Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles
Abstract
:1. Introduction
2. Electric Vehicles Connected to Smart Grids
3. Protection of Smart Grids
4. Real-Time Simulation Capabilities for Smart Grids Protection
5. Open Access Distribution Networks Available for Protection Studies
6. Conclusions and Future Developments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Zubo, R.; Mokryani, G.; Rajamani, H.-S.; Aghaei, J.; Niknam, T.; Pillai, P. Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review. Renew. Sustain. Energy Rev. 2017, 72, 1177–1198. [Google Scholar] [CrossRef]
- Dumbrava, V.; Miclescu, T.; Lazaroiu, G.C. Power Distribution Networks Planning Optimization in Smart Cities. In City Networks; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2017; Volume 128, pp. 213–226. [Google Scholar]
- Georgilakis, P.S.; Hatziargyriou, N.D. A review of power distribution planning in the modern power systems era: Models, methods and future research. Electr. Power Syst. Res. 2015, 121, 89–100. [Google Scholar] [CrossRef]
- Sedghi, M.; Ahmadian, A.; Aliakbar-Golkar, M. Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques. Renew. Sustain. Energy Rev. 2016, 66, 415–434. [Google Scholar] [CrossRef]
- Alvarez-Herault, M.-C.; N’Doye, N.; Gandioli, C.; Hadjsaid, N.; Tixador, P. Meshed distribution network vs. reinforcement to increase the distributed generation connection. Sustain. Energy Grids Netw. 2015, 1, 20–27. [Google Scholar] [CrossRef]
- Novoselnik, B.; Bolfek, M.; Bošković, M.; Baotić, M. Electrical Power Distribution System Reconfiguration: Case Study of a Real-life Grid in Croatia. IFAC-PapersOnLine 2017, 50, 61–66. [Google Scholar] [CrossRef]
- Ehsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Appl. Energy 2018, 210, 44–59. [Google Scholar] [CrossRef]
- Vita, V. Development of a decision-making algorithm for the optimum size and placement of distributed generation units in distribution networks. Energies 2017, 10, 1433. [Google Scholar] [CrossRef]
- Singh, B.; Mishra, D.K. A survey on enhancement of power system performances by optimally placed DG in distribution networks. Energy Rep. 2018, 4, 129–158. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, J. A review on distributed generation planning. Renew. Sustain. Energy Rev. 2017, 76, 529–544. [Google Scholar] [CrossRef]
- Hadjiionas, S.; Oikonomou, D.; Fotis, G.; Vita, V.; Ekonomou, L.; Pavlatos, C. Green field planning of distribution systems. In Proceedings of the 11th WSEAS International Conference on Automatic Control, Modelling & Simulation (ACMOS’09), Istanbul, Turkey, 30 May 30–1 June 2009. [Google Scholar]
- Jordehi, A.R. Optimisation of electric distribution systems: A review. Renew. Sustain. Energy Rev. 2015, 51, 1088–1100. [Google Scholar] [CrossRef]
- Banerjee, B.; Jayaweera, D.; Islam, S. Modelling and Simulation of Power Systems. In Smart Power Systems and Renewable Energy System Integration; Springer Nature: Basingstoke, UK, 2016; pp. 15–28. [Google Scholar]
- Kalos, M.H.; Whitlock, P.A. Monte Carlo Methods; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Prusty, B.R.; Jena, D. A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach. Renew. Sustain. Energy Rev. 2017, 69, 1286–1302. [Google Scholar] [CrossRef]
- Mokryani, G. Active distribution networks planning with integration of demand response. Sol. Energy 2015, 122, 1362–1370. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, R.; Hooshmand, R.-A.; Taheri, N. Distribution network expansion planning and DG placement in the presence of uncertainties. Electr. Power Energy Syst. 2015, 73, 665–673. [Google Scholar] [CrossRef]
