Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Navarro-Pineda, F.S.; Baz-Rodriguez, S.A.; Handler, R.; Sacramento-Rivero, J.C. Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renew. Sustain. Energy Rev. 2016, 54, 247–269. [Google Scholar] [CrossRef]
- Contran, N.; Chessa, L.; Lubino, M.; Bellavite, D.; Lobina, R.; Sahanoon, O.; Fuseini, S.; Imoro, T.S.; Roggero, P.P.; Enne, G. Potentialities and limits of Jatropha curcas L. as alternative energy source to traditional energy sources in Northern Ghana. Energy Sustain. Dev. 2016, 31, 163–169. [Google Scholar] [CrossRef]
- Heller, J. Physic nut, Jatropha curcas L—Promoting the Conservation and Use of Underutilized and Neglected Crops; International Plant Genetic Resources Institute: Rome, Italy, 1996; pp. 1–66. ISBN 92-9043-278-0. [Google Scholar]
- Ye, M.; Li, C.Y.; Francis, G.; Makkar, H.P.S. Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agrofor. Syst. 2009, 76, 487–497. [Google Scholar] [CrossRef]
- Kongkasawan, J.; Nam, H.; Capareda, S.C. Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects. Energy 2016, 113, 631–642. [Google Scholar] [CrossRef]
- Afonso, T.L.; Marques, A.C.; Fuinhas, J.A. Strategies to make renewable energy sources compatible with economic growth. Energy Strateg. Rev. 2017, 18, 121–126. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Lind, A.; Rosenberg, E.; Seljom, P.; Espegren, A.; Fidje, A.; Lindberg, K. Analysis of the EU renewable energy directive by a techno-economic optimisation model. Energy Policy 2013, 60, 364–377. [Google Scholar] [CrossRef]
- Chen, L.; Xing, L.; Han, L. Renewable energy from agro-residues in china: Solid biofuels and biomass briquetting technology. Renew. Sustain. Energy Rev. 2009, 13, 2689–2695. [Google Scholar] [CrossRef]
- Agrawalla, A.; Kumar, S.; Singh, R.K. Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresour. Technol. 2011, 102, 10711–10716. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Duan, J.; Luo, Y.-h. Investigation of agricultural residues pyrolysis behaviour under inert and oxidative conditions. J. Anal. Appl. Pyrolysis 2008, 83, 165–174. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Yank, A.; Ngadi, M.; Kok, R. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy 2016, 84, 22–30. [Google Scholar] [CrossRef]
- Shuma, R.; Madyira, D.M. Production of loose biomass briquettes from agricultural and forestry residues. Procedia Manuf. 2017, 7, 98–105. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Physical and chemical evaluation of furniture waste briquettes. Waste Manag. 2016, 49, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Furuichi, T. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manag. 2014, 34, 2621–2626. [Google Scholar] [CrossRef] [PubMed]
