Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Navarro-Pineda, F.S.; Baz-Rodriguez, S.A.; Handler, R.; Sacramento-Rivero, J.C. Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renew. Sustain. Energy Rev. 2016, 54, 247–269. [Google Scholar] [CrossRef]
- Contran, N.; Chessa, L.; Lubino, M.; Bellavite, D.; Lobina, R.; Sahanoon, O.; Fuseini, S.; Imoro, T.S.; Roggero, P.P.; Enne, G. Potentialities and limits of Jatropha curcas L. as alternative energy source to traditional energy sources in Northern Ghana. Energy Sustain. Dev. 2016, 31, 163–169. [Google Scholar] [CrossRef]
- Heller, J. Physic nut, Jatropha curcas L—Promoting the Conservation and Use of Underutilized and Neglected Crops; International Plant Genetic Resources Institute: Rome, Italy, 1996; pp. 1–66. ISBN 92-9043-278-0. [Google Scholar]
- Ye, M.; Li, C.Y.; Francis, G.; Makkar, H.P.S. Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agrofor. Syst. 2009, 76, 487–497. [Google Scholar] [CrossRef]
- Kongkasawan, J.; Nam, H.; Capareda, S.C. Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects. Energy 2016, 113, 631–642. [Google Scholar] [CrossRef]
- Afonso, T.L.; Marques, A.C.; Fuinhas, J.A. Strategies to make renewable energy sources compatible with economic growth. Energy Strateg. Rev. 2017, 18, 121–126. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Lind, A.; Rosenberg, E.; Seljom, P.; Espegren, A.; Fidje, A.; Lindberg, K. Analysis of the EU renewable energy directive by a techno-economic optimisation model. Energy Policy 2013, 60, 364–377. [Google Scholar] [CrossRef]
- Chen, L.; Xing, L.; Han, L. Renewable energy from agro-residues in china: Solid biofuels and biomass briquetting technology. Renew. Sustain. Energy Rev. 2009, 13, 2689–2695. [Google Scholar] [CrossRef]
- Agrawalla, A.; Kumar, S.; Singh, R.K. Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresour. Technol. 2011, 102, 10711–10716. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Duan, J.; Luo, Y.-h. Investigation of agricultural residues pyrolysis behaviour under inert and oxidative conditions. J. Anal. Appl. Pyrolysis 2008, 83, 165–174. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Yank, A.; Ngadi, M.; Kok, R. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy 2016, 84, 22–30. [Google Scholar] [CrossRef]
- Shuma, R.; Madyira, D.M. Production of loose biomass briquettes from agricultural and forestry residues. Procedia Manuf. 2017, 7, 98–105. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Physical and chemical evaluation of furniture waste briquettes. Waste Manag. 2016, 49, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, K.; Furuichi, T. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manag. 2014, 34, 2621–2626. [Google Scholar] [CrossRef] [PubMed]
- Kaliyan, N.; Morey, R.V. Strategies to improve durability of switchgrass briquettes. Trans. ASABE 2009, 52, 1943–1953. [Google Scholar] [CrossRef]
- Križan, P.; ŠooŠ, L.; Vukelic, D. A study of impact technological parameters on the briquetting process. Facta Univ. Ser. Work. Living Environ. Prot. 2009, 6, 39–47. [Google Scholar]
- Lee, S.M.; Ahn, B.J.; Choi, D.H.; Han, G.S.; Jeong, H.S.; Ahn, S.H.; Yang, I. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Biomass Bioenergy 2013, 48, 1–9. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 2011, 35, 910–918. [Google Scholar] [CrossRef] [Green Version]