- Piao, M.; Li, Y.; Huang, G. Development of a stochastic simulation–optimization model for planning electric power systems—A case study of Shanghai, China. Energy Convers. Manag. 2014, 86, 111–124. [Google Scholar] [CrossRef]
- Marmidis, G.; Lazarou, S.; Pyrgioti, E. Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renew. Energy 2008, 33, 1455–1460. [Google Scholar] [CrossRef]
- Muruganantham, B.; Gnanadass, R.; Padhy, N. Challenges with renewable energy sources and storage in practical distribution systems. Renew. Sustain. Energy Rev. 2017, 73, 125–134. [Google Scholar] [CrossRef]
- Brearley, B.J.; Prabu, R.R. A review on issues and approaches for micro grid protection. Renew. Sustain. Energy Rev. 2017, 67, 988–997. [Google Scholar] [CrossRef]
- Memon, A.A.; Kauhaniemi, K. A critical review of AC Microgrid protection issues and available solutions. Electr. Power Syst. Res. 2015, 129, 23–31. [Google Scholar] [CrossRef]
- Abdel-Ghany, H.A.; Azmy, A.M. Defining the practical constraints of inserting DG units in distribution systems regarding protection schemes. Int. Trans. Electr. Energy Syst. 2015, 25, 3618–3629. [Google Scholar] [CrossRef]
- Strasser, T.; Andrén, F.; Kathan, J.; Cecati, C.; Buccella, C.; Siano, P.; Leitão, P.; Zhabelova, G.; Vyatkin, V.; Vrba, P.; et al. A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems. IEEE Trans. Ind. Electron. 2015, 62, 2424–2438. [Google Scholar] [CrossRef] [Green Version]
- Palizban, O.; Kauhaniemi, K.; Guerrero, J.M. Microgrids in active network management—Part II: System operation, power quality and protection. Renew. Sustain. Energy Rev. 2014, 36, 440–451. [Google Scholar] [CrossRef]
- Kazmi, S.A.A.; Shahzad, M.K.; Khan, A.Z.; Shin, D.R. Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies 2017, 10, 501. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Said, D.M.; Mustafa, M.W.; Habibuddin, M.H.; Ghaffari, K. An analytical literature review of the available techniques for the protection of micro-grids. Electr. Power Energy Syst. 2014, 58, 300–306. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Said, D.M.; Mustafa, M.W.; Habibuddin, M.; Ghaffari, K. Progress and problems in micro-grid protection schemes. Renew. Sustain. Energy Rev. 2014, 37, 834–839. [Google Scholar] [CrossRef]
- Norshahrani, M.; Mokhlis, H.; Bakar, H.A.; Jamian, J.J.; Sukumar, S. Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems. Energies 2017, 10, 1864. [Google Scholar] [CrossRef]
- Morais, H.; Sousa, T.; Vale, Z.; Faria, P. Evaluation of the electric vehicle impact in the power demand curve in a smart grid environment. Energy Convers. Manag. 2014, 82, 268–282. [Google Scholar] [CrossRef] [Green Version]
- Rahbari, O.; Vafaeipour, M.; Omar, N.; Rosen, M.A.; Hegazy, O.; Timmermans, J.-M.; Heibati, S.; Bossche, P.V.D. An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids. Energy 2017, 134, 1053–1067. [Google Scholar] [CrossRef]
- Farid, A.; Jiang, B.; Muzhikyan, A.; Youcef-Toumi, K. The need for holistic enterprise control assessment methods for the future electricity grid. Renew. Sustain. Energy Rev. 2016, 56, 669–685. [Google Scholar] [CrossRef]
- Zakariazadeh, A.; Jadid, S.; Siano, P. Integrated operation of electric vehicles and renewable generation in a smart distribution system. Energy Convers. Manag. 2015, 89, 99–110. [Google Scholar] [CrossRef]
- Bhattarai, B.P.; Myers, K.S.; Bak-Jensen, B.; de Cerio Mendaza, I.D.; Turk, R.J.; Gentle, J.P. Optimum aggregation of geographically distributed flexible resources in strategic smart-grid/microgrid locations. Electr. Power Energy Syst. 2017, 92, 193–201. [Google Scholar] [CrossRef]
