Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using ThreePhase APF/STATCOM Technologies: A Review
Abstract
:1. Introduction
2. Harmonics and International Standards
3. Methods for Mitigating Harmonics
3.1. Shunt PFs
 
 PFs require a separate filter for each harmonic current, and their filtering range is limited.
 
 PFs allow only one component (either a harmonic or a fundamental current component) to pass at a time.
 
 Large amounts of harmonic current saturate or overload the filter and cause series resonance with the AC source, thereby resulting in excessive harmonic flow into the PFs.
 
 PFs amplify sourceside harmonic contents because of the impedance in the source of parallel and series negative resonances between the grid and the filter [29].
 
 The design parameters of PFs in an AC system depend on the system operating frequency, which changes around its nominal value according to variable load conditions.
 
 PFs only eliminate frequencies to which they are tuned, thus resulting in limited compensation, large size, and tuning issues.
3.2. Shunt APFs
3.3. STATCOM
3.3.1. Multilevel PVSTATCOM Applications in GridConnected Systems
3.3.2. Wind Turbine STATCOM (WTSTATCOM) Applications in GridConnected Systems
4. Standard Classification of Shunt APFs
Shunt Hybrid APFs
 
 The initial installation cost is high.
 
 The control structure and design are considerably complex. Moreover, the increased harmonics and losses complicate filter control.
 
 With rapid dynamic current response and highpower rating system demand, the APF presents a design tradeoff.
5. Advanced Classification of APF/STATCOM
5.1. AC–AC Power Converter Topology
5.2. ParallelInverter APF Topology
5.3. Split DCLeg Inverter Topology
6. APFs/STATCOM Control Techniques
7. Advanced Control Techniques for APFs/STATCOM
7.1. Sinusoidal Pulse Width Modulation
7.2. Space Vector Pulse Width Modulation
8. Performance Evaluation of APF/STATCOM System
9. Key Analysis on Configuration and Control Structure
9.1. Limitations in Configuration Structure
 
 In B4 inverters, the third phase is connected clearly to the middle point or neutral point of the DClink capacitors. The DCbus current directly charges one of the capacitors and discharges the other. These dynamics unbalance current and voltage loading between the capacitors that discharge at a faster rate than the other, thus causing high current ripple in the imbalanced output waveform [206].
 
 To compensate for the DCbus voltage fluctuation issues [207], the removed singleleg terminal is connected to the negative terminal of the DCbus PWMVSI inverter and stops the imbalanced charging of the DClink capacitors. Furthermore, the AC film capacitor stores the power ripples connected to the AC terminals to stop the flow of decoupling power ripples and provide balanced output currents and voltages [208].
 
 A large DClink voltage variation is shown in B8 split DCleg converter applications. Both systems are operated at the same frequency and synchronized; thus, no fundamental current flows through the shared DC link. This outcome is a limitation in addition to the low AC voltage of the individual B4 power converter coupled with the shared DClink capacitor.
 
 In the threephase system, a phase circulating current [209] flows through the DClink capacitors. Thus, the capacitors are exposed to lowfrequency harmonics, thereby limiting the use of high DClink capacitor values. The AC–AC power converter configuration presents superior overall performance than the DCbus midpoint configuration in terms of low THD and harmonic compensation capability because of the balanced current and voltage, as well as the minimum current ripple in the imbalanced output waveform.
9.2. Limitations in Control Structure Techniques
 
 The need for voltage feedforward and crosscoupling in SRF is the main limitation of the control structure. The phase angle of the grid voltage is required to start the control operation.
 
 In the stationary reference frame, the PR controller reduces the complexity of the control structure in terms of current regulation as it has no need of the phase angle, unlike the dqframe.
 
 The adaptive band hysteresis controller increases the complexity of the control structure in the natural reference frame. However, the deadbeat controller simplifies the control scheme. Therefore, an individual control is required in each phase in case of individual phase PLLs and grid voltage to generate the current reference.
 
 The hysteresis and deadbeat controllers do not consider loworder harmonics in the implementation process in harmonic compensators due to their fast dynamics.
 
 In practical structures, both controllers require a sampling capability’s hardware to compensate the positive sequence and need two filters, two transformation modules, and one controller, thus limiting its practical application in the dqframe.
 