- ČSN EN ISO 17827-1. Solid Biofuels—Determination of Particle Size Distribution for Uncompressed Fuels—Part 1: Oscillating Screen Method Using Sieves with Apertures of 3,15 mm and above; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2016; pp. 1–20. [Google Scholar]
- Chaloupková, V.; Ivanova, T.; Ekrt, O.; Kabutey, A.; Herák, D. Determination of particle size and distribution through image-based macroscopic analysis of the structure of biomass briquettes. Energies 2018, 11, 331. [Google Scholar] [CrossRef]
- BS EN ISO 18134-3. Solid Biofuels—Determination in Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–14. [Google Scholar]
- Malaťák, J.; Branda, J. Use of waste material mixtures for energy purposes in small combustion devices. Res. Agric. Eng. 2014, 60, 50–59. [Google Scholar] [CrossRef]
- Muntean, A.; Ivanova, T.; Hutla, P.; Havrland, B. Influence of raw material properties on the quality of solid biofuel and energy consumption in briquetting process. Agron. Res. 2017, 15, 1708–1715. [Google Scholar] [CrossRef]
- Herak, D.; Kabutey, A.; Divisova, M.; Simanjuntak, S. Mathematical model of mechanical behaviour of Jatropha curcas L. seeds under compression loading. Biosyst. Eng. 2013, 114, 279–288. [Google Scholar] [CrossRef]
- Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G.A.K. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading. IOP Conf. Ser. Mater. Sci. Eng. 2017, 237, 1–5. [Google Scholar] [CrossRef]
- Divišová, M.; Herák, D.; Kabutey, A.; Sigalingging, R.; Svatoňová, T. Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Sci. Agric. Bohem. 2014, 45, 180–186. [Google Scholar] [CrossRef]
- Herák, D.; Kabutey, A.; Sedláček, A.; Gurdil, G. Mechanical behaviour of several layers of selected plant seeds under compression loading. Res. Agric. Eng. 2012, 58, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Chakespari, A.G.; Rajebipour, A.; Mobli, H. Anisotropic relaxation and creep properties of apple (cv. Shafi Abadi and Golab Kohanz). Adv. J. Food Sci. Technol. 2010, 2, 200–205. [Google Scholar]
- Gupta, R.K.; Das, S.K. Fracture resistance of sunflower seed and kernel to compressive loading. J. Food Eng. 2000, 46, 1–8. [Google Scholar] [CrossRef]
- Herák, D.; Kabutey, A.; Sedláček, A.; Gurdil, G. Tangent curve utilization for description of mechanical behaviour of preseed mixture. Res. Agric. Eng. 2011, 57, 13–18. [Google Scholar] [CrossRef]
- Sigalingging, R.; Herák, D.; Kabutey, A.; Čestmír, M.; Divišová, M. Tangent curve function description of mechanical behaviour of bulk oilseeds: A review. Sci. Agric. Bohem. 2014, 45, 259–264. [Google Scholar] [CrossRef]
- Sigalingging, R.; Herák, D.; Kabutey, A.; Dajbych, O.; Hrabě, P.; Mizera, C. Application of a tangent curve mathematical model for analysis of the mechanical behaviour of sunflower bulk seeds. Int. Agrophysics 2015, 29, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Parametric Technology Corporation. Mathsoft; Parametric Technology Corporation: Needham, MA, USA, 2014. [Google Scholar]
- StatSoft, Inc. Statsoft; StatSoft, Inc.: Tulsa, OK, USA, 2013. [Google Scholar]
- Lysiak, G. Fracture toughness of pea: Weibull analysis. J. Food Eng. 2007, 83, 436–443. [Google Scholar] [CrossRef]