- Knezović, K.; Marinelli, M.; Zecchino, A.; Andersen, P.B.; Traeholt, C. Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration. Energy 2017, 134, 458–468. [Google Scholar] [CrossRef]
- Abdelsamad, S.; Morsi, W.; Sidhu, T. Optimal secondary distribution system design considering plug-inelectric vehicles. Electr. Power Syst. Res. 2016, 130, 266–276. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kalantar, M. Multi types DG expansion dynamic planning in distribution system under stochastic conditions using Covariance Matrix Adaptation Evolutionary Strategy and Monte-Carlo simulation. Energy Convers. Manag. 2014, 87, 455–471. [Google Scholar] [CrossRef]
- Sun, S.; Yang, Q.; Yan, W. A novel Markov-based temporal-SoC analysis for characterizing PEV charging demand. IEEE Trans. Ind. Inform. 2018, 14, 156–166. [Google Scholar] [CrossRef]
- Arias, A.; Granada, M.; Castro, C.A. Optimal probabilistic charging of electric vehicles in distribution systems. IET Electr. Syst. Transp. 2017, 7, 246–251. [Google Scholar] [CrossRef]
- Wu, F.; Sioshansi, R. A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints. Transp. Res. Part B 2017, 102, 55–82. [Google Scholar] [CrossRef]
- Hu, J.; You, S.; Lind, M.; Østergaard, J. Coordinated Charging of Electric Vehicles for Congestion Prevention in the Distribution Grid. IEEE Trans. Smart Grid 2014, 5, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Beaude, O.; Lasaulce, S.; Hennebel, M.; Mohand-Kaci, I. Reducing the Impact of EV Charging Operations on the Distribution Network. IEEE Trans. Smart Grid 2016, 7, 2666–2679. [Google Scholar] [CrossRef]
- Xiang, Y.; Liua, J.; Liu, Y. Optimal active distribution system management considering aggregated plug-in electric vehicles. Electr. Power Syst. Res. 2016, 131, 105–115. [Google Scholar] [CrossRef]
- Sundström, O.; Binding, C. Flexible Charging Optimization for Electric Vehicles Considering Distribution Grid Constraints. IEEE Trans. Smart Grid 2012, 3, 26–37. [Google Scholar] [CrossRef]
- Wang, L.; Sharkh, S.; Chipperfield, A. Optimal decentralized coordination of electric vehicles and renewable generators in a distribution network using A∗ search. Electr. Power Energy Syst. 2018, 98, 474–487. [Google Scholar] [CrossRef]
- Shuai, W.; Maillé, P.; Pelov, A. Charging Electric Vehicles in the Smart City: A Survey of Economy-Driven Approaches. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2089–2106. [Google Scholar] [CrossRef]
- Peng, C.; Zou, J.; Lian, L. Dispatching strategies of electric vehicles participating in frequency regulation on power grid: A review. Renew. Sustain. Energy Rev. 2017, 68, 147–152. [Google Scholar] [CrossRef]
- Pavic, I.; Capuder, T.; Kuzle, I. A Comprehensive Approach for Maximizing Flexibility Benefits of Electric Vehicles. IEEE Syst. J. 2018, 12, 2882–2893. [Google Scholar] [CrossRef]
- Lazarou, S.; Vita, V.; Christodoulou, C.; Ekonomou, L. Calculating operational patterns for electric vehicle charging on a real distribution network based on renewables’ production. Energies 2018, 11, 2400. [Google Scholar] [CrossRef]
- Mojdehi, M.N.; Ghosh, P. An On-Demand Compensation Function for an EV as a Reactive Power Service Provider. IEEE Trans. Veh. Technol. 2016, 65, 4572–4583. [Google Scholar] [CrossRef]
- Daina, N.; Sivakumar, A.; Polak, J.W. Electric vehicle charging choices: Modelling and implications for smart charging services. Transp. Res. Part C 2017, 81, 36–56. [Google Scholar] [CrossRef] [Green Version]
- Weiller, C.; Neely, A. Using electric vehicles for energy services: Industry perspectives. Energy 2014, 77, 194–200. [Google Scholar] [CrossRef]
- Schmidt, J.; Lauven, L.-P.; Ihle, N.; Kolbe, L.M. Demand side integration for electric transport vehicles. Int. J. Energy Sect. Manag. 2015, 9, 471–495. [Google Scholar] [CrossRef]