9.3. Key Findings
 (1)
 In parallel inverter topology, the output voltage per phase at different frequencies generates transitions, which block the forbidden states. This voltage effectively limits the range of reference amplitudes and phase shifts.
 (2)
 Generally, in reduced switch count power converters, the modulation strategy adopted is SPWM to switch and compensate for the DCbus voltage fluctuation issues [214]. By contrast, in reduced switch count converters, the phase shift does not track the threephase balance reference signal in the symmetry order.
 (3)
 Switch reduction generally leads to interdependencies between AC input and output frequencies, unlike fullbridge converters. This restriction limits the references for modulation in operating the power converters at the same frequency. Voltage doubling and semiconductor stress are not issues in the B4 converter, unlike in the nineswitch H6 converter, because of the favorable maximum modulation ratio of unity [215].
 (4)
 Reduced switch count (fourswitch) topologies face more limitations in their switching states than conventional sixswitch converters. Findings indicate that the removed leg terminal that is connected to either the upper positive DClink terminal or the lower negative DClink terminal is not achievable.
 (5)
 In the B6 converter, two switching states, (0, 0) and (1, 1), are stated as zero vectors, which stop the flow of the current toward the load. In the B4 converter, the current flows even in zerovector states. Therefore, in two other switching states, (0, 1) and (1, 0), the resulting uncontrolled current flows through the common phase because of the direct connection between the DClink capacitor and the AC terminal.
 (6)
 The PLL synchronizes the power inverter modulation to the power grid and provides freedom in designing the modulation index caused by phasing the angle in between the grids and by modulating waves to adjust the maximum magnitude for unity output.
 (7)
 Eliminating the active switches creates an unequal thermal distribution among the remaining switches at the expense of reduced structure, conduction losses, switching losses, and low system cost.
 (8)
 In the split converter, the thirdphase current flows directly through DClink capacitors, thus exposing the converter to lowfrequency harmonics, which need a highvaluerated capacitor.
 (9)
 In the twoleg rectifier (multiply by 2/pi = 0.6), the output power gain is lower than that of the threeleg rectifier (multiply by 1.6), thereby increasing the current rating of the active switching components.
10. Upcoming Trends
11. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
APF  Active power filters 
B4  Fourswitch inverter 
CSI  Currentfedtype inverters 
CHB  Cascaded Hbridge 
DFT  Discrete Fourier transform 
DSP  Digital signal processor 
dSpace  Digital Signal Processor for Applied and Control Engineering 
DSTATCOM  Distribution STATCOM 
DQ  Synchronous Fundamental Frame 
DVR  Dynamic voltage restorer 
ESS  Energy storage system 
FACTS  Flexible AC transmission system 
FFT  Fast Fourier transform 
GPGA  Field programmable gate array 
HAPFs  Hybrid APF 
HF  High frequency 
HPF  High pass filter 
HV  High voltage 
IEEE  Institute of Electrical and Electronics Engineers 
IEC  International Electrotechnical Commission 
IGBT  Insulatedgate bipolar transistors 
ITC  Indirect torque control 
Ki  Integral gain 
Kp  Proportional gain 
LPF  Low pass filter 
LVRT  Lowvoltage ride through 
MLI  Multilevel inverter 
MOSFET  Metaloxidesemiconductor fieldeffect transistor 
MPP  Maximum power point 
PCC  Point of common coupling 
PF  Passive filter 
PI  Proportional integral controller 
PLL  Phase locked loop 
PQ  Instantaneous power theory 
PV  Photovoltaic 
PWM  Pulse width modulation 
RC  Repetitive Controller 
RDFT  Recursive discrete Fourier Transform 
SAPF  Shunt active power filter 
SBD  Schottky barrier diode 
SHE  Selective harmonic elimination 
SiC  Silicon carbide 
SMC  Sliding Mode Control 
SOFC  Solid oxide fuel call 
SPWM  Sinusoidal Pulse Width Modulation 
SRF  Synchronousreferenceframe 
STATCOM  static compensator 
SVC  Static voltampere reactive VAR compensator 
SVM  Space vector modulation 
SVPWM  Space vector Pulse Width Modulation 
TCR  Thyristorcontrolled resistor 
THD  Total Harmonic Distortion 
UPQC  Unified power quality conditioner (UPQC) 
VSC  Voltage Source Converter 
VSI  Voltagefedtype inverters 
WT  Wind turbine 
1P2W  Singlephase twowire 
3P3W  Threephase threewire 
3P4W  Threephase fourwire 
3P4L  Three phase fourleg 
References
 Singh, B.; AlHaddad, K.; Chandra, A. A review of active filters for power quality improvement. IEEE Trans. Ind. Electron. 1999, 46, 960–971. [Google Scholar] [CrossRef][Green Version]
 Hamadi, A.; Rahmani, S.; AlHaddad, K. A Hybrid Passive Filter Configuration for VAR Control and Harmonic Compensation. IEEE Trans. Ind. Electron. 2010, 57, 2419–2434. [Google Scholar] [CrossRef]
 Bhattacharya, A.; Chakraborty, C.; Bhattacharya, S. Shunt compensation. IEEE Ind. Electron. Mag. 2009, 3, 38–49. [Google Scholar] [CrossRef]
 Sirjani, R.; Rezaee Jordehi, A. Optimal placement and sizing of distribution static compensator (DSTATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694. [Google Scholar] [CrossRef]
 Beres, R.N.; Wang, X.; Liserre, M.; Blaabjerg, F.; Bak, C.L. A review of passive power filters for threephase gridconnected voltagesource converters. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 54–69. [Google Scholar] [CrossRef]
 Ringwood, J.V.; Simani, S. Overview of modelling and control strategies for wind turbines and wave energy devices: Comparisons and contrasts. Annu. Rev. Control 2015, 40, 27–49. [Google Scholar] [CrossRef][Green Version]
 Ahmed, K.H.; Finney, S.J.; Williams, B.W. Passive filter design for threephase inverter interfacing in distributed generation. In Proceedings of the Compatibility in Power Electronics, Gdansk, Poland, 29 May–1 June 2007; pp. 1–9. [Google Scholar]
 Lam, C.S.; Choi, W.H.; Wong, M.C.; Han, Y.D. Adaptive DCLink VoltageControlled Hybrid Active Power Filters for Reactive Power Compensation. IEEE Trans. Power Electron. 2012, 27, 1758–1772. [Google Scholar] [CrossRef]
 Espi, J.; GarciaGil, R.; Castello, J. Capacitive Emulation for LCLFiltered GridConnected Converters. Energies 2017, 10, 930. [Google Scholar] [CrossRef]
 Litran, S.P.; Salmeron, P. Analysis and design of different control strategies of hybrid active power filter based on the state model. IET Power Electron. 2012, 5, 1341–1350. [Google Scholar] [CrossRef]
 Prakash Mahela, O.; Gafoor Shaik, A. Topological aspects of power quality improvement techniques: A comprehensive overview. Renew. Sustain. Energy Rev. 2016, 58, 1129–1142. [Google Scholar] [CrossRef]
 Mithulananthan, N.; Canizares, C.A.; Reeve, J.; Rogers, G.J. Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations. IEEE Trans. Power Syst. 2003, 18, 786–792. [Google Scholar] [CrossRef][Green Version]
 Colak, I.; Kabalci, E.; Fulli, G.; Lazarou, S. A survey on the contributions of power electronics to smart grid systems. Renew. Sustain. Energy Rev. 2015, 47, 562–579. [Google Scholar] [CrossRef]
 Singh, B.; Solanki, J. A Comparison of Control Algorithms for DSTATCOM. IEEE Trans. Ind. Electron. 2009, 56, 2738–2745. [Google Scholar] [CrossRef]
 Singh, B.; Mukherjee, V.; Tiwari, P. A survey on impact assessment of DG and FACTS controllers in power systems. Renew. Sustain. Energy Rev. 2015, 42, 846–882. [Google Scholar] [CrossRef]
 Tokiwa, A.; Yamada, H.; Tanaka, T.; Watanabe, M.; Shirai, M.; Teranishi, Y. New Hybrid Static VAR Compensator with Series Active Filter. Energies 2017, 10, 1617. [Google Scholar] [CrossRef]
 Qazi, S.H.; Mustafa, M.W. Review on active filters and its performance with grid connected fixed and variable speed wind turbine generator. Renew. Sustain. Energy Rev. 2016, 57, 420–438. [Google Scholar] [CrossRef]
 Tareen, W.U.K.; Mekhilef, S.; Nakaoka, M. A transformerless reduced switch counts threephase APFassisted smart EV charger. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 3307–3312. [Google Scholar]
 Jordehi, A.R. Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: A review. Renew. Sustain. Energy Rev. 2015, 52, 1260–1267. [Google Scholar] [CrossRef]
 Shmilovitz, D. On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Trans. Power Deliv. 2005, 20, 526–528. [Google Scholar]
 Barros, J.; Diego, R.I. A review of measurement and analysis of electric power quality on shipboard power system networks. Renew. Sustain. Energy Rev. 2016, 62, 665–672. [Google Scholar] [CrossRef][Green Version]
 Lascu, C.; Asiminoaei, L.; Boldea, I.; Blaabjerg, F. High Performance Current Controller for Selective Harmonic Compensation in Active Power Filters. IEEE Trans. Power Electron. 2007, 22, 1826–1835. [Google Scholar] [CrossRef]
 Kanjiya, P.; Khadkikar, V.; Zeineldin, H.H. Optimal Control of Shunt Active Power Filter to Meet IEEE Std. 519 Current Harmonic Constraints Under Nonideal Supply Condition. IEEE Trans. Ind. Electron. 2015, 62, 724–734. [Google Scholar] [CrossRef]
 Bollen, M.H. What is power quality? Electr. Power Syst. Res. 2003, 66, 5–14. [Google Scholar] [CrossRef]
 Mahela, O.P.; Shaik, A.G.; Gupta, N. A critical review of detection and classification of power quality events. Renew. Sustain. Energy Rev. 2015, 41, 495–505. [Google Scholar] [CrossRef]
 Khadem, S.K.; Basu, M.; Conlon, M.F. Parallel operation of inverters and active power filters in distributed generation system—A review. Renew. Sustain. Energy Rev. 2011, 15, 5155–5168. [Google Scholar] [CrossRef][Green Version]
 Wang, Y.; Kuckelkorn, J.; Zhao, F.Y.; Spliethoff, H.; Lang, W. A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renew. Sustain. Energy Rev. 2017, 72, 1303–1319. [Google Scholar] [CrossRef]
 Büyük, M.; Tan, A.; Tümay, M.; Bayındır, K.Ç. Topologies, generalized designs, passive and active damping methods of switching ripple filters for voltage source inverter: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 46–69. [Google Scholar] [CrossRef]
 Wu, J.C.; Jou, H.L.; Wu, K.D.; Hsiao, H.H. Threephase fourwire hybrid power filter using a smaller power converter. Electr. Power Syst. Res. 2012, 87, 13–21. [Google Scholar] [CrossRef]
 Bouzelata, Y.; Kurt, E.; Altın, N.; Chenni, R. Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the currentdetection algorithms. Renew. Sustain. Energy Rev. 2015, 43, 1114–1126. [Google Scholar] [CrossRef]
 Mehrasa, M.; Pouresmaeil, E.; Zabihi, S.; Rodrigues, E.M.G.; Catalão, J.P.S. A control strategy for the stable operation of shunt active power filters in power grids. Energy 2016, 96, 325–334. [Google Scholar] [CrossRef]
 Mohd Zainuri, M.; Mohd Radzi, M.; Che Soh, A.; Mariun, N.; Abd Rahim, N.; Teh, J.; Lai, C.M. Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction. Energies 2018, 11, 1152. [Google Scholar] [CrossRef]
 Qiao, W.; Harley, R.G.; Venayagamoorthy, G.K. Coordinated Reactive Power Control of a Large Wind Farm and a STATCOM Using Heuristic Dynamic Programming. IEEE Trans. Energy Convers. 2009, 24, 493–503. [Google Scholar] [CrossRef][Green Version]
 De la Villa Jaen, A.; Acha, E.; Exposito, A.G. Voltage Source Converter Modeling for Power System State Estimation: STATCOM and VSCHVDC. IEEE Trans. Power Syst. 2008, 23, 1552–1559. [Google Scholar] [CrossRef]
 Arsoy, A.B.; Liu, Y.; Ribeiro, P.F.; Wang, F. StatComSMES. IEEE Ind. Appl. Mag. 2003, 9, 21–28. [Google Scholar] [CrossRef]
 Pathak, A.K.; Sharma, M.P.; Bundele, M. A critical review of voltage and reactive power management of wind farms. Renew. Sustain. Energy Rev. 2015, 51, 460–471. [Google Scholar] [CrossRef]
 Singh, B.; Saha, R.; Chandra, A.; AlHaddad, K. Static synchronous compensators (STATCOM): A review. IET Power Electron. 2009, 2, 297–324. [Google Scholar] [CrossRef]
 Adamczyk, A.G.; Teodorescu, R.; Rodriguez, P.; Mukerjee, R.N. FACTS devices for large wind power plants. In Proceedings of the EPE Wind Energy Chapter Symposium, Stafford, UK, 15–16 April 2010. [Google Scholar]
 Belouda, M.; Jaafar, A.; Sareni, B.; Roboam, X.; Belhadj, J. Integrated optimal design and sensitivity analysis of a stand alone wind turbine system with storage for rural electrification. Renew. Sustain. Energy Rev. 2013, 28, 616–624. [Google Scholar] [CrossRef][Green Version]
 Mahela, O.P.; Shaik, A.G. A review of distribution static compensator. Renew. Sustain. Energy Rev. 2015, 50, 531–546. [Google Scholar] [CrossRef]
