Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review
Abstract
:1. Introduction
2. Review Methodology
3. Results
3.1. Nordic Transport Energy Scenarios
3.2. NETP 2016
4. Discussion—Identified Challenges and Recommendations
4.1. Transport Behavior
4.2. Breakthrough Technologies
4.3. Domestic Energy Resources
4.4. Geographical Aggregation and System Boundaries
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
4DS | 4 Degree Scenario |
BE | Battery Electric |
BECCS | Bio-Energy with Carbon Capture Storage |
CCS | Carbon Capture Storage |
CNS | Carbon Neutral Scenario |
CO2 | Carbon Dioxide |
E4 | Energy-Economy-Environmental-Engineering |
ETP | Energy Technology Perspectives |
EVs | Electrical Vehicles |
FC | Fuel Cell |
GDP | Gross Domestic Product |
GHG | Greenhouse Gas |
GIS | Geographical Information System |
IEA | International Energy Agency |
ICE | Internal Combustion Engine |
JRC | Joint Research Centre |
LCA | Life-Cycle Assessment |
LDVs | Light Duty Vehicles |
MaaS | Mobility as a Service |
MoMo | Mobility Model |
NER | Nordic Energy Research |
NETP | Nordic Energy Technology Perspectives |
TIMES | The Integrated MARKAL-EFOM System |
TTW | Tank-To-Wheels |
WTT | Well-To-Tank |
WTW | Well-To-Wheels |
Appendix A
Appendix A.1. Urban Dimension towards Sustainable Development
Appendix A.2. Scenario Types in the NETP 2016
References
- International Energy Agency. Energy Technology Perspectives 2016: Towards Sustainable Energy Systems; IEA Publications: Paris, France, 2016. [Google Scholar]
- International Energy Agency. Energy Technology Perspectives 2015; IEA Publications: Paris, France, 2015. [Google Scholar]
- International Transport Forum. Transport CO2 and Paris Agreement Reviewing the Impact of Nationally Determined Contributions; ITF Publications: Paris, France, 2018. [Google Scholar]
- International Energy Agency. Energy Technology Perspectives 2014; IEA Publications: Paris, France, 2014. [Google Scholar]
- International Energy Agency. Nordic EV Outlook 2018; IEA Publications: Paris, France, 2018. [Google Scholar]
- Nordic Council of Ministers. Energy and Transport; TemaNord: Copenhagen, Denmark, 2014. [Google Scholar] [CrossRef]
- Nordic Action Group on Climate and Energy. Nordic Transport Ways; Global Utmaning: Stockholm, Sweden, 2015. [Google Scholar]
- Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A review of current challenges and trends in energy systems modeling. Renew. Sustain. Energy Rev. 2018, 96, 156–166. [Google Scholar] [CrossRef]
- Münster, M.; Morthorst, P.E.; Larsen, H.V.; Bregnbæk, L.; Werling, J.; Lindboe, H.H.; Ravn, H. The role of district heating in the future Danish energy system. Energy 2012, 48, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Petrović, S.N.; Karlsson, K.B. Residential heat pumps in the future Danish energy system. Energy 2016, 114, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Tattini, J.; Gargiulo, M.; Karlsson, K. Reaching carbon neutral transport sector in Denmark—Evidence from the incorporation of modal shift into the TIMES energy system modeling framework. Energy Policy 2018, 113, 571–583. [Google Scholar] [CrossRef]
- Börjesson, M.; Ahlgren, E.O.; Lundmark, R.; Athanassiadis, D. Biofuel futures in road transport—A modeling analysis for Sweden. Transp. Res. Part D Transp. Environ. 2014, 32, 239–252. [Google Scholar] [CrossRef]
- Tattini, J.; Mulholland, E.; Venturini, G.; Ahancian, M.; Gargiulo, M.; Balyk, O. A Long-Term Strategy to Decarbonise the Danish Inland Passenger Transport Sector. In Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development; Giannakidis, G., Karlsson, K., Labriet, M., Ó Gallachóir, B., Eds.; Lecture Notes in Energy; Springer: Berlin, Germany, 2018; Volume 64, pp. 137–153. [Google Scholar] [CrossRef]
- Shafiei, E.; Davidsdottir, B.; Leaver, J.; Stefansson, H.; Asgeirsson, E.I. Potential impact of transition to a low-carbon transport system in Iceland. Energy Policy 2014, 69, 127–142. [Google Scholar] [CrossRef]
- Rosenberg, E.; Fidje, A.; Espegren, K.A.; Stiller, C.; Svensson, A.M.; Møller-Holst, S. Market penetration analysis of hydrogen vehicles in Norwegian passenger transport towards 2050. Int. J. Hydrogen Energy 2010, 35, 7267–7279. [Google Scholar] [CrossRef]
- International Energy Agency, Nordic Energy Research. Nordic Energy Technology Perspectives 2016; IEA Publications: Paris, France; Oslo, Norway, 2016. [Google Scholar] [CrossRef]
- Web of Science. Available online: https://www.webofknowledge.com (accessed on 13 March 2019).
