#
A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control ^{†}

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. System Configuration

#### 2.1. TEG Characteristics

#### 2.2. Open Circuit Voltage and Short Circuit Current Detection

## 3. Proposed MPPT Control Algorithm

## 4. Proposed Voltage Sensing Technique

## 5. Simulation Results and Discussion

#### 5.1. System Implementation

#### 5.2. Proposed MPPT Algorithm Simulation

#### 5.3. Proposed Voltage Sensing Technique Simulation

## 6. Experimental Results

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Rowe, D. Thermoelectric waste heat recovery as a renewable energy source. Int. J. Innov. Energy Syst. Power
**2006**, 1, 13–23. [Google Scholar] - Riffat, S.B.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng.
**2003**, 23, 913–935. [Google Scholar] [CrossRef] - Zhang, X.; Zhao, L.-D. Thermoelectric materials: Energy conversion between heat and electricity. J. Materiomics
**2015**, 1, 92–105. [Google Scholar] [CrossRef] - Rowe, D. Thermoelectrics, an environmentally-friendly source of electrical power. Renew. Energy
**1999**, 16, 1251–1256. [Google Scholar] [CrossRef] - Mehta, R.J.; Zhang, Y.; Karthik, C.; Singh, B.; Siegel, R.W.; Borca-Tasciuc, T.; Ramanath, G. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater.
**2012**, 11, 233–240. [Google Scholar] [CrossRef] [PubMed] - Biswas, K.; He, J.; Blum, I.D.; Wu, C.-I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature
**2012**, 489, 414–418. [Google Scholar] [CrossRef] [PubMed] - Dalola, S.; Ferrari, M.; Ferrari, V.; Guizzetti, M.; Marioli, D.; Taroni, A. Characterization of Thermoelectric Modules for Powering Autonomous Sensors. IEEE Trans. Instrum. Meas.
**2009**, 58, 99–107. [Google Scholar] [CrossRef] - Deng, F.; Qiu, H.; Chen, J.; Wang, L.; Wang, B. Wearable Thermoelectric Power Generators Combined with Flexible Super Capacitor for Low-power Human Diagnosis Devices. IEEE Trans. Ind. Electron.
**2016**, 64, 1477–1485. [Google Scholar] [CrossRef] - Risse, S.; Zellbeck, H. Close-coupled exhaust gas energy recovery in a gasoline engine. Res. Therm. Manag.
**2013**, 74, 54–61. [Google Scholar] [CrossRef] - Champier, D.; Bédécarrats, J.P.; Kousksou, T.; Rivaletto, M.; Strub, F.; Pignolet, P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy
**2011**, 36, 1518–1526. [Google Scholar] [CrossRef] - Sutera, C.; Jovanovica, Z.R.; Steinfeld, A. A 1 kW
_{e}thermoelectric stack for geothermal power generation—Modeling and geometrical optimization. Appl. Energy**2012**, 99, 379–385. [Google Scholar] [CrossRef] - Siviter, J.; Knox, A.; Buckle, J.; Montecucco, A.; McCulloch, E. Megawatt scale energy recovery in the Rankine cycle. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 1374–1379. [Google Scholar]
- Xu, Y.; Yuan, Y.; Fu, J. Modeling and design for a thermoelectric charger. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics (ISIE), Hangzhou, China, 28–31 May 2012; pp. 383–386. [Google Scholar]
- Kasa, N.; Iida, T.; Liang, C. Flyback Inverter Controlled by Sensorless Current MPPT for Photovoltaic Power System. IEEE Trans. Ind. Electron.
**2005**, 52, 1145–1152. [Google Scholar] [CrossRef] - Koizumi, H.; Mizuno, T.; Kaito, T.; Noda, Y.; Goshima, N.; Kawasaki, M.; Nagasaka, K.; Kurokawa, K. A Novel Microcontroller for Grid-Connected Photovoltaic Systems. IEEE Trans. Ind. Electron.
**2006**, 53, 1889–1897. [Google Scholar] [CrossRef] - Kuo, Y.-C.; Liang, T.-J.; Chen, J.-F. Novel maximum-power-point-tracking controller for photovoltaic energy conversion system. IEEE Trans. Ind. Electron.
**2001**, 48, 594–601. [Google Scholar] - Kim, R.-Y.; Lai, J.-S. A Seamless Mode Transfer Maximum Power Point Tracking Controller For Thermoelectric Generator Applications. IEEE Trans. Power Electron.
**2008**, 23, 2310–2318. [Google Scholar] - Raza Kazmi, S.M.; Goto, H.; Hai-Jiao, G.; Ichinokura, O. Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 12–16 September 2010; pp. 4075–4082. [Google Scholar]
- Jungmoon, K.; Minseob, S.; Junwon, J.; Heejun, K.; Chulwoo, K. A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications. In Proceedings of the 19th Asia and South Pacific Design Automation Conference ASP-DAC 2014, Singapore, 20–23 January 2014; pp. 35–36. [Google Scholar]
- Schwartz, D.E. A maximum-power-point-tracking control system for thermoelectric generators. In Proceedings of the 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aalborg, Denmark, 25–28 June 2012; pp. 78–81. [Google Scholar]
- Laird, I.; Lu, D.D.C. High Step-Up DC/DC Topology and MPPT Algorithm for Use with a Thermoelectric Generator. IEEE Trans. Power Electron.
**2013**, 28, 3147–3157. [Google Scholar] [CrossRef] - Montecucco, A.; Knox, A.R. Maximum Power Point Tracking Converter Based on the Open-Circuit Voltage Method for Thermoelectric Generators. IEEE Trans. Power Electron.
**2015**, 30, 828–839. [Google Scholar] [CrossRef] - Dalala, Z.M.; Zahid, Z.U. New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 1062–1067. [Google Scholar]
- Tolani, S.; Joshi, S.; Sensarma, P. Dual loop digital control of UPS inverter with reduced sensor count. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. [Google Scholar]
- Uno, M.; Kukita, A. Current sensorless single-switch voltage equalizer using multi-stacked buck-boost converters for photovoltaic modules under partial shading. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 645–651. [Google Scholar]
- Dallago, E.; Finarelli, D.G.; Gianazza, U.P.; Barnabei, A.L.; Liberale, A. Theoretical and Experimental Analysis of an MPP Detection Algorithm Employing a Single-Voltage Sensor Only and a Noisy Signal. IEEE Trans. Power Electron.
**2013**, 28, 5088–5097. [Google Scholar] [CrossRef] - dos Santos, W.M.; Martins, D.C. Digital MPPT technique for PV panels with a single voltage sensor. In Proceedings of the Intelec 2012, Scottsdale, AZ, USA, 30 September–4 October 2012; pp. 1–8. [Google Scholar]
- Ciani, L.; Catelani, M.; Mancini, M.; Simoni, E. A novel technique for power inverter control based on a single voltage sensor. In Proceedings of the 2009 IEEE Instrumentation and Measurement Technology Conference, Singapore, 5–7 May 2009; pp. 1167–1170. [Google Scholar]
- Mallik, A.; Khaligh, A. Control of a Three-Phase Boost PFC Converter Using a Single DC-Link Voltage Sensor. IEEE Trans. Power Electron.
**2017**, 32, 6481–6492. [Google Scholar] [CrossRef] - Mukherjee, S.; Shamsi, P.; Ferdowsi, M. Control of a Single-Phase Standalone Inverter without an Output Voltage Sensor. IEEE Trans. Power Electron.
**2017**, 32, 5601–5612. [Google Scholar] [CrossRef] - Lineykin, S.; Ben-Yaakov, S. Modeling and analysis of thermoelectric modules. In Proceedings of the Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2005, Austin, TX, USA, 6–10 March 2005; Volume 2013, pp. 2019–2023. [Google Scholar]
- Dalala, Z.M.; Zahid, Z.U.; Wensong, Y.; Younghoon, C.; Jih-Sheng, L. Design and Analysis of an MPPT Technique for Small-Scale Wind Energy Conversion Systems. IEEE Trans. Energy Convers.
**2013**, 28, 756–767. [Google Scholar] [CrossRef]