 Siemens. Flexible AC Transmission Systems (FACTS), Parallel Compensation, Comprehensive Solutions for Safe and Reliable Grid Operation; Siemens: Munich, Germany, 2016. [Google Scholar]
 Hingorani, N.G. Flexible AC transmission. IEEE Spectr. 1993, 30, 40–45. [Google Scholar] [CrossRef]
 Habur, K.; O’Leary, D. FACTS—Flexible Alternating Current Transmission Systems: For Cost Effective and Reliable Transmission of Electrical Energy; SiemensWorld Bank DocumentFinal Draft Report; Siemens: Erlangen, Germany, 2004. [Google Scholar]
 Norambuena, M.; Rodriguez, J.; Kouro, S.; Rathore, A. A novel multilevel converter with reduced switch count for low and medium voltage applications. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 5267–5272. [Google Scholar]
 Vijayaraja, L.; Kumar, S.G.; Rivera, M. A review on multilevel inverter with reduced switch count. In Proceedings of the 2016 IEEE International Conference on Automatica (ICAACCA), Curico, Chile, 19–21 October 2016; pp. 1–5. [Google Scholar]
 Vavilapalli, S.; Padmanaban, S.; Subramaniam, U.; MihetPopa, L. Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications—Real Time Digital Simulation Implementation. Energies 2017, 10, 928. [Google Scholar] [CrossRef]
 Sridhar, V.; Umashankar, S. A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PVSTATCOM. Renew. Sustain. Energy Rev. 2017, 78, 138–156. [Google Scholar] [CrossRef]
 Chang, W.N.; Liao, C.H. Design and Implementation of a STATCOM Based on a Multilevel FHB Converter with DeltaConnected Configuration for Unbalanced Load Compensation. Energies 2017, 10, 921. [Google Scholar] [CrossRef]
 Varma, R.K.; Khadkikar, V.; Seethapathy, R. Nighttime Application of PV Solar Farm as STATCOM to Regulate Grid Voltage. IEEE Trans. Energy Convers. 2009, 24, 983–985. [Google Scholar] [CrossRef]
 Varma, R.K.; Rahman, S.A.; Vanderheide, T. New Control of PV Solar Farm as STATCOM (PVSTATCOM) for Increasing Grid Power Transmission Limits During Night and Day. IEEE Trans. Power Deliv. 2015, 30, 755–763. [Google Scholar] [CrossRef]
 Varma, R.K.; Das, B.; Axente, I.; Vanderheide, T. Optimal 24hr utilization of a PV solar system as STATCOM (PVSTATCOM) in a distribution network. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 24–29 July 2011; pp. 1–8. [Google Scholar]
 Junbiao, H.; Solanki, S.K.; Solanki, J.; Schoene, J. Study of unified control of STATCOM to resolve the Power quality issues of a gridconnected three phase PV system. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–7. [Google Scholar]
 Seo, H.R.; Kim, G.H.; Jang, S.J.; Kim, S.Y.; Park, S.; Park, M.; Yu, I.K. Harmonics and reactive power compensation method by gridconnected Photovoltaic generation system. In Proceedings of the 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; pp. 1–5. [Google Scholar]
 Demirdelen, T.; Kayaalp, R.İ.; Tumay, M. Simulation modelling and analysis of modular cascaded multilevel converter based shunt hybrid active power filter for large scale photovoltaic system interconnection. Simul. Model. Pract. Theory 2017, 71, 27–44. [Google Scholar] [CrossRef]
 Varma, R.K.; Rahman, S.A.; Sharma, V.; Vanderheide, T. Novel control of a PV solar system as STATCOM (PVSTATCOM) for preventing instability of induction motor load. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–5. [Google Scholar]
 Toodeji, H.; Farokhnia, N.; Riahy, G.H. Integration of PV module and STATCOM to extract maximum power from PV. In Proceedings of the 2009 International Conference on Electric Power and Energy Conversion Systems, Sharjah, UAE, 10–12 November 2009; pp. 1–6. [Google Scholar]
 Luo, L.; Gu, W.; Zhang, X.P.; Cao, G.; Wang, W.; Zhu, G.; You, D.; Wu, Z. Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PVSTATCOM). Appl. Energy 2018, 210, 1092–1100. [Google Scholar] [CrossRef]
 Zeng, Z.; Yang, H.; Zhao, R.; Cheng, C. Topologies and control strategies of multifunctional gridconnected inverters for power quality enhancement: A comprehensive review. Renew. Sustain. Energy Rev. 2013, 24, 223–270. [Google Scholar] [CrossRef]
 Hassaine, L.; Olias, E.; Quintero, J.; Salas, V. Overview of power inverter topologies and control structures for grid connected photovoltaic systems. Renew. Sustain. Energy Rev. 2014, 30, 796–807. [Google Scholar] [CrossRef]
 Karimi, M.; Mokhlis, H.; Naidu, K.; Uddin, S.; Bakar, A.H.A. Photovoltaic penetration issues and impacts in distribution network—A review. Renew. Sustain. Energy Rev. 2016, 53, 594–605. [Google Scholar] [CrossRef]
 Mahmud, N.; Zahedi, A. Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renew. Sustain. Energy Rev. 2016, 64, 582–595. [Google Scholar] [CrossRef]
 Kow, K.W.; Wong, Y.W.; Rajkumar, R.K.; Rajkumar, R.K. A review on performance of artificial intelligence and conventional method in mitigating PV gridtied related power quality events. Renew. Sustain. Energy Rev. 2016, 56, 334–346. [Google Scholar] [CrossRef]
 Vivas, J.H.; Bergna, G.; Boyra, M. Comparison of multilevel converterbased STATCOMs. In Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011; pp. 1–10. [Google Scholar]
 Agrawal, R.; Jain, S. Comparison of reduced part count multilevel inverters (RPCMLIs) for integration to the grid. Int. J. Electr. Power Energy Syst. 2017, 84, 214–224. [Google Scholar] [CrossRef]
 Najjar, M.; Moeini, A.; Bakhshizadeh, M.K.; Blaabjerg, F.; Farhangi, S. Optimal Selective Harmonic Mitigation Technique on Variable DC Link Cascaded HBridge Converter to Meet Power Quality Standards. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1107–1116. [Google Scholar] [CrossRef]
 Haw, L.K.; Dahidah, M.S.A.; Almurib, H.A.F. SHEPWM Cascaded Multilevel Inverter With Adjustable DC Voltage Levels Control for STATCOM Applications. IEEE Trans. Power Electron. 2014, 29, 6433–6444. [Google Scholar] [CrossRef]
 Song, W.; Huang, A.Q. FaultTolerant Design and Control Strategy for Cascaded HBridge Multilevel ConverterBased STATCOM. IEEE Trans. Ind. Electron. 2010, 57, 2700–2708. [Google Scholar] [CrossRef]
 Yiqiao, L.; Nwankpa, C.O. A new type of STATCOM based on cascading voltagesource inverters with phaseshifted unipolar SPWM. IEEE Trans. Ind. Appl. 1999, 35, 1118–1123. [Google Scholar] [CrossRef]
 Gultekin, B.; Gercek, C.O.; Atalik, T.; Deniz, M.; Bicer, N.; Ermis, M.; Kose, K.N.; Ermis, C.; Koc, E.; Cadirci, I.; et al. Design and Implementation of a 154kV ± 50Mvar Transmission STATCOM Based on 21Level Cascaded Multilevel Converter. IEEE Trans. Ind. Appl. 2012, 48, 1030–1045. [Google Scholar] [CrossRef]
 Gultekin, B.; Ermis, M. Cascaded Multilevel ConverterBased Transmission STATCOM: System Design Methodology and Development of a 12 kV ± 12 MVAr Power Stage. IEEE Trans. Power Electron. 2013, 28, 4930–4950. [Google Scholar] [CrossRef]
 Nunes, W.; Encarnação, L.; Aredes, M. An Improved Asymmetric Cascaded Multilevel D–STATCOM with Enhanced Hybrid Modulation. Electronics 2015, 4, 311–328. [Google Scholar] [CrossRef][Green Version]
 De León Morales, J.; MataJiménez, M.T.; Escalante, M.F. Adaptive scheme for DC voltages estimation in a cascaded Hbridge multilevel converter. Electr. Power Syst. Res. 2011, 81, 1943–1951. [Google Scholar] [CrossRef]
 Hatano, N.; Ise, T. Control Scheme of Cascaded HBridge STATCOM Using ZeroSequence Voltage and NegativeSequence Current. IEEE Trans. Power Deliv. 2010, 25, 543–550. [Google Scholar] [CrossRef]
 Lee, C.T.; Wang, B.S.; Chen, S.W.; Chou, S.F.; Huang, J.L.; Cheng, P.T.; Akagi, H.; Barbosa, P. Average Power Balancing Control of a STATCOM Based on the Cascaded HBridge PWM Converter with Star Configuration. IEEE Trans. Ind. Appl. 2014, 50, 3893–3901. [Google Scholar] [CrossRef]
 Divan, D.; Moghe, R.; Prasai, A. Power Electronics at the Grid Edge : The key to unlocking value from the smart grid. IEEE Power Electron. Mag. 2014, 1, 16–22. [Google Scholar] [CrossRef]
 Ertao, L.; Yin, X.; Zhang, Z.; Chen, Y. An Improved Transformer Winding Tap Injection DSTATCOM Topology for MediumVoltage Reactive Power Compensation. IEEE Trans. Power Electron. 2018, 33, 2113–2126. [Google Scholar]
 Devassy, S.; Singh, B. Modified pq Theory Based Control of Solar PV Integrated UPQCS. In Proceedings of the 2016 IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, 2–6 October 2016. [Google Scholar]
 Swain, S.; Ray, P.K. Short circuit fault analysis in a grid connected DFIG based wind energy system with active crowbar protection circuit for ridethrough capability and power quality improvement. Int. J. Electr. Power Energy Syst. 2017, 84, 64–75. [Google Scholar] [CrossRef]
 Bayindir, R.; Colak, I.; Fulli, G.; Demirtas, K. Smart grid technologies and applications. Renew. Sustain. Energy Rev. 2016, 66, 499–516. [Google Scholar] [CrossRef]
 Mansoor, M.; Mariun, N.; Toudeshki, A.; Abdul Wahab, N.I.; Mian, A.U.; Hojabri, M. Innovating problem solving in power quality devices: A survey based on Dynamic Voltage Restorer case (DVR). Renew. Sustain. Energy Rev. 2017, 70, 1207–1216. [Google Scholar] [CrossRef]
 Jaalam, N.; Rahim, N.A.; Bakar, A.H.A.; Tan, C.; Haidar, A.M.A. A comprehensive review of synchronization methods for gridconnected converters of renewable energy source. Renew. Sustain. Energy Rev. 2016, 59, 1471–1481. [Google Scholar] [CrossRef][Green Version]
 Crosier, R.; Wang, S.; Jamshidi, M. A 4800V gridconnected electric vehicle charging station that provides STACOMAPF functions with a bidirectional, multilevel, cascaded converter. In Proceedings of the 2012 TwentySeventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 1508–1515. [Google Scholar]
 Saqib, M.A.; Saleem, A.Z. Powerquality issues and the need for reactivepower compensation in the grid integration of wind power. Renew. Sustain. Energy Rev. 2015, 43, 51–64. [Google Scholar] [CrossRef]
 Patrao, I.; Figueres, E.; GonzálezEspín, F.; Garcerá, G. Transformerless topologies for gridconnected singlephase photovoltaic inverters. Renew. Sustain. Energy Rev. 2011, 15, 3423–3431. [Google Scholar] [CrossRef][Green Version]
 Llorente Iglesias, R.; Lacal Arantegui, R.; Aguado Alonso, M. Power electronics evolution in wind turbines—A marketbased analysis. Renew. Sustain. Energy Rev. 2011, 15, 4982–4993. [Google Scholar] [CrossRef]
 Rubio, J.L.O. Aplicaciones de los dispositivos FACTS en generadores eólicos. Técnica Ind. 2008, 276, 36. [Google Scholar]
 Shafiullah, G.M.; Oo, A.M.T.; Shawkat Ali, A.B.M.; Wolfs, P. Potential challenges of integrating largescale wind energy into the power grid—A review. Renew. Sustain. Energy Rev. 2013, 20, 306–321. [Google Scholar] [CrossRef]
 Chen, Z.; Guerrero, J.M.; Blaabjerg, F. A Review of the State of the Art of Power Electronics for Wind Turbines. IEEE Trans. Power Electron. 2009, 24, 1859–1875. [Google Scholar] [CrossRef]
 WoeiLuen, C.; YuanYih, H. Controller design for an induction generator driven by a variablespeed wind turbine. IEEE Trans. Energy Convers. 2006, 21, 625–635. [Google Scholar]
 Hossain, M.J.; Pota, H.R.; Ramos, R.A. Improved lowvoltageridethrough capability of fixedspeed wind turbines using decentralised control of STATCOM with energy storage system. IET Gener. Transm. Distrib. 2012, 6, 719–730. [Google Scholar] [CrossRef][Green Version]
 Muyeen, S.M.; Takahashi, R.; Murata, T.; Tamura, J.; Ali, M.H. Application of STATCOM/BESS for wind power smoothening and hydrogen generation. Electr. Power Syst. Res. 2009, 79, 365–373. [Google Scholar] [CrossRef]
 Hossain, M.J.; Pota, H.R.; Ugrinovskii, V.A.; Ramos, R.A. Simultaneous STATCOM and Pitch Angle Control for Improved LVRT Capability of FixedSpeed Wind Turbines. IEEE Trans. Sustain. Energy 2010, 1, 142–151. [Google Scholar] [CrossRef]
 Suul, J.A.; Molinas, M.; Undeland, T. STATCOMBased Indirect Torque Control of Induction Machines During Voltage Recovery After Grid Faults. IEEE Trans. Power Electron. 2010, 25, 1240–1250. [Google Scholar] [CrossRef]
 Molinas, M.; Suul, J.A.; Undeland, T. Low Voltage Ride Through of Wind Farms With Cage Generators: STATCOM Versus SVC. IEEE Trans. Power Electron. 2008, 23, 1104–1117. [Google Scholar] [CrossRef]
 Popavath, L.; Kaliannan, P. PhotovoltaicSTATCOM with Low Voltage Ride through Strategy and Power Quality Enhancement in a Grid Integrated WindPV System. Electronics 2018, 7, 51. [Google Scholar] [CrossRef]
 Sannino, A.; Svensson, J.; Larsson, T. Powerelectronic solutions to power quality problems. Electr. Power Syst. Res. 2003, 66, 71–82. [Google Scholar] [CrossRef]