- Kaliyan, N.; Morey, R.V. Strategies to improve durability of switchgrass briquettes. Trans. ASABE 2009, 52, 1943–1953. [Google Scholar] [CrossRef]
- Križan, P.; ŠooŠ, L.; Vukelic, D. A study of impact technological parameters on the briquetting process. Facta Univ. Ser. Work. Living Environ. Prot. 2009, 6, 39–47. [Google Scholar]
- Lee, S.M.; Ahn, B.J.; Choi, D.H.; Han, G.S.; Jeong, H.S.; Ahn, S.H.; Yang, I. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Biomass Bioenergy 2013, 48, 1–9. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 2011, 35, 910–918. [Google Scholar] [CrossRef]
- ČSN EN ISO 17827-1. Solid Biofuels—Determination of Particle Size Distribution for Uncompressed Fuels—Part 1: Oscillating Screen Method Using Sieves with Apertures of 3,15 mm and above; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2016; pp. 1–20. [Google Scholar]
- Chaloupková, V.; Ivanova, T.; Ekrt, O.; Kabutey, A.; Herák, D. Determination of particle size and distribution through image-based macroscopic analysis of the structure of biomass briquettes. Energies 2018, 11, 331. [Google Scholar] [CrossRef]
- BS EN ISO 18134-3. Solid Biofuels—Determination in Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–14. [Google Scholar]
- Malaťák, J.; Branda, J. Use of waste material mixtures for energy purposes in small combustion devices. Res. Agric. Eng. 2014, 60, 50–59. [Google Scholar] [CrossRef]
- Muntean, A.; Ivanova, T.; Hutla, P.; Havrland, B. Influence of raw material properties on the quality of solid biofuel and energy consumption in briquetting process. Agron. Res. 2017, 15, 1708–1715. [Google Scholar] [CrossRef]
- Herak, D.; Kabutey, A.; Divisova, M.; Simanjuntak, S. Mathematical model of mechanical behaviour of Jatropha curcas L. seeds under compression loading. Biosyst. Eng. 2013, 114, 279–288. [Google Scholar] [CrossRef]
- Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G.A.K. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading. IOP Conf. Ser. Mater. Sci. Eng. 2017, 237, 1–5. [Google Scholar] [CrossRef]
- Divišová, M.; Herák, D.; Kabutey, A.; Sigalingging, R.; Svatoňová, T. Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Sci. Agric. Bohem. 2014, 45, 180–186. [Google Scholar] [CrossRef]
- Herák, D.; Kabutey, A.; Sedláček, A.; Gurdil, G. Mechanical behaviour of several layers of selected plant seeds under compression loading. Res. Agric. Eng. 2012, 58, 24–29. [Google Scholar] [CrossRef]