- DTU Findit. Available online: https://findit.dtu.dk (accessed on 13 March 2019).
- Scopus. Available online: https://www.scopus.com (accessed on 13 March 2019).
- International Energy Agency. Nordic Energy Technology Perspectives 2016. Available online: https://www.iea.org/etp/nordic/ (accessed on 12 July 2017).
- Liu, Z.; Wu, Q.; Nielsen, A.; Wang, Y. Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050. Energies 2014, 7, 1733–1749. [Google Scholar] [CrossRef] [Green Version]
- Graabak, I.; Wu, Q.; Warland, L.; Liu, Z. Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050. Energy 2016, 107, 648–660. [Google Scholar] [CrossRef]
- Juul, N.; Meibom, P. Road transport and power system scenarios for Northern Europe in 2030. Appl. Energy 2012, 92, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Taljegard, M.; Göransson, L.; Odenberger, M.; Johnsson, F. Impacts of electric vehicles on the electricity generation portfolio—A Scandinavian-German case study. Appl. Energy 2019, 235, 1637–1650. [Google Scholar] [CrossRef]
- Ravn, H. Balmorel Energy System Model. Available online: http://www.balmorel.com/ (accessed on 12 July 2017).
- Bright, R.M.; Strømman, A.H. Fuel-Mix, Fuel Efficiency, and Transport Demand Affect Prospects for Biofuels in Northern Europe. Environ. Sci. Technol. 2010, 44, 2261–2269. [Google Scholar] [CrossRef] [PubMed]
- Krook-Riekkola, A.; Sandberg, E. Net-Zero CO2-Emission Pathways for Sweden by Cost-Efficient Use of Forestry Residues. In Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development; Giannakidis, G., Karlsson, K., Labriet, M., Ó Gallachóir, B., Eds.; Lecture Notes in Energy; Springer: Berlin, Germany, 2018; Volume 64, pp. 123–136. [Google Scholar]
- Meibom, P.; Karlsson, K. Role of hydrogen in future North European power system in 2060. Int. J. Hydrogen Energy 2010, 35, 1853–1863. [Google Scholar] [CrossRef]
- Sørensen, B. A renewable energy and hydrogen scenario for northern Europe. Int. J. Energy Res. 2008, 32, 471–500. [Google Scholar] [CrossRef]
- Koljonen, T.; Pursiheimo, E.; Gether, K.; Jøregensen, K. System Analysis and Assessment of Technological Alternatives for Nordic H2 Energy Foresight; Risø National Laboratory: Roskilde, Denmark, 2004. [Google Scholar]
- Klitkou, A.; Bolwig, S.; Coenen, L.; Solér, O.; Scordato, L. Technology Opportunities in Nordic Energy System Transitions (TOP-NEST); Nordic Institute for Studies in Innovation, Research and Education: Oslo, Norway, 2015. [Google Scholar]
- Seljom, P.; Rosenberg, E. A Scandinavian Transition Towards a Carbon-Neutral Energy System. In Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development; Giannakidis, G., Karlsson, K., Labriet, M., Gallachóir, B., Eds.; Lecture Notes in Energy; Springer: Berlin, Germany, 2018; Volume 64, pp. 105–121. [Google Scholar]
- Pursiheimo, E.; Holttinen, H.; Koljonen, T. Path toward 100% renewable energy future and feasibility of power-to-gas technology in Nordic countries. IET Renew. Power Gener. 2017, 11, 1695–1706. [Google Scholar] [CrossRef]
- Loulou, R.; Goldstein, G.; Kanudia, A.; Lehtilä, A.; Remme, U. Documentation for the TIMES Model—Part I: TIMES Concepts and Theory. Available online: https://iea-etsap.org/index.php/documentation (accessed on 12 July 2017).