 Kasem, A.H.; ElSaadany, E.F.; ElTamaly, H.H.; Wahab, M.A.A. Power ramp rate control and flicker mitigation for directly grid connected wind turbines. IET Renew. Power Gener. 2010, 4, 261–271. [Google Scholar] [CrossRef]
 Yuvaraj, V.; Deepa, S.N.; Rozario, A.P.R.; Kumar, M. Improving Grid Power Quality with FACTS Device on Integration of Wind Energy System. In Proceedings of the 2011 Fifth Asia Modelling Symposium, Kuala Lumpur, Malaysia, 24–26 May 2011; pp. 157–162. [Google Scholar]
 Howlader, A.M.; Senjyu, T. A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems. Renew. Sustain. Energy Rev. 2016, 56, 643–658. [Google Scholar] [CrossRef]
 Leandro, G.C.; Soares, E.L.; Rocha, N. Singlephase to threephase reducedswitchcount converters applied to wind energy conversion systems using doublyfed induction generator. In Proceedings of the 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 19–22 November 2017; pp. 1–6. [Google Scholar]
 Kook, K.S.; Liu, Y.; Atcitty, S. Mitigation of the wind generation integration related power quality issues by energy storage. Electr. Power Qual. Util. J. 2006, 12, 77–82. [Google Scholar]
 Chowdhury, M.M.; Haque, M.E.; Aktarujjaman, M.; Negnevitsky, M.; Gargoom, A. Grid integration impacts and energy storage systems for wind energy applications—A review. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 24–29 July 2011; pp. 1–8. [Google Scholar]
 Miveh, M.R.; Rahmat, M.F.; Ghadimi, A.A.; Mustafa, M.W. Control techniques for threephase fourleg voltage source inverters in autonomous microgrids: A review. Renew. Sustain. Energy Rev. 2016, 54, 1592–1610. [Google Scholar] [CrossRef]
 Zhaoan, W.; Qun, W.; Weizheng, Y.; Jinjun, L. A series active power filter adopting hybrid control approach. IEEE Trans. Power Electron. 2001, 16, 301–310. [Google Scholar] [CrossRef]
 Khadkikar, V. Enhancing Electric Power Quality Using UPQC: A Comprehensive Overview. IEEE Trans. Power Electron. 2012, 27, 2284–2297. [Google Scholar] [CrossRef]
 Mulla, M.A.; Rajagopalan, C.; Chowdhury, A. Hardware implementation of series hybrid active power filter using a novel control strategy based on generalised instantaneous power theory. IET Power Electron. 2013, 6, 592–600. [Google Scholar] [CrossRef]
 Salmeron, P.; Litran, S.P. Improvement of the Electric Power Quality Using Series Active and Shunt Passive Filters. IEEE Trans. Power Deliv. 2010, 25, 1058–1067. [Google Scholar] [CrossRef]
 Shivashankar, S.; Mekhilef, S.; Mokhlis, H.; Karimi, M. Mitigating methods of power fluctuation of photovoltaic (PV) sources—A review. Renew. Sustain. Energy Rev. 2016, 59, 1170–1184. [Google Scholar] [CrossRef]
 Rastogi, M.; Mohan, N.; Edris, A.A. Hybridactive filtering of harmonic currents in power systems. IEEE Trans. Power Deliv. 1995, 10, 1994–2000. [Google Scholar] [CrossRef]
 Planas, E.; Andreu, J.; Gárate, J.I.; Martínez de Alegría, I.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749. [Google Scholar] [CrossRef]
 Singh, S.; Gautam, A.R.; Fulwani, D. Constant power loads and their effects in DC distributed power systems: A review. Renew. Sustain. Energy Rev. 2017, 72, 407–421. [Google Scholar] [CrossRef]
 Ghosh, A.; Ledwich, G. A unified power quality conditioner (UPQC) for simultaneous voltage and current compensation. Electr. Power Syst. Res. 2001, 59, 55–63. [Google Scholar] [CrossRef]
 Taher, S.A.; Afsari, S.A. Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm. Int. J. Electr. Power Energy Syst. 2014, 60, 34–44. [Google Scholar] [CrossRef]
 Kirubakaran, A.; Jain, S.; Nema, R.K. A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 2009, 13, 2430–2440. [Google Scholar] [CrossRef]
 Baroudi, J.A.; Dinavahi, V.; Knight, A.M. A review of power converter topologies for wind generators. Renew. Energy 2007, 32, 2369–2385. [Google Scholar] [CrossRef]
 Balikci, A.; Akpinar, E. A multilevel converter with reduced number of switches in STATCOM for load balancing. Electr. Power Syst. Res. 2015, 123, 164–173. [Google Scholar] [CrossRef]
 Tareen, W.U.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system. Renew. Sustain. Energy Rev. 2017, 70, 635–655. [Google Scholar] [CrossRef]
 Patnaik, S.S.; Panda, A.K. Threelevel Hbridge and three Hbridgesbased threephase fourwire shunt active power filter topologies for high voltage applications. Int. J. Electr. Power Energy Syst. 2013, 51, 298–306. [Google Scholar] [CrossRef]
 Junior, R.L.S.; Lazzarin, T.B.; Barbi, I. Reduced Switch Count Stepup/Stepdown SwitchedCapacitor ThreePhase ACAC Converter. IEEE Trans. Ind. Electron. 2018. [Google Scholar] [CrossRef]
 Heydari, M.; Fatemi, A.; Varjani, A.Y. A Reduced Switch Count ThreePhase AC/AC Converter with Six Power Switches: Modeling, Analysis, and Control. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1720–1738. [Google Scholar] [CrossRef]
 Limongi, L.R.; Bradaschia, F.; Azevedo, G.M.S.; Genu, L.G.B.; Filho, L.R.S. Dual hybrid power filter based on a nineswitch inverter. Electr. Power Syst. Res. 2014, 117, 154–162. [Google Scholar] [CrossRef]
 Bradaschia, F.; Limongi, L.R.; Cavalcanti, M.C.; Neves, F.A.S. A generalized scalar pulsewidth modulation for nineswitch inverters: An approach for nonsinusoidal modulating waveforms. Electr. Power Syst. Res. 2015, 121, 302–312. [Google Scholar] [CrossRef]
 Heydari, M.; Varjani, A.Y.; Mohamadian, M.; Fatemi, A. Threephase dualoutput sixswitch inverter. IET Power Electron. 2012, 5, 1634–1650. [Google Scholar] [CrossRef]
 Kolar, J.W.; Friedli, T.; Rodriguez, J.; Wheeler, P.W. Review of ThreePhase PWM AC–AC Converter Topologies. IEEE Trans. Ind. Electron. 2011, 58, 4988–5006. [Google Scholar] [CrossRef]
 Limongi, L.R.; da Silva Filho, L.R.; Genu, L.G.B.; Bradaschia, F.; Cavalcanti, M.C. Transformerless Hybrid Power Filter Based on a SixSwitch TwoLeg Inverter for Improved Harmonic Compensation Performance. IEEE Trans. Ind. Electron. 2015, 62, 40–51. [Google Scholar] [CrossRef]
 Hyosung, K.; SeungKi, S. Compensation voltage control in dynamic voltage restorers by use of feed forward and state feedback scheme. IEEE Trans. Power Electron. 2005, 20, 1169–1177. [Google Scholar]
 Luo, A.; Xu, X.; Fang, L.; Fang, H.; Wu, J.; Wu, C. FeedbackFeedforward PIType Iterative Learning Control Strategy for Hybrid Active Power Filter With Injection Circuit. IEEE Trans. Ind. Electron. 2010, 57, 3767–3779. [Google Scholar] [CrossRef]
 Bhattacharya, A.; Chakraborty, C.; Bhattacharya, S. ParallelConnected Shunt Hybrid Active Power Filters Operating at Different Switching Frequencies for Improved Performance. IEEE Trans. Ind. Electron. 2012, 59, 4007–4019. [Google Scholar] [CrossRef]
 Lee, T.L.; Wang, Y.C.; Li, J.C.; Guerrero, J.M. Hybrid Active Filter With Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems. IEEE Trans. Ind. Electron. 2015, 62, 746–756. [Google Scholar] [CrossRef][Green Version]
 Memon, M.; Saad, M.; Mubin, M. Selective Harmonic Elimination in Multilevel Inverter using Hybrid APSO Algorithm. IET Power Electron. 2018. [Google Scholar] [CrossRef]
 Vemuganti, H.P.; Sreenivasarao, D.; Kumar, G.S.; Spandana, A.S. Reduced carrier PWM scheme with unified logical expressions for reduced switch count multilevel inverters. IET Power Electron. 2018, 11, 912–921. [Google Scholar] [CrossRef]
 Qin, J.; Saeedifard, M. Predictive Control of a Modular Multilevel Converter for a BacktoBack HVDC System. IEEE Trans. Power Deliv. 2012, 27, 1538–1547. [Google Scholar]
 Wang, H.; Liserre, M.; Blaabjerg, F. Toward Reliable Power Electronics: Challenges, Design Tools, and Opportunities. IEEE Ind. Electron. Mag. 2013, 7, 17–26. [Google Scholar] [CrossRef][Green Version]
 Gui, Y.; Lee, Y.O.; Han, Y.; Chung, C.C. Novel passivitybased controller design for Backtoback STATCOM with asymmetrically structured converters. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–6. [Google Scholar]
 Bhattacharya, A.; Chakraborty, C.; Bhattacharya, S. A reduced switch transformerless dual hybrid active power filter. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 88–93. [Google Scholar]
 Venet, P.; Perisse, F.; ElHusseini, M.H.; Rojat, G. Realization of a smart electrolytic capacitor circuit. IEEE Ind. Appl. Mag. 2002, 8, 16–20. [Google Scholar] [CrossRef]
 Liu, X.; Loh, P.C.; Wang, P.; Blaabjerg, F. A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources. IEEE Trans. Ind. Electron. 2013, 60, 5696–5707. [Google Scholar] [CrossRef]
 Lin, B.R.; Shih, K.L. Analysis and implementation of a softswitching converter with reduced switch count. IET Power Electron. 2010, 3, 559–570. [Google Scholar] [CrossRef]
 Donghua, C.; Shaojun, X. Review of the control strategies applied to active power filters. In Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, China, 5–8 April 2004; Volume 2, pp. 666–670. [Google Scholar]
 Tripathi, S.M.; Tiwari, A.N.; Singh, D. Gridintegrated permanent magnet synchronous generator based wind energy conversion systems: A technology review. Renew. Sustain. Energy Rev. 2015, 51, 1288–1305. [Google Scholar] [CrossRef]
 Ahmed, H.F.; Cha, H.; Khan, A.A. A SinglePhase Buck Matrix Converter With HighFrequency Transformer Isolation and Reduced Switch Count. IEEE Trans. Ind. Electron. 2017, 64, 6979–6988. [Google Scholar] [CrossRef]
 Singh, A.R.; Patne, N.R.; Kale, V.S. Adaptive distance protection setting in presence of midpoint STATCOM using synchronized measurement. Int. J. Electr. Power Energy Syst. 2015, 67, 252–260. [Google Scholar] [CrossRef]
 Jacobina, C.B.; de Freitas, I.S.; Lima, A.M.N. DCLink ThreePhasetoThreePhase FourLeg Converters. IEEE Trans. Ind. Electron. 2007, 54, 1953–1961. [Google Scholar] [CrossRef]
 Liang, J.; Green, T.C.; Feng, C.; Weiss, G. Increasing Voltage Utilization in SplitLink, FourWire Inverters. IEEE Trans. Power Electron. 2009, 24, 1562–1569. [Google Scholar] [CrossRef][Green Version]
 Liu, H.B.; Mao, C.X.; Lu, J.M.; Wang, D. Threephase fourwire shunt APFSTATCOM using a fourleg converter. Power Syst. Prot. Control 2010, 38, 11–17. [Google Scholar]
 Broeck, H.W.V.D.; Wyk, J.D.V. A Comparative Investigation of a ThreePhase Induction Machine Drive with a Component Minimized VoltageFed Inverter under Different Control Options. IEEE Trans. Ind. Appl. 1984, IA20, 309–320. [Google Scholar] [CrossRef]
 Rodriguez, P.; Pindado, R.; Bergas, J. Alternative topology for threephase fourwire PWM converters applied to a shunt active power filter. In Proceedings of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, Sevilla, Spain, 5–8 November 2002; Volume 4, pp. 2939–2944. [Google Scholar]
 Dos Santos, E.C.; Jacobina, C.B.; Dias, J.A.A.; Rocha, N. SinglePhase to ThreePhase Universal Active Power Filter. IEEE Trans. Power Deliv. 2011, 26, 1361–1371. [Google Scholar] [CrossRef]
 Lohia, P.; Mishra, M.K.; Karthikeyan, K.; Vasudevan, K. A Minimally Switched Control Algorithm forThreePhase FourLeg VSI Topology toCompensate Unbalanced and Nonlinear Load. IEEE Trans. Power Electron. 2008, 23, 1935–1944. [Google Scholar] [CrossRef]
 Munjewar, S.S.; Thombre, S.B.; Mallick, R.K. Approaches to overcome the barrier issues of passive direct methanol fuel cell—Review. Renew. Sustain. Energy Rev. 2017, 67, 1087–1104. [Google Scholar] [CrossRef]
 Hoon, Y.; Mohd Radzi, M.; Hassan, M.; Mailah, N. Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review. Energies 2017, 10, 2038. [Google Scholar] [CrossRef]
 Zaveri, T.; Bhalja, B.; Zaveri, N. Comparison of control strategies for DSTATCOM in threephase, fourwire distribution system for power quality improvement under various source voltage and load conditions. Int. J. Electr. Power Energy Syst. 2012, 43, 582–594. [Google Scholar] [CrossRef]
 Badihi, H.; Zhang, Y.; Hong, H. Active power control design for supporting grid frequency regulation in wind farms. Annu. Rev. Control 2015, 40, 70–81. [Google Scholar] [CrossRef]
 Scali, C.; Farnesi, M. Implementation, parameters calibration and field validation of a Closed Loop Performance Monitoring system. Annu. Rev. Control 2010, 34, 263–276. [Google Scholar] [CrossRef]
 Gonzalez, S.A.; GarciaRetegui, R.; Benedetti, M. Harmonic Computation Technique Suitable for Active Power Filters. IEEE Trans. Ind. Electron. 2007, 54, 2791–2796. [Google Scholar] [CrossRef]
 Tavana, M.R.; Khooban, M.H.; Niknam, T. Adaptive PI controller to voltage regulation in power systems: STATCOM as a case study. ISA Trans. 2017, 66, 325–334. [Google Scholar] [CrossRef] [PubMed]