Force | Dimensions | Deformation | Thickness | * Numerical Energy | ** Theoretical Energy |
---|---|---|---|---|---|
100 | 4.5 | 29.79 ± 0.24 | 35.44 ± 0.34 | 455.28 ± 2.55 | 464.50 ± 24.76 |
5.6 | 35.39 ± 2.50 | 35.35 ± 0.21 | 445.76 ± 12.45 | 485.1 ± 17.77 | |
6.7 | 33.24 ± 5.55 | 35.66 ± 1.19 | 433.46 ± 2.46 | 451.72 ± 22.76 | |
8 | 39.39 ± 3.35 | 35.75 ± 0.36 | 429.41 ± 5.81 | 471.87 ± 32.54 | |
10 | 29.08 ± 1.83 | 34.89 ± 0.16 | 398.8 ± 8.40 | 420.74 ± 0.45 | |
200 | 4.5 | 39.45 ± 0.94 | 33.12 ± 0.54 | 897.70 ± 12.64 | 1074.67 ± 15.15 |
5.6 | 39.18 ± 2.85 | 33.11 ± 0.56 | 886.53 ± 4.52 | 943.31 ± 92.11 | |
6.7 | 39.28 ± 2.98 | 33.22 ± 0.41 | 871.47 ± 5.54 | 1037.97 ± 43.12 | |
8 | 43.12 ± 1.91 | 33.12 ± 0.17 | 865.59 ± 19.25 | 975.69 ± 32.17 | |
10 | 34.38 ± 9.33 | 33.34 ± 1.64 | 851.28 ± 45.09 | 926.59 ± 101.63 | |
300 | 4.5 | 41.09 ± 1.63 | 31,42 ± 0.11 | 1345.41 ± 9.25 | 1508.88 ± 20.66 |
5.6 | 40.69 ± 4.86 | 30.99 ± 0.02 | 1315.45 ± 7.55 | 1456.07 ± 49.21 | |
6.7 | 40.71 ± 3.44 | 31.61 ± 0.66 | 1321.35 ± 15.87 | 1350.16 ± 21.43 | |
8 | 38.12 ± 4.56 | 31.31 ± 0.43 | 1297.63 ± 6.01 | 1477.62 ± 83.26 | |
10 | 37.23 ± 2.12 | 32.07 ± 2.03 | 1253.27 ± 75.74 | 1459.10 ± 40.56 | |
400 | 4.5 | 43.33 ± 1.16 | 30.54 ± 0.06 | 1683.42 ± 4.47 | 1751.20 ± 44.29 |
5.6 | 40.59 ± 5.58 | 30.70 ± 0.42 | 1657.82 ± 8.49 | 1894.03 ± 68.11 | |
6.7 | 39.17 ± 7.01 | 30.49 ± 0.01 | 1536.92 ± 73.51 | 1781.31 ± 38.34 | |
8 | 43.21 ± 8.14 | 30.64 ± 0.51 | 1640.81 ± 40.70 | 1738.05 ± 131.15 | |
10 | 44.64 ± 0.42 | 31.04 ± 0.65 | 1509.59 ± 79.26 | 1512.78 ± 68.39 |
Force | Dimensions | *** Volume | *** Density | *** Hardness | *** Volume Energy |
---|---|---|---|---|---|
100 | 4.5 | 10 ± 0.10 | 1223 ± 10 | 3.36 ± 0.03 | 4.56 ± 0.05 |
5.6 | 10 ± 0.10 | 1032 ± 73 | 2.83 ± 0.20 | 4.24 ± 0.03 | |
6.7 | 9.7 ± 0.30 | 1111 ± 19 | 3.05 ± 0.51 | 6.83 ± 3.87 | |
8 | 9.5 ± 0.00 | 928 ± 79 | 2.55 ± 0.22 | 9.28 ± 0.06 | |
10 | 9.5 ± 0.30 | 1255 ± 79 | 3.45 ± 0.22 | 9.24 ± 0.26 | |
200 | 4.5 | 8.8 ± 0.10 | 924 ± 22 | 5.07 ± 0.12 | 14.99 ± 0.06 |
5.6 | 8.9 ± 0.20 | 932 ± 68 | 5.12 ± 0.37 | 14.62 ± 0.12 | |
6.7 | 9.0 ± 0.60 | 930 ± 71 | 5.11 ± 0.39 | 16.68 ± 4.07 | |
8 | 8.7 ± 0.10 | 846 ± 37 | 4.64 ± 0.21 | 18.70 ± 0.39 | |
10 | 8.8 ± 0.10 | 1100 ± 31 | 6.04 ± 1.64 | 17.99 ± 0.57 | |
300 | 4.5 | 10 ± 0.10 | 887 ± 35 | 7.31 ± 0.29 | 4.44 ± 0.07 |
5.6 | 9.9 ± 0.10 | 902 ± 11 | 7.43 ± 0.89 | 4.31 ± 0.10 | |
6.7 | 9.5 ± 0.40 | 898 ± 76 | 7.40 ± 0.62 | 6.79 ± 3.96 | |
8 | 9.3 ± 0.00 | 963 ± 12 | 7.93 ± 0.95 | 9.47 ± 0.22 | |
10 | 9.2 ± 0.20 | 980 ± 56 | 8.07 ± 0.46 | 9.04 ± 0.04 | |
400 | 4.5 | 8.8 ± 0.10 | 841 ± 23 | 9.24 ± 0.25 | 15.17 ± 0.12 |
5.6 | 8.9 ± 0.10 | 906 ± 13 | 9.95 ± 1.37 | 14.83 ± 0.38 | |
6.7 | 8.7 ± 0.00 | 945 ± 17 | 10.38 ± 1.86 | 16.64 ± 3.95 | |
8 | 8.6 ± 0.00 | 858 ± 16 | 9.42 ± 1.78 | 18.22 ± 1.40 | |
10 | 8.6 ± 0.10 | 816 ± 80 | 8.96 ± 0.09 | 18.16 ± 1.90 |
Dependent Variables | R2 (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) |
---|---|---|---|---|
Deformation (mm) | 0.34 | 9.61 | 1.42 | <0.05 |
Thickness (mm) | 0.87 | 127.99 | 1.42 | <0.05 |
Numerical energy (J) | 0.99 | 1295.19 | 1.42 | <0.05 |
Theoretical energy (J) | 0.96 | 443.35 | 1.42 | <0.05 |
Dependent Variables | R2 (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) |