- Sovacool, B.K. Contestation, contingency, and justice in the Nordic low-carbon energy transition. Energy Policy 2017, 102, 569–582. [Google Scholar] [CrossRef]
- Haasz, T.; Vilchez, J.J.; Kunze, R.; Deane, P.; Fraboulet, D.; Fahl, U.; Mulholland, E. Perspectives on decarbonizing the transport sector in the EU-28. Energy Strateg. Rev. 2018, 20, 124–132. [Google Scholar] [CrossRef]
- World Energy Council, IBM Corporation, Paul Scherrer Institute. Global Transport Scenarios 2050; World Energy Council: London, UK, 2011. [Google Scholar]
- Fulton, L.; Cazzola, P.; Cuenot, F. IEA Mobility Model (MoMo) and its use in the ETP 2008. Energy Policy 2009, 37, 3758–3768. [Google Scholar] [CrossRef]
- International Energy Agency. Modelling of the Transport Sector in the Mobility Model 2017. Available online: https://www.iea.org/etp/etpmodel/transport/ (accessed on 12 July 2017).
- Cuenot, F.; Fulton, L.; Staub, J. The prospect for modal shifts in passenger transport worldwide and impacts on energy use and CO2. Energy Policy 2012, 41, 98–106. [Google Scholar] [CrossRef]
- Yeh, S.; Mishra, G.S.; Fulton, L.; Kyle, P.; McCollum, D.L.; Miller, J.; Cazzola, P.; Teter, J. Detailed assessment of global transport-energy models’ structures and projections. Transp. Res. Part D Transp. Environ. 2016, 1–16. [Google Scholar] [CrossRef]
- Schipper, L.; Marie-Lilliu, C.; Gorham, R. Flexing the Link between Transport and Greenhouse Gas Emissions; IEA Publications: Paris, France, 2000. [Google Scholar]
- Cazzola, P.; (International Energy Agency, Paris, France). Personal communication, 2017.
- Wråke, M.; (Swedish Energy Research Centre—Energiforsk, Stockholm, Sweden). Personal communication, 2017.
- Daly, H.E.; Ramea, K.; Chiodi, A.; Yeh, S.; Gargiulo, M.; Gallachóir, B.Ó. Incorporating travel behaviour and travel time into TIMES energy system models. Appl. Energy 2014, 135, 429–439. [Google Scholar] [CrossRef]
- Pye, S.; Daly, H. Modelling sustainable urban travel in a whole systems energy model. Appl. Energy 2015, 159, 97–107. [Google Scholar] [CrossRef]
- Tattini, J.; Ramea, K.; Gargiulo, M.; Yang, C.; Mulholland, E.; Yeh, S.; Karlsson, K. Improving the representation of modal choice into bottom-up optimization energy system models—The MoCho-TIMES model. Appl. Energy 2018, 212, 265–282. [Google Scholar] [CrossRef]
- Cayla, J.-M.; Maïzi, N. Integrating household behavior and heterogeneity into the TIMES-Households model. Appl. Energy 2015, 139, 56–67. [Google Scholar] [CrossRef]
- Salvucci, R.; Tattini, J.; Gargiulo, M.; Lehtilä, A.; Karlsson, K. Modelling transport modal shift in TIMES models through elasticities of substitution. Appl. Energy 2018, 232, 740–751. [Google Scholar] [CrossRef]
- Connolly, D. Economic viability of electric roads compared to oil and batteries for all forms of road transport. Energy Strateg. Rev. 2017, 18, 235–249. [Google Scholar] [CrossRef]
- Ahjum, F.; Merven, B.; Stone, A.; Caetano, T. Road transport vehicles in South Africa towards 2050: Factors influencing technology choice and implications for fuel supply. J. Energy S. Afr. 2018, 29, 33–55. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Kurosawa, A.; Sasakura, M.; Sakata, K. Significance of CO2 -free hydrogen globally and for Japan using a long-term global energy system analysis. Int. J. Hydrogen Energy 2017, 42, 13357–13367. [Google Scholar] [CrossRef]
- Oshiro, K.; Masui, T. Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan. Energy Policy 2015, 81, 215–225. [Google Scholar] [CrossRef]
- Kawakami, Y.; Komiyama, R.; Fujii, Y. Penetration of Electric Vehicles toward 2050: Analysis Utilizing an Energy System Model Incorporating High-Temporal-Resolution Power Generation Sector. IFAC-PapersOnLine 2018, 51, 598–603. [Google Scholar] [CrossRef]