**Figure 7.**(

**a**) Schematic diagram of the TEG energy-harvester control diagram. (

**b**) Hardware photo of the test setup.

**Figure 11.**Experimental waveforms for the current, PWM signal, and input voltage of the operating boost converter.

**Figure 12.**Experimental comparison waveforms for the current, voltage, and input power under the conventional perturb and observe (P&O) and the proposed MPPT algorithms. (Lower part is filtered version of the upper part).

**Figure 13.**Experimental waveforms for the current, estimated input and output voltages, and the sensed voltage, as highlighted in Figure 5.

**Figure 14.**Experimental waveforms for the current, estimated input and output voltages and the sensed voltage as highlighted in Figure 5 during transient dynamics.

TEG | Value [Unit] |

Nominal Voltage | $10\left[\mathrm{V}\right]$ |

${R}_{int}$ | $2\left[\mathsf{\Omega}\right]$ |

Boost Converter | Value [Unit] |

$L$ | $100\left[\mathsf{\mu}\mathrm{H}\right]$ |

${C}_{dc}$ | $10\left[\mathsf{\mu}\mathrm{F}\right]$ |

${C}_{o}$ | $470\left[\mathsf{\mu}\mathrm{F}\right]$ |

${R}_{L}$ | $2\left[\mathsf{\Omega}\right]$ |

${f}_{S}$ | $50\left[\mathrm{kHz}\right]$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dalala, Z.M.; Saadeh, O.; Bdour, M.; Zahid, Z.U. A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control ^{†}. *Energies* **2018**, *11*, 1826.
https://doi.org/10.3390/en11071826

**AMA Style**

Dalala ZM, Saadeh O, Bdour M, Zahid ZU. A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control ^{†}. *Energies*. 2018; 11(7):1826.
https://doi.org/10.3390/en11071826

**Chicago/Turabian Style**

Dalala, Zakariya M., Osama Saadeh, Mathhar Bdour, and Zaka Ullah Zahid. 2018. "A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control ^{†}" *Energies* 11, no. 7: 1826.
https://doi.org/10.3390/en11071826