- Sato, T.; Kammen, D.M.; Duan, B.; Macuha, M.; Zhou, Z.; Wu, J.; Tariq, M.; Asfaw, S.A. Smart Grid Standards Specifications, Requirements and Technologie; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2015. [Google Scholar]
- Green, R.C.; Wang, L.; Alam, M. Applications and Trends of High Performance Computing for Electric Power Systems: Focusing on Smart Grid. IEEE Trans. Smart Grid 2013, 4, 422–431. [Google Scholar] [CrossRef]
- Procopiou, A.T.; Quirós-Tortós, J.; Ochoa, L.F. HPC-Based Probabilistic Analysis of LV Networks with EVs: Impacts and Control. IEEE Trans. Smart Grid 2017, 8, 1479–1487. [Google Scholar] [CrossRef]
- Yazdaninejadi, A.; Nazarpour, D.; Golshannavaz, S. Dual-setting directional over-current relays: An optimal coordination in multiple source meshed distribution networks. Electr. Power Energy Syst. 2017, 86, 163–176. [Google Scholar] [CrossRef]
- Singh, M.; Vishnuvardhan, T.; Srivani, S. Adaptive protection coordination scheme for power networks under penetration of distributed energy resources. IET Gener. Transm. Distrib. 2016, 10, 3919–3929. [Google Scholar] [CrossRef]
- Ates, Y.; Uzunoglu, M.; Karakas, A.; Boynuegri, A.R.; Nadar, A.; Dag, B. Implementation of adaptive relay coordination in distribution systems including distributed generation. J. Clean. Prod. 2016, 112, 2697–2705. [Google Scholar] [CrossRef]
- Chen, C.-R.; Lee, C.-H.; Chang, C.-J. Optimal overcurrent relay coordination in power distribution system using a new approach. Electr. Power Energy Syst. 2013, 45, 217–222. [Google Scholar] [CrossRef]
- Chabanloo, R.M.; Maleki, M.G.; Agah, S.M.M.; Habashi, E.M. Comprehensive coordination of radial distribution network protection in the presence of synchronous distributed generation using fault current limiter. Electr. Power Energy Syst. 2018, 99, 214–224. [Google Scholar] [CrossRef]
- Jalilian, A.; Hagh, M.T.; Hashemi, S.M. An Innovative Directional Relaying Scheme Based on Postfault Current. IEEE Trans. Power Deliv. 2014, 29, 2640–2646. [Google Scholar] [CrossRef]
- Costa, M.H.; Saldanha, R.R.; Ravetti, M.G.; Carrano, E.G. Robust coordination of directional overcurrent relays using a matheuristic algorithm. IET Gener. Transm. Distrib. 2017, 11, 464–474. [Google Scholar] [CrossRef]
- Saleh, K.A.; Zeineldin, H.H.; Al-Hinai, A.; El-Saadany, E.F. Optimal Coordination of Directional Overcurrent Relays Using a New Time–Current–Voltage Characteristic. IEEE Trans. Power Deliv. 2015, 30, 537–544. [Google Scholar] [CrossRef]
- Hussain, M.H.; Rahim, S.R.A.; Musirin, I. Optimal Overcurrent Relay Coordination: A Review. Procedia Eng. 2013, 53, 332–336. [Google Scholar] [CrossRef]
- Corrêa, R.; Cardoso, G., Jr.; de Araújo, O.C.; Mariotto, L. Online coordination of directional overcurrent relays using binaryinteger programming. Electr. Power Syst. Res. 2015, 127, 118–125. [Google Scholar] [CrossRef]
- Ojaghi, M.; Ghahremani, R. Piece–wise Linear Characteristic for Coordinating Numerical Overcurrent Relays. IEEE Trans. Power Deliv. 2017, 32, 145–151. [Google Scholar] [CrossRef]
- Khorramdel, B.; Marzooghi, H.; Samet, H.; Pourahmadi-Nakhli, M.; Raoofat, M. Fault locating in large distribution systems by empirical mode decomposition and core vector regression. Electr. Power Energy Syst. 2014, 58, 215–225. [Google Scholar] [CrossRef]
- Khakimzyanov, E.; Mustafin, R.; Platonov, P. Method of fault location for double line-to-earth faults in distribution networks. Eng. Sci. Technol. Int. J. 2016, 19, 1668–1671. [Google Scholar] [CrossRef]