 Monadi, M.; Amin Zamani, M.; Ignacio Candela, J.; Luna, A.; Rodriguez, P. Protection of AC and DC distribution systems Embedding distributed energy resources: A comparative review and analysis. Renew. Sustain. Energy Rev. 2015, 51, 1578–1593. [Google Scholar] [CrossRef][Green Version]
 Wang, B.; Cathey, J.J. DSPcontrolled, spacevector PWM, current source converter for STATCOM application. Electr. Power Syst. Res. 2003, 67, 123–131. [Google Scholar] [CrossRef]
 Bina, M.T.; Bhat, A.K.S. Averaging Technique for the Modeling of STATCOM and Active Filters. IEEE Trans. Power Electron. 2008, 23, 723–734. [Google Scholar] [CrossRef]
 Moghadasi, A.; Sarwat, A.; Guerrero, J.M. A comprehensive review of lowvoltageridethrough methods for fixedspeed wind power generators. Renew. Sustain. Energy Rev. 2016, 55, 823–839. [Google Scholar] [CrossRef][Green Version]
 İnci, M.; Bayındır, K.Ç.; Tümay, M. Improved Synchronous Reference Frame based controller method for multifunctional compensation. Electr. Power Syst. Res. 2016, 141, 500–509. [Google Scholar] [CrossRef]
 Cañizares, C.A.; Pozzi, M.; Corsi, S.; Uzunovic, E. STATCOM modeling for voltage and angle stability studies. Int. J. Electr. Power Energy Syst. 2003, 25, 431–441. [Google Scholar] [CrossRef][Green Version]
 De Araujo Ribeiro, R.L.; de Azevedo, C.C.; de Sousa, R.M. A Robust Adaptive Control Strategy of Active Power Filters for PowerFactor Correction, Harmonic Compensation, and Balancing of Nonlinear Loads. IEEE Trans. Power Electron. 2012, 27, 718–730. [Google Scholar] [CrossRef]
 Amoozegar, D. DSTATCOM modelling for voltage stability with fuzzy logic PI current controller. Int. J. Electr. Power Energy Syst. 2016, 76, 129–135. [Google Scholar] [CrossRef]
 Moghbel, M.; Masoum, M.A.S.; Fereidouni, A.; Deilami, S. Optimal Sizing, Siting and Operation of Custom Power Devices with STATCOM and APLC Functions for RealTime Reactive Power and Network Voltage Quality Control of Smart Grid. IEEE Trans. Smart Grid 2017, PP. [Google Scholar] [CrossRef]
 Zribi, M.; Alrifai, M.; Rayan, M. Sliding Mode Control of a VariableSpeed Wind Energy Conversion System Using a Squirrel Cage Induction Generator. Energies 2017, 10, 604. [Google Scholar] [CrossRef]
 Varma, R.K.; Salehi, R. SSR Mitigation with a New Control of PV Solar Farm as STATCOM (PVSTATCOM). IEEE Trans. Sustain. Energy 2017, 8, 1473–1483. [Google Scholar] [CrossRef]
 Božiček, A.; Blažič, B.; Papič, I. Time–optimal current control with constant switching frequency for STATCOM. Electr. Power Syst. Res. 2010, 80, 925–934. [Google Scholar] [CrossRef]
 Wang, L.; Lam, C.S.; Wong, M.C. Selective Compensation of Distortion, Unbalanced and Reactive Power of a ThyristorControlled LCCoupling Hybrid Active Power Filter (TCLCHAPF). IEEE Trans. Power Electron. 2017, 32, 9065–9077. [Google Scholar] [CrossRef]
 Behrouzian, E.; Bongiorno, M.; Teodorescu, R. Impact of Switching Harmonics on Capacitor Cells Balancing in PhaseShifted PWMBased Cascaded HBridge STATCOM. IEEE Trans. Power Electron. 2017, 32, 815–824. [Google Scholar] [CrossRef]
 Tareen, W.U.K.; Mekhilef, S. Threephase Transformerless Shunt Active Power Filter with Reduced Switch Count for Harmonic Compensation in GridConnected Applications. IEEE Trans. Power Electron. 2018, 33, 4868–4881. [Google Scholar] [CrossRef]
 Liu, X.; Lv, J.; Gao, C.; Chen, Z.; Chen, S. A Novel STATCOM Based on DiodeClamped Modular Multilevel Converters. IEEE Trans. Power Electron. 2017, 32, 5964–5977. [Google Scholar] [CrossRef]
 Mishra, S.S.; Mohapatra, A.; Satpathy, P.K. Grid Integration of Small Hydro Power Plants Based on PWM Converter and DSTATCOM. In Artificial Intelligence and Evolutionary Computations in Engineering Systems: Proceedings of ICAIECES 2016; Dash, S.S., Vijayakumar, K., Panigrahi, B.K., Das, S., Eds.; Springer: Singapore, 2017; pp. 617–631. [Google Scholar]
 Suganthi, L.; Iniyan, S.; Samuel, A.A. Applications of fuzzy logic in renewable energy systems—A review. Renew. Sustain. Energy Rev. 2015, 48, 585–607. [Google Scholar] [CrossRef]
 Hasani, A.; Haghjoo, F. A Secure and SettingFree Technique to Detect Loss of Field in Synchronous Generators. IEEE Trans. Energy Convers. 2017, 32, 1512–1522. [Google Scholar] [CrossRef]
 Athari, H.; Niroomand, M.; Ataei, M. Review and Classification of Control Systems in Gridtied Inverters. Renew. Sustain. Energy Rev. 2017, 72, 1167–1176. [Google Scholar] [CrossRef]
 Lu, D.; Wang, J.; Yao, J.; Wang, S.; Zhu, J.; Hu, H.; Zhang, L. Clustered Voltage Balancing Mechanism and its Control Strategy for StarConnected Cascaded HBridge STATCOM. IEEE Trans. Ind. Electron. 2017, 64, 7623–7633. [Google Scholar] [CrossRef]
 Goodwin, G.C.; Mayne, D.Q.; Chen, K.Y.; Coates, C.; Mirzaeva, G.; Quevedo, D.E. An introduction to the control of switching electronic systems. Annu. Rev. Control 2010, 34, 209–220. [Google Scholar] [CrossRef]
 De Rossiter Correa, M.B.; Jacobina, C.B.; da Silva, E.R.C.; Lima, A.M.N. A General PWM Strategy for FourSwitch ThreePhase Inverters. IEEE Trans. Power Electron. 2006, 21, 1618–1627. [Google Scholar] [CrossRef]
 Moeed Amjad, A.; Salam, Z. A review of soft computing methods for harmonics elimination PWM for inverters in renewable energy conversion systems. Renew. Sustain. Energy Rev. 2014, 33, 141–153. [Google Scholar] [CrossRef]
 Sahoo, S.; Bhattacharya, T. Phase Shifted Carrier Based Synchronized Sinusoidal PWM Techniques for Cascaded HBridge Multilevel Inverters. IEEE Trans. Power Electron. 2018, 33, 513–524. [Google Scholar] [CrossRef]
 Liu, C.; Wu, B.; Zargari, N.R.; Xu, D.; Wang, J. A Novel ThreePhase ThreeLeg AC/AC Converter Using Nine IGBTs. IEEE Trans. Power Electron. 2009, 24, 1151–1160. [Google Scholar]
 Colak, I.; Kabalci, E. Developing a novel sinusoidal pulse width modulation (SPWM) technique to eliminate side band harmonics. Int. J. Electr. Power Energy Syst. 2013, 44, 861–871. [Google Scholar] [CrossRef]
 Zhang, Y.; Wu, X.; Yuan, X. A Simplified Branch and Bound Approach for Model Predictive Control of Multilevel Cascaded HBridge STATCOM. IEEE Trans. Ind. Electron. 2017, 64, 7634–7644. [Google Scholar] [CrossRef]
 MonroyMorales, J.; CamposGaona, D.; HernándezÁngeles, M.; PeñaAlzola, R.; GuardadoZavala, J. An Active Power Filter Based on a ThreeLevel Inverter and 3DSVPWM for Selective Harmonic and Reactive Compensation. Energies 2017, 10, 297. [Google Scholar] [CrossRef]
 Dehnavi, S.M.D.; Mohamadian, M.; Yazdian, A.; Ashrafzadeh, F. Space Vectors Modulation for NineSwitch Converters. IEEE Trans. Power Electron. 2010, 25, 1488–1496. [Google Scholar] [CrossRef]
 Barghi Latran, M.; Teke, A. Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 42, 361–376. [Google Scholar] [CrossRef]
 Wang, W.; Luo, A.; Xu, X.; Fang, L.; Chau, T.M.; Li, Z. Space vector pulsewidth modulation algorithm and DCside voltage control strategy of threephase fourswitch active power filters. IET Power Electron. 2013, 6, 125–135. [Google Scholar] [CrossRef]
 Camacho, A.; Castilla, M.; Miret, J.; Vicuña, L.G.d.; Guzman, R. Positive and Negative Sequence Control Strategies to Maximize the Voltage Support in ResistiveInductive Grids During Grid Faults. IEEE Trans. Power Electron. 2018, 33, 5362–5373. [Google Scholar] [CrossRef]
 Jayabalan, M.; Jeevarathinam, B.; Sandirasegarane, T. Reduced switch count pulse width modulated multilevel inverter. IET Power Electron. 2017, 10, 10–17. [Google Scholar] [CrossRef]
 Prabaharan, N.; Palanisamy, K. A comprehensive review on reduced switch multilevel inverter topologies, modulation techniques and applications. Renew. Sustain. Energy Rev. 2017, 76, 1248–1282. [Google Scholar] [CrossRef]
 Monfared, M.; Rastegar, H.; Kojabadi, H.M. Overview of modulation techniques for the fourswitch converter topology. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008; pp. 803–807. [Google Scholar]
 Asiminoael, L.; Blaabjerg, F.; Hansen, S. Detection is key—Harmonic detection methods for active power filter applications. IEEE Ind. Appl. Mag. 2007, 13, 22–33. [Google Scholar] [CrossRef]
 Tareen, W.U.; Mekhilef, S. Transformerless 3P3W SAPF (threephase threewire shunt active power filter) with lineinteractive UPS (uninterruptible power supply) and battery energy storage stage. Energy 2016, 109, 525–536. [Google Scholar] [CrossRef]
 ADF Power Tuning. Products adfp700statcom. Available online: https://adfpowertuning.com/products/adfp700statcom (accessed on 1 July 2017).
 AMSC (NASDAQ: AMSC). Dynamic VoltAmp Reactive (DVAR) Compensation Solution. Available online: http://www.amsc.com/gridtec/utility_reactive_power_solutions (accessed on 15 July 2017).
 Kato, T.; Ito, T.; Aihara, T.; Namatame, S. Development of a 20MVA STATCOM for Flicker Suppression. Hitachi Rev. 2007, 56, 133. [Google Scholar]
 Lyons, J.P.; Vlatkovic, V.; Espelage, P.M.; Esser, A.A.M. High Power Motor Drive Converter System and Modulation Control. U.S. Paten US5910892A, 8 July 1999. [Google Scholar]
 Bousseau, P.; Fesquet, F.; Belhomme, R.; Nguefeu, S.; Thai, T.C. Solutions for the grid integration of wind farms—A survey. Wind Energy 2006, 9, 13–25. [Google Scholar] [CrossRef]
 Yu, Q.; Li, P.; Liu, W.; Xie, X. Overview of STATCOM technologies. In Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, China, 5–8 April 2004; pp. 647–652. [Google Scholar]
 Bagnall, T.; Ritter, C.; Ronner, B.; Maibach, P.; Butcher, N.; Thurnherr, T. PCS6000 STATCOM ancillary functions: Wind park resonance damping. In Proceedings of the European Wind Energy Conference and Exhibition 2009, Marseille, France, 16–19 March 2009. [Google Scholar]
 Xu, X.; Edmonds, M.J.; Bishop, M.; Sember, J. Application of distributed static compensators in wind farms to meet grid codes. In Proceedings of the AsiaPacific Power and Energy Engineering Conference (APPEEC), Shanghai, China, 27–29 March 2012; pp. 1–5. [Google Scholar]
 Jiao, Z.; Xingyan, N.; Mingjun, D.; Zefeng, Q.; Qirui, L. Research on control strategy of cascade STATCOM under unbalanced system voltage. In Proceedings of the 2012 China International Conference on Electricity Distribution (CICED), Shanghai, China, 10–14 September 2012; pp. 1–4. [Google Scholar]
 Bryantsev, A.; Bazylev, B.; Lur’e, A.; Raichenko, M.; Smolovik, S. Compensators of reactive power for controlling and stabilizing the voltage of a highvoltage electrical network. Russ. Electr. Eng. 2013, 84, 57–64. [Google Scholar] [CrossRef]
 Qiao, C.; Jin, T.; Smedley, K.M. Onecycle control of threephase active power filter with vector operation. IEEE Trans. Ind. Electron. 2004, 51, 455–463. [Google Scholar] [CrossRef]
 Kim, J.; Hong, J.; Nam, K. A Current Distortion Compensation Scheme for FourSwitch Inverters. IEEE Trans. Power Electron. 2009, 24, 1032–1040. [Google Scholar]
 GiTaek, K.; Lipo, T.A. VSIPWM rectifier/inverter system with a reduced switch count. IEEE Trans. Ind. Appl. 1996, 32, 1331–1337. [Google Scholar] [CrossRef]
 ByoungKuk, L.; TaeHyung, K.; Ehsani, M. On the feasibility of fourswitch threephase BLDC motor drives for low cost commercial applications: Topology and control. IEEE Trans. Power Electron. 2003, 18, 164–172. [Google Scholar] [CrossRef]
 Blaabjerg, F.; Freysson, S.; Hansen, H.H.; Hansen, S. A new optimized spacevector modulation strategy for a componentminimized voltage source inverter. IEEE Trans. Power Electron. 1997, 12, 704–714. [Google Scholar] [CrossRef]
 Kesler, M.; Ozdemir, E. SynchronousReferenceFrameBased Control Method for UPQC Under Unbalanced and Distorted Load Conditions. IEEE Trans. Ind. Electron. 2011, 58, 3967–3975. [Google Scholar] [CrossRef]
 Angulo, M.; RuizCaballero, D.A.; Lago, J.; Heldwein, M.L.; Mussa, S.A. Active Power Filter Control Strategy With Implicit ClosedLoop Current Control and Resonant Controller. IEEE Trans. Ind. Electron. 2013, 60, 2721–2730. [Google Scholar] [CrossRef]
 Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766. [Google Scholar] [CrossRef][Green Version]
 Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; AbuRub, H.; Young, H.A.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
 Zhang, L.; Loh, P.C.; Gao, F. An Integrated NineSwitch Power Conditioner for Power Quality Enhancement and Voltage Sag Mitigation. IEEE Trans. Power Electron. 2012, 27, 1177–1190. [Google Scholar] [CrossRef]
 Fatemi, A.; Azizi, M.; Mohamadian, M.; Varjani, A.Y.; Shahparasti, M. SinglePhase DualOutput Inverters With ThreeSwitch Legs. IEEE Trans. Ind. Electron. 2013, 60, 1769–1779. [Google Scholar] [CrossRef]
Category  Shunt APF  Series APF 