- Chakespari, A.G.; Rajebipour, A.; Mobli, H. Anisotropic relaxation and creep properties of apple (cv. Shafi Abadi and Golab Kohanz). Adv. J. Food Sci. Technol. 2010, 2, 200–205. [Google Scholar]
- Gupta, R.K.; Das, S.K. Fracture resistance of sunflower seed and kernel to compressive loading. J. Food Eng. 2000, 46, 1–8. [Google Scholar] [CrossRef]
- Herák, D.; Kabutey, A.; Sedláček, A.; Gurdil, G. Tangent curve utilization for description of mechanical behaviour of preseed mixture. Res. Agric. Eng. 2011, 57, 13–18. [Google Scholar] [CrossRef]
- Sigalingging, R.; Herák, D.; Kabutey, A.; Čestmír, M.; Divišová, M. Tangent curve function description of mechanical behaviour of bulk oilseeds: A review. Sci. Agric. Bohem. 2014, 45, 259–264. [Google Scholar] [CrossRef]
- Sigalingging, R.; Herák, D.; Kabutey, A.; Dajbych, O.; Hrabě, P.; Mizera, C. Application of a tangent curve mathematical model for analysis of the mechanical behaviour of sunflower bulk seeds. Int. Agrophysics 2015, 29, 517–524. [Google Scholar] [CrossRef]
- Parametric Technology Corporation. Mathsoft; Parametric Technology Corporation: Needham, MA, USA, 2014. [Google Scholar]
- StatSoft, Inc. Statsoft; StatSoft, Inc.: Tulsa, OK, USA, 2013. [Google Scholar]
- Lysiak, G. Fracture toughness of pea: Weibull analysis. J. Food Eng. 2007, 83, 436–443. [Google Scholar] [CrossRef]
Force | Dimensions | Deformation | Thickness | * Numerical Energy | ** Theoretical Energy |
---|---|---|---|---|---|
100 | 4.5 | 29.79 ± 0.24 | 35.44 ± 0.34 | 455.28 ± 2.55 | 464.50 ± 24.76 |
5.6 | 35.39 ± 2.50 | 35.35 ± 0.21 | 445.76 ± 12.45 | 485.1 ± 17.77 | |
6.7 | 33.24 ± 5.55 | 35.66 ± 1.19 | 433.46 ± 2.46 | 451.72 ± 22.76 | |
8 | 39.39 ± 3.35 | 35.75 ± 0.36 | 429.41 ± 5.81 | 471.87 ± 32.54 | |
10 | 29.08 ± 1.83 | 34.89 ± 0.16 | 398.8 ± 8.40 | 420.74 ± 0.45 | |
200 | 4.5 | 39.45 ± 0.94 | 33.12 ± 0.54 | 897.70 ± 12.64 | 1074.67 ± 15.15 |
5.6 | 39.18 ± 2.85 | 33.11 ± 0.56 | 886.53 ± 4.52 | 943.31 ± 92.11 | |
6.7 | 39.28 ± 2.98 | 33.22 ± 0.41 | 871.47 ± 5.54 | 1037.97 ± 43.12 | |
8 | 43.12 ± 1.91 | 33.12 ± 0.17 | 865.59 ± 19.25 | 975.69 ± 32.17 | |
10 | 34.38 ± 9.33 | 33.34 ± 1.64 | 851.28 ± 45.09 | 926.59 ± 101.63 | |
300 | 4.5 | 41.09 ± 1.63 | 31,42 ± 0.11 | 1345.41 ± 9.25 | 1508.88 ± 20.66 |
5.6 | 40.69 ± 4.86 | 30.99 ± 0.02 | 1315.45 ± 7.55 | 1456.07 ± 49.21 | |
6.7 | 40.71 ± 3.44 | 31.61 ± 0.66 | 1321.35 ± 15.87 | 1350.16 ± 21.43 | |
8 | 38.12 ± 4.56 | 31.31 ± 0.43 | 1297.63 ± 6.01 | 1477.62 ± 83.26 | |
10 | 37.23 ± 2.12 | 32.07 ± 2.03 | 1253.27 ± 75.74 | 1459.10 ± 40.56 | |
400 | 4.5 | 43.33 ± 1.16 | 30.54 ± 0.06 | 1683.42 ± 4.47 | 1751.20 ± 44.29 |