- Esmaeili, A.; Esmaeili, S.; Hojabri, H. Short-circuit level control through a multiobjective feeder reconfiguration using fault current limiters in the presence of distributed generations. IET Gener. Transm. Distrib. 2016, 10, 3458–3469. [Google Scholar] [CrossRef]
- Jamali, S.; Borhani-Bahabadi, H. Non-communication protection method for meshed and radial distribution networks with synchronous-based DG. Electr. Power Energy Syst. 2017, 93, 468–478. [Google Scholar] [CrossRef]
- Bukhari, S.B.A.; Haider, R.; Zaman, M.S.U.; Oh, Y.-S.; Cho, G.-J.; Kim, C.-H. An interval type-2 fuzzy logic based strategy for microgrid protection. Electr. Power Energy Syst. 2018, 98, 209–218. [Google Scholar] [CrossRef]
- He, J.; Liu, L.; Xu, Y.; Ding, F.; Zhang, D. A two-step protection algorithm for smart distribution systems with DGs. Int. Trans. Electr. Energy Syst. 2018, 28, 1–15. [Google Scholar] [CrossRef]
- Rahman, M.; Isherwood, N.; Oo, A. Multi-agent based coordinated protection systems for distribution feeder fault diagnosis and reconfiguration. Electr. Power Energy Syst. 2018, 97, 106–119. [Google Scholar] [CrossRef]
- Pathirana, A.; Rajapakse, A.; Perera, N. Development of a hybrid protection scheme for active distributionsystems using polarities of current transients. Electr. Power Syst. Res. 2017, 152, 377–389. [Google Scholar] [CrossRef]
- Todorović, I.; Grabić, S.; Ivanović, Z. Grid-connected converter active and reactive power production maximization with respect to current limitations during grid faults. Electr. Power Energy Syst. 2018, 101, 311–322. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Xu, B.-Y.; Crossley, P.; Li, L. Positive-sequence-fault-component-based blocking pilot protection for closed-loop distribution network with underground cable. Electr. Power Energy Syst. 2018, 94, 57–66. [Google Scholar] [CrossRef]
- Li, S.; Rodolakis, A.J.; El-Arroudi, K.; Joós, G. Islanding protection of multiple distributed resources under adverse islanding conditions. IET Gener. Transm. Distrib. 2016, 10, 1901–1912. [Google Scholar] [CrossRef]
- Fazio, A.R.D.; Russo, M.; Valeri, S. A New Protection System for Islanding Detection in LV Distribution Systems. Energies 2015, 8, 3775–3793. [Google Scholar] [CrossRef] [Green Version]
- Strasser, T.; Andrén, F.P.; Lauss, G.; Bründlinger, R.; Brunner, H.; Moyo, C.; Seitl, C.; Rohjans, S.; Lehnhoff, S.; Palensky, P.; et al. Towards holistic power distribution system validation and testing—An overview and discussion of different possibilities. Elektrotech. Informationstechnik 2017, 134, 71–77. [Google Scholar] [CrossRef]
- Faruque, M.D.O.; Strasser, T.; Lauss, G.; Jalili-Marandi, V.; Forsyth, P.; Dufour, C.; Dinavahi, V.; Monti, A.; Kotsampopoulos, P.; Martinez, J.A.; et al. Applications of Real-Time Simulation Technologies in Power and Energy Systems. IEEE Power Energy Technol. Syst. J. 2015, 2, 103–115. [Google Scholar] [Green Version]
- Faruque, M.O.; Strasser, T.; Lauss, G.; Jalili-Marandi, V.; Forsyth, P.; Dufour, C.; Dinavahi, V.; Monti, A.; Kotsampopoulos, P.; Martinez, J.A.; et al. Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis. IEEE Power Energy Technol. Syst. J. 2015, 2, 63–73. [Google Scholar] [CrossRef]
- Lauss, G.F.; Faruque, M.O.; Schoder, K.; Dufour, C.; Viehweider, A.; Langston, J. Characteristics and Design of Power Hardware-in-the-Loop Simulations for Electrical Power Systems. IEEE Trans. Ind. Electron. 2016, 63, 406–417. [Google Scholar] [CrossRef]
- Guo, F.; Herrera, L.; Murawski, R.; Inoa, E.; Wang, C.-L.; Beauchamp, P.; Ekici, E.; Wang, J. Comprehensive Real-Time Simulation of the Smart Grid. IEEE Trans. Ind. Appl. 2013, 49, 899–908. [Google Scholar] [CrossRef]
- RTDS Technologies Inc. Winnipeg, MB, Canada. Available online: https://www.rtds.com (accessed on 5 November 2017).