---|---|---|---|---|
Deformation (mm) | 0.34 | 19.43 | 1.60 | <0.05 |
Thickness (mm) | 0.87 | 258.61 | 1.60 | <0.05 |
Force | Dimensions | A (kN) | B (mm−1) | n (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) | R2 (-) |
---|---|---|---|---|---|---|---|---|
100 | 4.5 | 1.01 ± 0.01 | 0.042 ± 0.001 | 2 | 0.008 ± 0.001 | 3.863 ± 0.007 | 0.927 ± 0.006 | 0.999 ± 0.001 |
5.6 | 6.91 ± 1.41 | 0.038 ± 0.002 | 0.029 ± 0.009 | 3.866 ± 0.011 | 0.866 ± 0.023 | 0.998 ± 0.001 | ||
6.7 | 7.96 ± 3.01 | 0.039 ± 0.004 | 0.024 ± 0.002 | 3.868 ± 0.004 | 0.878 ± 0.004 | 0.998 ± 0.001 | ||
8 | 5.07 ± 1.03 | 0.035 ± 0.002 | 0.062 ± 0.027 | 3.867 ± 0.008 | 0.806 ± 0.041 | 0.996 ± 0.001 | ||
10 | 8.54 ± 1.34 | 0.045 ± 0.002 | 0.033 ± 0.013 | 3.871 ± 0.011 | 0.859 ± 0.029 | 0.997 ± 0.001 | ||
200 | 4.5 | 11.16 ± 0.72 | 0.035 ± 0.001 | 2 | 0.072 ± 0.016 | 3.862 ± 0.007 | 0.789 ± 0.023 | 0.996 ± 0.001 |
5.6 | 13.76 ± 5.22 | 0.037 ± 0.004 | 0.045 ± 0.009 | 3.868 ± 0.009 | 0.832 ± 0.018 | 0.997 ± 0.001 | ||
6.7 | 9.72 ± 0.07 | 0.034 ± 0.001 | 0.093 ± 0.081 | 3.867 ± 0.012 | 0.775 ± 0.107 | 0.996 ± 0.001 | ||
8 | 10.79 ± 4.16 | 0.034 ± 0.005 | 0.062 ± 0.008 | 3.865 ± 0.008 | 0.803 ± 0.013 | 0.995 ± 0.002 | ||
10 | 11.84 ± 4.10 | 0.036 ± 0.004 | 0.064 ± 0.021 | 3.867 ± 0.007 | 0.801 ± 0.032 | 0.995 ± 0.001 |
Force | Dimensions | A (kN) | B (mm−1) | n (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) | R2 (-) |
---|---|---|---|---|---|---|---|---|
300 | 4.5 | 15.27 ± 0.38 | 0.033 ± 0.001 | 2 | 0.093 ± 0.057 | 3.864 ± 0.008 | 0.767 ± 0.074 | 0.995 ± 0.001 |
5.6 | 15.33 ± 2.98 | 0.034 ± 0.004 | 0.077 ± 0.041 | 3.865 ± 0.011 | 0.786 ± 0.057 | 0.995 ± 0.001 | ||
6.7 | 15.42 ± 1.40 | 0.033 ± 0.002 | 0.074 ± 0.053 | 3.866 ± 0.011 | 0.794 ± 0.077 | 0.996 ± 0.001 | ||
8 | 17.52 ± 3.73 | 0.035 ± 0.003 | 0.060 ± 0.036 | 3.866 ± 0.005 | 0.811 ± 0.060 | 0.996 ± 0.001 | ||
10 | 16.41 ± 0.33 | 0.036 ± 0.002 | 0.090 ± 0.051 | 3.866 ± 0.007 | 0.770 ± 0.066 | 0.995 ± 0.001 | ||
400 | 4.5 | 16.17 ± 0.61 | 0.031 ± 0.001 | 2 | 0.031 ± 0.003 | 3.875 ± 0.002 | 0.862 ± 0.006 | 0.998 ± 0.001 |
5.6 | 18.65 ± 5.17 | 0.034 ± 0.004 | 0.050 ± 0.021 | 3.871 ± 0.004 | 0.826 ± 0.036 | 0.997 ± 0.001 | ||
6.7 | 18.14 ± 8.73 | 0.036 ± 0.004 | 0.023 ± 0.007 | 3.872 ± 0.001 | 0.882 ± 0.021 | 0.9975 ± 0.001 | ||
8 | 17.18 ± 6.05 | 0.032 ± 0.005 | 0.038 ± 0.002 | 3.868 ± 0.001 | 0.845 ± 0.005 | 0.997 ± 0.001 | ||
10 | 12.05 ± 1.67 | 0.031 ± 0.001 | 0.045 ± 0.014 | 3.869 ± 0.005 | 0.833 ± 0.026 | 0.996 ± 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, T.; Kabutey, A.; Herák, D.; Demirel, C. Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading. Energies 2018, 11, 1980. https://doi.org/10.3390/en11081980
Ivanova T, Kabutey A, Herák D, Demirel C. Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading. Energies. 2018; 11(8):1980. https://doi.org/10.3390/en11081980
Chicago/Turabian StyleIvanova, Tatiana, Abraham Kabutey, David Herák, and Cimen Demirel. 2018. "Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading" Energies 11, no. 8: 1980. https://doi.org/10.3390/en11081980
APA StyleIvanova, T., Kabutey, A., Herák, D., & Demirel, C. (2018). Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading. Energies, 11(8), 1980. https://doi.org/10.3390/en11081980