5.6 | 40.59 ± 5.58 | 30.70 ± 0.42 | 1657.82 ± 8.49 | 1894.03 ± 68.11 | |
6.7 | 39.17 ± 7.01 | 30.49 ± 0.01 | 1536.92 ± 73.51 | 1781.31 ± 38.34 | |
8 | 43.21 ± 8.14 | 30.64 ± 0.51 | 1640.81 ± 40.70 | 1738.05 ± 131.15 | |
10 | 44.64 ± 0.42 | 31.04 ± 0.65 | 1509.59 ± 79.26 | 1512.78 ± 68.39 |
Force | Dimensions | *** Volume | *** Density | *** Hardness | *** Volume Energy |
---|---|---|---|---|---|
100 | 4.5 | 10 ± 0.10 | 1223 ± 10 | 3.36 ± 0.03 | 4.56 ± 0.05 |
5.6 | 10 ± 0.10 | 1032 ± 73 | 2.83 ± 0.20 | 4.24 ± 0.03 | |
6.7 | 9.7 ± 0.30 | 1111 ± 19 | 3.05 ± 0.51 | 6.83 ± 3.87 | |
8 | 9.5 ± 0.00 | 928 ± 79 | 2.55 ± 0.22 | 9.28 ± 0.06 | |
10 | 9.5 ± 0.30 | 1255 ± 79 | 3.45 ± 0.22 | 9.24 ± 0.26 | |
200 | 4.5 | 8.8 ± 0.10 | 924 ± 22 | 5.07 ± 0.12 | 14.99 ± 0.06 |
5.6 | 8.9 ± 0.20 | 932 ± 68 | 5.12 ± 0.37 | 14.62 ± 0.12 | |
6.7 | 9.0 ± 0.60 | 930 ± 71 | 5.11 ± 0.39 | 16.68 ± 4.07 | |
8 | 8.7 ± 0.10 | 846 ± 37 | 4.64 ± 0.21 | 18.70 ± 0.39 | |
10 | 8.8 ± 0.10 | 1100 ± 31 | 6.04 ± 1.64 | 17.99 ± 0.57 | |
300 | 4.5 | 10 ± 0.10 | 887 ± 35 | 7.31 ± 0.29 | 4.44 ± 0.07 |
5.6 | 9.9 ± 0.10 | 902 ± 11 | 7.43 ± 0.89 | 4.31 ± 0.10 | |
6.7 | 9.5 ± 0.40 | 898 ± 76 | 7.40 ± 0.62 | 6.79 ± 3.96 | |
8 | 9.3 ± 0.00 | 963 ± 12 | 7.93 ± 0.95 | 9.47 ± 0.22 | |
10 | 9.2 ± 0.20 | 980 ± 56 | 8.07 ± 0.46 | 9.04 ± 0.04 | |
400 | 4.5 | 8.8 ± 0.10 | 841 ± 23 | 9.24 ± 0.25 | 15.17 ± 0.12 |
5.6 | 8.9 ± 0.10 | 906 ± 13 | 9.95 ± 1.37 | 14.83 ± 0.38 | |
6.7 | 8.7 ± 0.00 | 945 ± 17 | 10.38 ± 1.86 | 16.64 ± 3.95 | |
8 | 8.6 ± 0.00 | 858 ± 16 | 9.42 ± 1.78 | 18.22 ± 1.40 | |
10 | 8.6 ± 0.10 | 816 ± 80 | 8.96 ± 0.09 | 18.16 ± 1.90 |
Dependent Variables | R2 (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) |
---|---|---|---|---|
Deformation (mm) | 0.34 | 9.61 | 1.42 | <0.05 |
Thickness (mm) | 0.87 | 127.99 | 1.42 | <0.05 |
Numerical energy (J) | 0.99 | 1295.19 | 1.42 | <0.05 |
Theoretical energy (J) | 0.96 | 443.35 | 1.42 | <0.05 |
Dependent Variables | R2 (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) |
---|---|---|---|---|
Deformation (mm) | 0.34 | 19.43 | 1.60 | <0.05 |
Thickness (mm) | 0.87 | 258.61 | 1.60 | <0.05 |
Force | Dimensions | A (kN) | B (mm−1) | n (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) | R2 (-) |
---|---|---|---|---|---|---|---|---|
100 | 4.5 | 1.01 ± 0.01 | 0.042 ± 0.001 | 2 | 0.008 ± 0.001 | 3.863 ± 0.007 | 0.927 ± 0.006 | 0.999 ± 0.001 |
5.6 | 6.91 ± 1.41 | 0.038 ± 0.002 | 0.029 ± 0.009 | 3.866 ± 0.011 | 0.866 ± 0.023 | 0.998 ± 0.001 | ||
6.7 | 7.96 ± 3.01 | 0.039 ± 0.004 | 0.024 ± 0.002 | 3.868 ± 0.004 | 0.878 ± 0.004 | 0.998 ± 0.001 | ||
8 | 5.07 ± 1.03 | 0.035 ± 0.002 | 0.062 ± 0.027 | 3.867 ± 0.008 | 0.806 ± 0.041 | 0.996 ± 0.001 | ||