- OPAL-RT Technologies Inc. Montreal, QC, Canada. Available online: http://www.opal-rt.com (accessed on 5 November 2017).
- MathWorks Inc., Natick, MA, USA. Available online: https://www.mathworks.com (accessed on 5 November 2017).
- xPC Target. MathWorks Inc., Natick, MA, USA. Available online: http://www.mathworks.com (accessed on 5 November 2017).
- dSPACE GmbH. Paderborn, Germany. Available online: http://www.dspace.com (accessed on 5 November 2017).
- ADI RTS. Applied Dynamics International Inc., Arbor, MI, USA. Available online: http://www.adi.com (accessed on 5 November 2017).
- Tyhoon HIL GmbH. Zürich, Switzerland. Available online: https://www.typhoon-hil.com (accessed on 5 November 2017).
- Lu, B.; Wu, X.; Figueroa, H.; Monti, A. A low-cost real-time hardware in- the-loop testing approach of power electronics controls. IEEE Trans. Ind. Electron. 2007, 54, 919–931. [Google Scholar] [CrossRef]
- Adler, F.; Benigni, A.; Stagge, H.; Monti, A.; Doncker, R.D. A new versatile hardware platform for digital real-time simulation: Verification and evaluation. In Proceedings of the IEEE 13th Workshop Control Modeling Power Electronics (COMPEL), Kyoto, Japan, 10–13 June 2012. [Google Scholar]
- Cintuglu, M.H.; Mohammed, O.A.; Akkaya, K.; Uluagac, A.S. A Survey on Smart Grid Cyber-Physical System Testbeds. IEEE Commun. Surv. Tutor. 2017, 19, 446–464. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Ramos, G.A.; Lwin, M.; Siratarnsophon, P.; Santoso, S. Embedded Real-Time Simulation Platform for Power Distribution Systems. IEEE Access 2017, 6, 6243–6256. [Google Scholar] [CrossRef]
- Craciun, O.; Florescu, A.; Munteanu, I.; Bratcu, A.I.; Bacha, S.; Radu, D. Hardware-in-the-loop simulation applied to protection devices testing. Electr. Power Energy Syst. 2014, 54, 55–64. [Google Scholar] [CrossRef]
- Stifter, M.; Cordova, J.; Kazmi, J.; Arghandeh, R. Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications. Energies 2018, 11, 876. [Google Scholar] [CrossRef]
- Magro, M.C.; Giannettonib, M.; Pincetic, P.; Vanti, M. Real time simulator for microgrids. Electr. Power Syst. Res. 2018, 160, 381–396. [Google Scholar] [CrossRef]
- Papaspiliotopoulos, V.A.; Korres, G.N.; Kleftakis, V.A.; Hatziargyriou, N.D. Hardware-In-the-Loop Design and Optimal Setting of Adaptive Protection Schemes for Distribution Systems with Distributed Generation. IEEE Trans. Power Deliv. 2017, 32, 393–400. [Google Scholar] [CrossRef]
- Piesciorovsky, E.C.; Schulz, N.N. Comparison of non-real-time and real-time simulators with relays in-the-loop for adaptive overcurrent protection. Electr. Power Syst. Res. 2017, 143, 657–668. [Google Scholar] [CrossRef]
- Vatu, R.; Ceaki, O.; Mancasi, M.; Porumb, R.; Seritan, G. Power quality issues produced by embedded storage technologies in smart grid environment. In Proceedings of the 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 1–4 September 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Vatu, R.; Ceaki, O.; Golovanov, N.; Porumb, R.; Serițan, G. Analysis of storage technologies with smart grid framework. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014; pp. 1–5, ISBN 978-1-4799-6556-4. [Google Scholar] [CrossRef]