- Teir, S.; Tsupari, E.; Arasto, A.; Koljonen, T.; Kärki, J.; Lehtilä, A.; Kujanpää, L.; Aatos, S.; Nieminen, M. Prospects for application of CCS in Finland. Energy Procedia 2011, 4, 6174–6181. [Google Scholar] [CrossRef] [Green Version]
- Victor, N.; Nichols, C.; Zelek, C. The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model. Energy Econ. 2018, 73, 410–425. [Google Scholar] [CrossRef]
- Huang, W.; Chen, W.; Anandarajah, G. The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model. Appl. Energy 2017, 208, 291–301. [Google Scholar] [CrossRef]
- Simoes, S.; Nijs, W.; Ruiz, P.; Sgobbi, A.; Thiel, C. Comparing policy routes for low-carbon power technology deployment in EU—An energy system analysis. Energy Policy 2017, 101, 353–365. [Google Scholar] [CrossRef]
- Blanco, H.; Nijs, W.; Ruf, J.; Faaij, A. Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization. Appl. Energy 2018, 232, 617–639. [Google Scholar] [CrossRef]
- Schäfer, A. Introducing Behavioral Change in Transportation into Energy/Economy/Environment Models; World Bank policy research working paper no. WPS 6234; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Venturini, G.; Tattini, J.; Mulholland, E.; Ó Gallachóir, B. Improvements in the representation of behaviour in integrated energy and transport models. Int. J. Sustain. Transp. 2018, 13, 294–313. [Google Scholar] [CrossRef]
- Baptista, P.; Melo, S.; Rolim, C. Energy, Environmental and Mobility Impacts of Car-sharing Systems. Empirical Results from Lisbon, Portugal. Procedia Soc Behav. Sci. 2014, 111, 28–37. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Transport Energy and CO2; IEA Publications: Paris, France, 2009. [Google Scholar]
- European Commission. White Paper. Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Iacobucci, R.; McLellan, B.; Tezuka, T. The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid. Energies 2018, 11, 2016. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Trucks—Implications for Energy and the Environment; IEA Publications: Paris, France, 2017. [Google Scholar]
- Martinsen, K.; Torvanger, A. Control Mechanisms for Nordic Ship Emissions; TemaNord, Nordic Council of Ministers: Copenhagen, Denmark, 2013. [Google Scholar]
- Gagatsi, E.; Estrup, T.; Halatsis, A. Exploring the Potentials of Electrical Waterborne Transport in Europe: The E-ferry Concept. Transp. Res. Procedia 2016, 14, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Rootzén, J.; Johnsson, F. CO2 emissions abatement in the Nordic carbon-intensive industry—An end-game in sight? Energy 2015, 80, 715–730. [Google Scholar] [CrossRef]
- Rydén, M.; Lyngfelt, A.; Langørgen, Ø.; Larring, Y.; Brink, A.; Teir, S.; Havåg, H.; Karmhagen, P. Negative CO2 Emissions with Chemical-Looping Combustion of Biomass—A Nordic Energy Research Flagship Project. Energy Procedia 2017, 114, 6074–6082. [Google Scholar] [CrossRef]
- Anthonsen, K.L.; Aagaard, P.; Bergmo, P.E.; Erlström, M.; Fareide, J.I.; Gislason, S.R.; Mortensen, G.M.; Snæbjörnsdottir, S.Ó. CO2 Storage Potential in the Nordic Region. Energy Procedia 2013, 37, 5080–5092. [Google Scholar] [CrossRef]
- Mustapha, W.F.; Bolkesjø, T.F.; Martinsen, T.; Trømborg, E. Techno-economic comparison of promising biofuel conversion pathways in a Nordic context—Effects of feedstock costs and technology learning. Energy Convers. Manag. 2017, 149, 368–380. [Google Scholar] [CrossRef]
- Börjesson, M.; Grahn, M.; Ahlgren, E. Transport Biofuel Futures in Energy-Economic Modeling—A Review; The Swedish Knowledge Centre for Renewable Transportation Fuels: Göteborg, Sweden, 2013. [Google Scholar]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the transport sector: A review of production costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Goldmann, A.; Sauter, W.; Oettinger, M.; Kluge, T.; Schröder, U.; Seume, J.; Friedrichs, J.; Dinkelacker, F. A Study on Electrofuels in Aviation. Energies 2018, 11, 392. [Google Scholar] [CrossRef]