Connection with system  Parallel with distribution system  Connected in series with distribution system 
Action  Current source  Voltage source 
Filter rating  Voltage rated at full load rating Current rating comprises partially harmonic and partly reactive current components  Current rated at full load rating Voltage rating is partially compensated voltage component 
Functioning  Harmonic load current filtering Compensation for reactive current Mitigation of current unbalance  Mitigation of voltage harmonics, sag, and swells Mitigation of current harmonics Compensation of reactive current Mitigation of current unbalances 
Characteristics of compensation  Source impedance exerts no effect on compensation for current source loads.  Source and load impedance exert no effect on compensation for voltage source loads. 
Application  Injected current may cause excess current when applied to a voltage source load.  A lowimpedance parallel branch (for improvement of power factor) when working with current source load 
Load considered  Nonlinear/inductive current source loads or harmonics containing current source loads  Nonlinear/capacitive voltage source loads or harmonics containing voltage source loads 
Technology  MSC(DN)/MSR  SVC  SVC PLUS (STATCOM)  Hybrid STATCOM  Synchronous Condenser 

Application  Compensation of predictable load  Fast dynamic compensation and voltage recovery during faults  Fast dynamic compensation and voltage recovery during faults  Fast dynamic compensation and voltage recovery during faults  Provision of shortcircuit power, inertia, dynamic compensation, and voltage recovery during faults 
Switching  Limited switching only  Unlimited switching  Unlimited switching  Unlimited switching  Continuous operation 
V/I characteristic  No response  Good overvoltage performance  Superior under voltage performance  Superior under voltage performance  Good overload capability 
Control range  Adjustable by MSC and MSR ranges  Adjustable by branch ranges  Symmetrical output: Adjustable range  Unsymmetrical output: Adjustable range  Adjustable by generator size 
Redundancy  No inbuilt redundancy  Inbuilt redundancy in thyristor valves  Inbuilt redundancy in power modules  Inbuilt redundancy in power modules and in thyristor valves  Depending on solution 
Harmonics  Susceptible to harmonics  TCR is source of harmonics—AC filters required  Harmonically selfcompensated—no filters required  Harmonically selfcompensated—no filters required  Not susceptible to harmonics 
Response time  2–5 cycles, depending on breaker  2–3 cycles  1.5–2 cycles  1.5–2 cycles  seconds 
Operation and maintenance  Very low, depending on breaker  Low, primarily visual inspection  Very low, primarily visual inspection  Very low, primarily visual inspection  Low, inspection every 3–4 years 
Losses at 0 MVAR output power  0%  0.3% of the rated output power  0.15% of the rated output power  0.15% of the rated output power  ~1% of the rated output power 
Availability  >99%  >99%  >99%  >99%  >98% 
Parameters  Static Capacitors  Capacitor & Reactor Bank  AVC  STATCOM  SVC  TCSC  UPFC 

