hilleman, D. Power Plant Cycling Costs. Subcontract Report NREL/SR-5500-55433; National Renewable Energy Laboratory: Golden, CO, USA, 2012. Available online: https://www.nrel.gov/docs/fy12osti/55433.pdf (accessed on 15 October 2018).
- Zhao, Y.; Wang, C.; Liu, M.; Chong, D.; Yan, J. Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation. Appl. Energy 2018, 212, 1295–1309. [Google Scholar] [CrossRef]
- Viswanathan, V.; Gray, D. Damage to Power Plants Due to Cycling; EPRI: Palo Alto, CA, USA, 2001; Available online: https://www.epri.com/#/pages/product/1001507/?lang=en-US (accessed on 17 June 2018).
- Schröder, A.; Kunz, F.; Meiss, J.; Mendelevitch, R.; von Hirschhausen, C. Current and Prospective Costs of Electricity Generation Until 2050; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2013; Available online: https://www.diw.de/documents/publikationen/73/diw_01.c.424566.de/diw_datadoc_ 2013-068.pdf (accessed on 20 June 2018).
- Göransson, L.; Goop, J.; Odenberger, M.; Johnsson, F. Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system. Appl. Energy 2017, 197, 230–240. [Google Scholar] [CrossRef]
- Lefton, S.; Hilleman, D. The Cost of Cycling Coal Fired Power Plants. Coal Power Magazine Winter 2006. Available online: http://www.pserc.cornell.edu/empire/100_CoalPowerWinterMag16-20.pdf (accessed on 18 June 2018).
- Schill, W.; Pahle, M.; Gambardella, C. On Start-up Costs of Thermal Power Plants in Markets with Increasing Shares of Fluctuating Renewables; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2016; Available online: https://www.diw.de/documents/publikationen/73/diw_01.c.524200.de/ dp1540.pdf (accessed on 25 June 2018).
- International Energy Agency (IEA). Status of Power System Transformation 2018—Technical Annexes; OECD/IEA: Paris, France, 2018; Available online: https://webstore.iea.org/status-of-power-system-transformation-2018 -technical-annexes (accessed on 3 August 2018).
- Yin, S.Y.; Zhang, S.F.; Andrews-Speed, P.; Li, W. Economic and environmental effects of peak regulation using coal-fired power for the priority dispatch of wind power in China. J. Clean. Product. 2017, 162, 361–370. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Dragoon, K. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy 2016, 92, 69–82. [Google Scholar] [CrossRef]
- De Jonghe, C.; Delarue, E.; Belmans, R.; D’Haeseleer, W. Determining optimal electricity technology mix with high level of wind power penetration. Appl. Energy 2011, 88, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.S.; van den Broek, M.; Seebregts, A.; Faaij, A. Operational flexibility and economics of power plants in future low-carbon power systems. Appl. Energy 2015, 156, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Kondziella, H.; Bruckner, T. Flexibility requirements of renewable energy based electricity systems—A review of research results and methodologies. Renew. Sustain. Energy Rev. 2016, 53, 10–22. [Google Scholar] [CrossRef]
- Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA). Insights Series 2018—Power Sector Reform in China; OECD/IEA: Paris, France, 2018; Available online: https://webstore.iea.org/insights-series-2018-power-sector-reform-in-china (accessed on 23 December 2018).
- Zhang, N.; Hu, Z.; Shen, B.; Dang, S.; Zhang, J.; Zhou, Y. A source-grid-load coordinated power planning model considering the integration of wind power generation. Appl. Energy 2016, 168, 13–24. [Google Scholar] [CrossRef]
- Arroyo, J.M.; Conejo, A.J. Optimal response of a thermal unit to an electricity spot market. IEEE Trans. Power Syst. 2000, 15, 1098–1104. [Google Scholar] [CrossRef]
- Arroyo, J.M.; Conejo, A.J. Modeling of start-up and shut-down power trajectories of thermal units. IEEE Trans. Power Syst. 2004, 19, 1562–1568. [Google Scholar] [CrossRef]
- Zhao, C.X. Technical Manual for Steam Turbine Units; China Market Press: Beijing, China, 2007; pp. 325–330. (In Chinese) [Google Scholar]
- The Norm of Energy Consumption Per Unit Product of General Coal-Fired Power Set. (In Chinese). Available online: http://www.cspress.com.cn/biaozhunziliao/1553.html (accessed on 20 December 2018).
- The Norm of Energy Consumption Per Unit Product of Combined Heat and Power Generation. (In Chinese). Available online: http://www.cspress.com.cn/biaozhunziliao/40862.html (accessed on 20 December 2018).
- Convertino, M.; Valverde, L.J. Portfolio decision analysis framework for value-focused ecosystem management. PLoS ONE 2013, 8, e65056. [Google Scholar] [CrossRef] [PubMed]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis. The Primer, Global Sensitivity Analysis. The Primer. Available online: https://doi.org/10.1002/9780470725184 (accessed on 19 May 2019).
- The National Development and Reform Commission (NDRC); National Energy Administration (NEA). The 13th FYP for Power Development. (In Chinese). Available online: http://www.gov.cn/xinwen /2016-12/22/5151549/files/696e98c57ecd49c289968ae2d77ed583.pdf (accessed on 21 February 2018).
- Holcombe, R.G. Public Sector Economics: The Role of Government in the American American Economy; China Renmin University Press: Beijing, China, 2012; pp. 75–77. [Google Scholar]
- The National Development and Reform Commission (NDRC); National Energy Administration (NEA). The Trial Measures for Priority Generation of Units Providing Peak Regulation Services for Renewable Energy. (In Chinese). Available online: http://www.nea.gov.cn/135533225_14691795237461n.pdf (accessed on 22 February 2018).
Units | Total Capacity/MW | CHP Capacity/MW |
---|---|---|
≥1000 MW | 4000 | 0 |
[600,1000) MW | 20940 | 4920 |
[300,600) MW | 20204 | 16970 |
[200,300) MW | 4680 | 3840 |
[100,200) MW | 601 | 601 |
Units | Overall Average Load Rate |
---|---|
≥1000 MW | 0.832 |
[600,1000) MW | 0.747 |
[300,600) MW | 0.742 |
[200,300) MW | 0.748 |
[100,200) MW | 0.732 |
Change of Coal Price | Change of Total Dispatch Cost | The Net Benefit Change of Wind Power Integration |
---|---|---|
−10% | −8.19% | −11.26% |
−5% | −4.06% | −5.84% |
5% | 4.24% | 4.84% |
10% | 8.36% | 10.40% |
Change of CO2 Price | Change of Total Dispatch Cost | The Net Benefit Change of Wind Power Integration |
---|---|---|
−10% | −1.26% | −1.64% |
−5% | −0.51% | −1.47% |
5% | 0.60% | 1.00% |
10% | 1.35% | 1.14% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Shen, B. The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China. Energies 2019, 12, 2376. https://doi.org/10.3390/en12122376
Zhao J, Shen B. The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China. Energies. 2019; 12(12):2376. https://doi.org/10.3390/en12122376
Chicago/Turabian StyleZhao, Jun, and Bo Shen. 2019. "The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China" Energies 12, no. 12: 2376. https://doi.org/10.3390/en12122376
APA StyleZhao, J., & Shen, B. (2019). The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China. Energies, 12(12), 2376. https://doi.org/10.3390/en12122376