- Mustapha, W.F.; Kirkerud, J.G.; Bolkesjø, T.F.; Trømborg, E. Large-scale forest-based biofuels production: Impacts on the Nordic energy sector. Energy Convers. Manag. 2019, 187, 93–102. [Google Scholar] [CrossRef]
- Sgobbi, A.; Nijs, W.; De Miglio, R.; Chiodi, A.; Gargiulo, M.; Thiel, C. How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int. J. Hydrogen Energy 2016, 41, 19–35. [Google Scholar] [CrossRef]
- Næss, P.; Jensen, O.B. Urban structure matters, even in a small town. J. Environ. Plan Manag. 2004, 47, 35–57. [Google Scholar] [CrossRef]
- Krumdieck, S.; Page, S.; Dantas, A. Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities. Transp. Res. Part A Policy Pract. 2010, 44, 306–322. [Google Scholar] [CrossRef]
- Forsberg, J.; Krook-Riekkola, A. Supporting Cities’ Emission Mitigation StrategieS: Modelling Urban Transport in a Times Energy System Modelling Framework. In Proceedings of the 17th International Conference on Urban Transport and the Environment, University of Rome ‘La Sapienza’, Rome, Italy, 5–7 September 2017; Ricci, S., Brebbia, C.A., Eds.; Wessex Institute: Ashurst, UK, 2017; pp. 15–25. [Google Scholar] [CrossRef]
- Lind, A.; Espegren, K. The use of energy system models for analysing the transition to low-carbon cities—The case of Oslo. Energy Strateg. Rev. 2017, 15, 44–56. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Noel, L.; Kester, J.; Zarazua de Rubens, G. Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden. Energy 2018, 165, 532–542. [Google Scholar] [CrossRef] [Green Version]
- Joint Research Centre. Well-To-Wheels Report Version 4.a—Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Joint Research Centre. Well-To-Tank Report Version 4.0—Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, A.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2014 Revision, CD-ROM Edition 2014; United Nations Publications: New York, NY, USA, 2015. [Google Scholar]
- Koljonen, T.; (Technical Research Centre of Finland—VTT, Espoo, Finland). Personal communication, 2017.
- Espegren, K.A.; (Institute for Energy Technology, Kjeller, Norway). Personal communication, 2017.
- Börjeson, L.; Höjer, M.; Dreborg, K.H.; Ekvall, T.; Finnveden, G. Scenario types and techniques: Towards a user’s guide. Futures 2006, 38, 723–739. [Google Scholar] [CrossRef]
Challenges | Solution Examples |
---|---|
Transport behavior | |
Modal competition | [11,45,46,47,48,49] |
Autonomous vehicles and MaaS | - |
Breakthrough technologies | |
Electrified roads | [50] |
Fuel cell and battery electric trucks | [51,52,53,54] |
Electric ferries | - |
Carbon capture and storage | [55,56,57,58] |
Domestic energy resources | |
Biofuels—2nd generation | [12] |
Electrofuels | [59] |
Geographical aggregation and system boundaries | |
Urban dimension | [47] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvucci, R.; Petrović, S.; Karlsson, K.; Wråke, M.; Uteng, T.P.; Balyk, O. Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review. Energies 2019, 12, 2232. https://doi.org/10.3390/en12122232
Salvucci R, Petrović S, Karlsson K, Wråke M, Uteng TP, Balyk O. Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review. Energies. 2019; 12(12):2232. https://doi.org/10.3390/en12122232
Chicago/Turabian StyleSalvucci, Raffaele, Stefan Petrović, Kenneth Karlsson, Markus Wråke, Tanu Priya Uteng, and Olexandr Balyk. 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review" Energies 12, no. 12: 2232. https://doi.org/10.3390/en12122232
APA StyleSalvucci, R., Petrović, S., Karlsson, K., Wråke, M., Uteng, T. P., & Balyk, O. (2019). Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review. Energies, 12(12), 2232. https://doi.org/10.3390/en12122232