Reactive power  **  ***  **  ****  ***  **  **** 
Active power  **  **  *  *  **  
Voltage stability  **  **  **  ****  ***  ***  **** 
Voltage control  **  **  **  ****  ***  **  **** 
Flicker control  *  ****  ***  ****  
Harmonic reduction  *  ****  
Power flow control  ***  ****  
Oscillation damping  *  ***  **  ***  **** 
Attributes  Types of Filter  

Passive Filter  Active Filter  Hybrid Filter  DSTATCOM  UPQC  
Reactive power compensation  Poor  Good  Good  Excellent  Excellent 
Harmonic suppression  Fixed  Adjustable  Fixed  Adjustable  Adjustable 
Resonance  May exist  No  No  No  No 
Load compensation  Not provided  Not provided  Not provided  Excellent  Good 
Power rating of power converter    High  small  Highest  small 
Power converter switches    6  4, 6  4, 6, 12  4, 6, 8, 12, 18, 24 
Total cost  Lowest  High  Moderate  High  Highest 
Number  Application  Types of Filter  

Series Active Filter  Shunt Active Filter  Hybrid Filter (Active Series and Passive Shunt)  Hybrid Filter (Active Series and Active Shunt)  
1  Voltage harmonic compensation  *  *  *  
2  Voltage flicker reduction  *  *  *  
3  Removing voltage sags  *  *  *  * 
4  Improving voltage regulation  *  *  *  * 
5  Reactive power compensation  *  *  *  
6  Current harmonic compensation  *  *  *  
7  Neutral current compensation  *  *  
8  Improving load balancing  *  
9  (1 + 4)  *  *  
10  (1 + 2 + 3 + 4)  *  *  
11  (1 + 4 + 5 + 6)  *  *  
12  (1 + 5)  *  *  
13  (5 + 6)  *  *  *  
14  (5 + 6 + 7 + 8)  *  
15  (5 + 6 + 8)  *  *  
16  (6 + 8)  *  
17  (5 + 7 + 8)  * 
Topologies  Electrical Isolation  Efficiency (%)  Advantages  Disadvantages 