10 | 8.54 ± 1.34 | 0.045 ± 0.002 | 0.033 ± 0.013 | 3.871 ± 0.011 | 0.859 ± 0.029 | 0.997 ± 0.001 | ||
200 | 4.5 | 11.16 ± 0.72 | 0.035 ± 0.001 | 2 | 0.072 ± 0.016 | 3.862 ± 0.007 | 0.789 ± 0.023 | 0.996 ± 0.001 |
5.6 | 13.76 ± 5.22 | 0.037 ± 0.004 | 0.045 ± 0.009 | 3.868 ± 0.009 | 0.832 ± 0.018 | 0.997 ± 0.001 | ||
6.7 | 9.72 ± 0.07 | 0.034 ± 0.001 | 0.093 ± 0.081 | 3.867 ± 0.012 | 0.775 ± 0.107 | 0.996 ± 0.001 | ||
8 | 10.79 ± 4.16 | 0.034 ± 0.005 | 0.062 ± 0.008 | 3.865 ± 0.008 | 0.803 ± 0.013 | 0.995 ± 0.002 | ||
10 | 11.84 ± 4.10 | 0.036 ± 0.004 | 0.064 ± 0.021 | 3.867 ± 0.007 | 0.801 ± 0.032 | 0.995 ± 0.001 |
Force | Dimensions | A (kN) | B (mm−1) | n (-) | F-Ratio (-) | F-Critical (-) | P-Value (-) | R2 (-) |
---|---|---|---|---|---|---|---|---|
300 | 4.5 | 15.27 ± 0.38 | 0.033 ± 0.001 | 2 | 0.093 ± 0.057 | 3.864 ± 0.008 | 0.767 ± 0.074 | 0.995 ± 0.001 |
5.6 | 15.33 ± 2.98 | 0.034 ± 0.004 | 0.077 ± 0.041 | 3.865 ± 0.011 | 0.786 ± 0.057 | 0.995 ± 0.001 | ||
6.7 | 15.42 ± 1.40 | 0.033 ± 0.002 | 0.074 ± 0.053 | 3.866 ± 0.011 | 0.794 ± 0.077 | 0.996 ± 0.001 | ||
8 | 17.52 ± 3.73 | 0.035 ± 0.003 | 0.060 ± 0.036 | 3.866 ± 0.005 | 0.811 ± 0.060 | 0.996 ± 0.001 | ||
10 | 16.41 ± 0.33 | 0.036 ± 0.002 | 0.090 ± 0.051 | 3.866 ± 0.007 | 0.770 ± 0.066 | 0.995 ± 0.001 | ||
400 | 4.5 | 16.17 ± 0.61 | 0.031 ± 0.001 | 2 | 0.031 ± 0.003 | 3.875 ± 0.002 | 0.862 ± 0.006 | 0.998 ± 0.001 |
5.6 | 18.65 ± 5.17 | 0.034 ± 0.004 | 0.050 ± 0.021 | 3.871 ± 0.004 | 0.826 ± 0.036 | 0.997 ± 0.001 | ||
6.7 | 18.14 ± 8.73 | 0.036 ± 0.004 | 0.023 ± 0.007 | 3.872 ± 0.001 | 0.882 ± 0.021 | 0.9975 ± 0.001 | ||
8 | 17.18 ± 6.05 | 0.032 ± 0.005 | 0.038 ± 0.002 | 3.868 ± 0.001 | 0.845 ± 0.005 | 0.997 ± 0.001 | ||
10 | 12.05 ± 1.67 | 0.031 ± 0.001 | 0.045 ± 0.014 | 3.869 ± 0.005 | 0.833 ± 0.026 | 0.996 ± 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, T.; Kabutey, A.; Herák, D.; Demirel, C. Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading. Energies 2018, 11, 1980. https://doi.org/10.3390/en11081980
Ivanova T, Kabutey A, Herák D, Demirel C. Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading. Energies. 2018; 11(8):1980. https://doi.org/10.3390/en11081980
Chicago/Turabian StyleIvanova, Tatiana, Abraham Kabutey, David Herák, and Cimen Demirel. 2018. "Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading" Energies 11, no. 8: 1980. https://doi.org/10.3390/en11081980
APA StyleIvanova, T., Kabutey, A., Herák, D., & Demirel, C. (2018). Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading. Energies, 11(8), 1980. https://doi.org/10.3390/en11081980