- Ekonomou, L.; Fotis, G.; Vita, V.; Mladenov, V. Distributed generation islanding effect on distribution networks and end user loads using the master-slave islanding method. J. Power Energy Eng. 2016, 4, 1–24. [Google Scholar] [CrossRef]
- Hoke, A.; Nelson, A.; Chakraborty, S.; Bell, F.; McCarty, M. An Islanding Detection Test Platform for Multi-Inverter Islands using Power HIL. IEEE Trans. Ind. Electron. 2018, 65, 7944–7953. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Santos, R.C.; Grilo, A.P.; de Melo Vieira, J.C. Hardware Implementation and Real-Time Evaluation of an ANN-Based Algorithm for Anti-Islanding Protection of Distributed Generators. IEEE Trans. Ind. Electron. 2018, 65, 5051–5059. [Google Scholar] [CrossRef]
- Schneider, P.; Mather, B.A.; Pal, B.C.; Ten, C.W.; Shirek, G.J.; Zhu, H.; Fuller, J.C.; Pereira, J.L.R.; Ochoa, L.F.; de Araujo, L.R.; et al. Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders. IEEE Trans. Power Syst. 2018, 33, 3181–3188. [Google Scholar] [CrossRef]
- IEEE PES AMPS DSAS Test Feeder Working Group. Available online: http://sites.ieee.org/pes-testfeeders/resources/ (accessed on 15 May 2018).
- EPRI’s Green Circuit Project Database. Available online: http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/EPRITestCircuits/ (accessed on 10 September 2018).
- Mateo, C.; Prettico, G.; Gómez, T.; Cossent, R.; Gangale, F.; Frías, P.; Fulli, G. European representative electricity distribution networks. Electr. Power Energy Syst. 2018, 99, 273–280. [Google Scholar] [CrossRef]
- Taxonomy of Prototypical Feeders (Pacific Northwest National Laboratory). Available online: http://sourceforge.net/p/gridlab-d/code/HEAD/tree/Taxonomy_Feeders/ (accessed on 5 July 2018).
- Lazarou, S.; Vita, V.; Ekonomou, L. An open data repository for steady state analysis of a 100-node electricity distribution network with moderate connection of renewable energy sources. Data Brief 2018, 16, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Hooshyar, H.; Mahmood, F.; Vanfretti, L.; Baudette, M. Specification, implementation, and hardware-in-the-loop real-time simulation of an active distribution grid. Sustain. Energy Grids Netw. 2015, 3, 36–51. [Google Scholar] [CrossRef]
- Ntalampiras, S. Fault Diagnosis for Smart Grids in Pragmatic Conditions. IEEE Trans. Smart Grids 2018, 9, 1964–1971. [Google Scholar] [CrossRef]
- 14 Bus Power Flow Test Case. Available online: https://www2.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm (accessed on 15 May 2018).
- 30 Bus Power Flow Test Case. Available online: https://www2.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm (accessed on 15 May 2018).
- 17 Generator Dynamic Test Case. Available online: https://www2.ee.washington.edu/research/pstca/dyn17/pg_tcadd17.htm (accessed on 15 May 2018).
- 30 Bus Dynamic Test Case. Available online: https://www2.ee.washington.edu/research/pstca/dyn30/pg_tcadyn30.htm (accessed on 15 May 2018).