Single bus inverter with two paralleled half bridge  No    Minimum component count  Large dc filter components 
Dual bus inverter with two split half bridge single  No    Reliability and flexibility  High component count 
phase 3 wire inverter  Yes    Small passive component  Complex control; for nonisolated circuit 
Dual phase inverter with transformer  Yes    Boosting capability  Higher cost and size 
Threephase PWM inverter  Yes  ~98%  Simple design and control   
High frequency link inverter  Yes  ~96%  Boosting capability  Highly complex; higher cost and size 
Z source inverter  No  ~98%  Boosting capability; save cost, no need for extra dc/dc converter  Complex control; current stress is high 
LLCC resonant inverter  No  ~95%  Lower current ripples; soft switching techniques  Low power density; needs large volume and weight of resonant filter magnetic components 
Series  Converter Topology Features  Diode Rectifier  2LB2B VSC  ZSI  MultiLevel Converter  Matrix Converter  Nine Switch ACAC Converter 

1  Need controlled switches  None  Less  Less  Large  Large  Least 
2  Circuit configuration  Simple  Simple  Simple  Complex  Complex  Simple 
3  Cost  Very low  Moderate  High  Very high  high  Low 
4  DClink capacitor  Yes  Yes  Yes  Yes  No  Yes 
5  Operational stages  Two  Two  Two  Two  One  One 
6  Waveform quality  Good  Better  Better  Best  Better  Depends 
7  Harmonic distortion  High  Moderate  Low  Least  Low  Depends 
8  Switches losses  None  High  High  Low  Low  High 
9  Conduction losses  Low  Low  Low  Highest  High  Low 
10  Reliability  High  Low  High  Low  High  Low 
11  Bidirectional power flow  No  Yes  Yes  Yes  Yes  Yes 
12  Control complexity  Easy  Moderate  Moderate  Most complex  More complex  complex 
Split DCLink topology  Conventional Topology  

Advantages  Disadvantages  Advantages  Disadvantages 
Simple design  Unequal voltage sharing in between the split capacitors legs  Handle unbalanced and nonlinear conditions  Need two or many extra switches 
Fewer converter switches  Need an expensive capacitors  Low DCbus voltage  Complicated control strategy 
Simple and fast current tracking control  Unbalanced and nonlinear loads reason a split voltages perturbation  AC output voltage can be greater (about %15) than the output of split DClink topology   
  Need a neutral point balancing technique  Lower ripple in the DClink voltage   
Parameters  Fast Fourier Transform FFT  Discrete Fourier Transform DFT  Recursive Discrete Fourier Transform RDFT  Synchronous Fundamental DQ Frame  Synchronous Individual Harmonic DQ Frame  Instantaneous Power PQ Theory  Generalized Integrators 

Number of Sensors (For a Case of ThreePhase Application)  Three currents  Three currents  Three currents  Three currents, two/three voltages  Three currents, two/three voltages  Three currents, three voltages  Three currents 
Number of Numerical Filters Required by the Harmonic Detection Algorithm  0  0  0  2 × HPFs  2 × LPFs × N *  2 × HPFs  2 × N * 
Additional Tasks Required by the Harmonic Detection Algorithm  Windowing, synchronization  Windowing, synchronization  PLL  PLL  Voltage Preprocessing  .  
Calculation Burden (Excluding the Numerical Filters)      +  +    +   
Numerical Implementation Issues  Calculation Burden,  Calculation Burden,  Instability for low precision  Filtering  Filtering, Tuning  Filtering  Tuning control 
Related Algorithms or Implementations  Similar FFT algorithms  .  Rotating frame  Filter type  Filter type  Filter type; other theoriespqr,pq0  Resonant filters type 
Applications in Single or ThreePhase Systems  Both1ph/3ph  Both1ph/3ph  Both1ph/3ph  Inherently 3ph  Inherently 3ph  Inherently 3ph  Both 1ph/3ph 
Usage of the Voltage Information in the Algorithm  No  No  No  Yes  Yes  Yes  No 
Method’s Performance for Unbalanced and Pre distorted Line Voltages  ++  ++  ++  +  +    ++ 
Method’s Performance for Unbalanced Load Currents  ++  ++  ++  +  ++  ++  + 
Applied for Selective Harmonic Compensation  No  Yes  Yes  No  Yes  No  Yes 
Transient Response Time      +  ++  +  ++  + 
SteadyState Accuracy  +  +  +    +  +   
Available Sizes of STATCOM  

Company  Product Name/Types  Voltage Level  Single Unit Capacity 
ABB  PCS 6000 STATCOM  SeveralTypical (11, 20, 21, 33, 138) KV  (6……..16) MVAR 
HITACHI  STATCOM  (66) KV  (20) MVAR 
DONGFANG HITACHI (CD) ELECTRIC CONTROL EQUIPMENTS CO., LTD.  DHSTATCOM  (6) KV  (600……..46000) KVAR 
CONDENSATOR DOMINIT GMBH  KLARAS, KLARAM, KLARAI  SeveralTypical (400/525/690) V  (5/10, 6/12, 12/25) KVAR 
GAMESA ELECTRIC  STATCOM  (11, 8…..34, 5) KV  (1, 5) MVAR 
STATCOM SOLUTIONS PTY LTD  d105/d315  SeveralTypical (200…..265) V  (5….15) KVA 
ADF POWER TUNING  ADF P700 STATCOM  (6–36) KV  (1……10) MVA 
ADDNEW  STATCOM/SVG  (6, 10, 35) KV  (3) MVAR 
AMSC  DVAR  Up to (46) KV  (±2……..100 s) MVAR 
GAMESA  STATCOMEN  (11.8….34.5) KV (Stepup Transformer)  (1.5) MVAR 
MERUSPOWER  MSTATCOM (Merus M8000)  All voltages via Transformer  (1.3) MVAR 
PONOVO  AccuVar ASVC  (3, 6, 10, 20, 35) KV  (±1…±18) MVAR ASVC100 type (±10…±50) MVAR ASVC200 type 
S AND C ELECTRIC  The Purewave DSTATCOM  (0.48…..35) KV  (±1.23) MVAR/3.3 MVAR 
SIEMENS  SVC Plus  Up to (36) KV (Transformer less)  (±25…..±50) MVAR 
Available sizes of SVC  
ABB  SVC  (69) KV  (+50/−40) MVAR 
GE Power  SVC  (33………380) KV  (0……..300) MVAR 
ADDNEW  FCTCR  (6, 10, 35) KV  (0……..200) MVAR 
ADDNEW  TSC  (6…..10) KV  (0.15……..3) MVAR 
ADDNEW  TCR  (6…..35) KV  (1……..150) MVAR 
PONOVO  SVC (FCTCR)  (6…..66) KV  (0……..400) MVAR 
RXPE  TCR  (6, 10, 27.5, 35, 66) KV  (6……..300) MVAR 
SIEMENS  SVC classic (TSCTCR)  (6……800) KV  (40……..800) MVAR 
Available sizes of APF  
CONDENSATOR DOMINIT GMBH  NQ2501/NQ2502  SeveralTypical (200–480, ±10%) V  (41.5…….41.5) KVA 
ADF POWER TUNING  ADF P10070/480, ADF P100100/480, ADF P100130/480, ADF P10090/690  SeveralTypical (208–480, 480–690) V  (49…….108) KVA 
DELTA ELECTRONICS, INC  APF2000  (200–480) V  (22) KVA 
SCHNEIDER  AccuSine PCS+ (LV active filters)  (380…690) V  (50….250) KVA 
SCHAFFNER  FN3420 ECO sine active  (500–600) V  
SIEMENS  4RF10103PB0  (380–480) V 
METHOD  STRENGTH  WEAKNESS 

PIController 


Hysteresis Control 


DeadBeat Control 


Reference Prediction 


Multirate Sampling 


Phaseangle Correction 


One Cycle Control 


Adaptive Neural Network 


NeuralNetwork Predicting Reference 


Selective Harmonics Compensation 


MasterSlave Control 


Predictive Control 
 
Sliding Mode Control (SMC)  Exhibits reliable performance during transients. Shows an acceptable THD if it is designed well. 

Fuzzy Control Methods 
 Slow control method. 
Repetitive Controller (RC)  These controllers are implemented as harmonic compensators and current controllers. They show robust performance for periodic disturbances and ensure a zero steadystate error at all the harmonic frequencies.  Is not easy to stabilize for all unknown load disturbances and cannot obtain very fast response for fluctuating load. 
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tareen, W.U.K.; Aamir, M.; Mekhilef, S.; Nakaoka, M.; Seyedmahmoudian, M.; Horan, B.; Memon, M.A.; Baig, N.A. Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using ThreePhase APF/STATCOM Technologies: A Review. Energies 2018, 11, 1491. https://doi.org/10.3390/en11061491
Tareen WUK, Aamir M, Mekhilef S, Nakaoka M, Seyedmahmoudian M, Horan B, Memon MA, Baig NA. Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using ThreePhase APF/STATCOM Technologies: A Review. Energies. 2018; 11(6):1491. https://doi.org/10.3390/en11061491
Chicago/Turabian StyleTareen, Wajahat Ullah Khan, Muhammad Aamir, Saad Mekhilef, Mutsuo Nakaoka, Mehdi Seyedmahmoudian, Ben Horan, Mudasir Ahmed Memon, and Nauman Anwar Baig. 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using ThreePhase APF/STATCOM Technologies: A Review" Energies 11, no. 6: 1491. https://doi.org/10.3390/en11061491