- Xyngi, I.; Popov, M. An Intelligent Algorithm for the Protection of Smart Power Systems. IEEE Trans. Smart Grid 2013, 4, 1541–1548. [Google Scholar] [CrossRef]
- Data in Brief. Available online: https://www.journals.elsevier.com/data-in-brief/ (accessed on 15 May 2018).
Reference | Description | Research Method | Contribution |
---|---|---|---|
[1,14,31,36] | Explanation of the barriers and the benefits for increasing the penetration of electric vehicles, evaluation of the impact | Analysis, scenarios’ development | Qualifying and quantifying the importance of electric vehicle barriers for their connection to the grid |
[15,16,17,18,19,20,33,37,38,39,40,41,42,43,44,45,46,47,48,49,50] | Network planning for increasing penetration of electric vehicles | Power flow analysis, probabilistic and optimization methods (Monte Carlo), novel approaches for depicting the electricity network | Proposals for advanced network planning to accommodate increasing connection of electric vehicles |
[32,34,35,51,52,53,54,55] | Electric vehicles charging through aggregators and standardization | Analysis, market principles, optimization methods, Virtual Power Plants, scenarios’ analysis | Principles for development of aggregators for EVs charging, standardization |
[56,57] | High-performance computing for distribution grid and electric vehicles simulation | Probabilistic methods | Simulation of extended operational scenarios |
Reference | Description | Research Method | Contribution |
---|---|---|---|
[2,3,4,5,6,7,8,9,10,11,12,13] | Meshed networks in the bibliography | Analysis of the state-of-the-art situation | Review of the state-of-the-art on the subject |
[21,22,23,24,25,26,27,28,29,30] | Protection types and their characteristics | Analysis of the state-of-the-art situation | Description of active, passive and hybrid systems, differential, distance, overcurrent and voltage protection |
[58,59,60,61,73,74,75] | Protection methods for covering meshed networks, intermittent renewables and electric vehicles | Fuzzy logic, multi-agent, traditional protection procedures | Applying alternative methods for protection |
[62,63,71,77] | Protection procedures for covering meshed networks, intermittent renewables and electric vehicles | Fault current limiters, converter operation | Applying alternative methods for protection |
[64,65,66,67,68,76,78,79] | Protection procedures for covering meshed networks, intermittent renewables and electric vehicles | Metaheuristic methods and relevant optimization, overcurrent relays | Applying alternative methods for protection |
[69,70] | Protection procedures for covering meshed networks, intermittent renewables and electric vehicles | Fault location | Enhancing the understanding of the operation of the system |
Reference | Description | Research Method | Contribution |
---|---|---|---|
[81,82,83,84,85] | Real-time simulators types, applications and evolvement | Bibliographical review | Technology and its advancements review |
[79,80,95,96,97,98,99,100,101] | Real-time simulator applications for network protection | Hardware-in-the-loop simulations | Equipment testing and development for networks’ protection |
[102,103,104] | Real-time simulator applications for islanding protection | Hardware-in-the-loop simulations | Equipment testing and development for islanding protection |
[86,87,88,89,90,91,92,93,94] | Real Time Digital Simulators manufacturers and other developers | N/A | Availability of specialized solutions for each application, including smart grids’ protection |
Reference | Description | Contribution |
---|---|---|
[113,114,115,116] | IEEE networks | Distribution grids for research purposes |
[108,109,110,111] | Laboratories’ networks | Distribution grids for research purposes |
[118,119] | Journals for publishing datasets | Availability of datasets, including networks for research purposes |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarou, S.; Vita, V.; Ekonomou, L. Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles. Energies 2018, 11, 3106. https://doi.org/10.3390/en11113106
Lazarou S, Vita V, Ekonomou L. Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles. Energies. 2018; 11(11):3106. https://doi.org/10.3390/en11113106
Chicago/Turabian StyleLazarou, Stavros, Vasiliki Vita, and Lambros Ekonomou. 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles" Energies 11, no. 11: 3106. https://doi.org/10.3390/en11113106
APA StyleLazarou, S., Vita, V., & Ekonomou, L. (2018). Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles. Energies, 11(11), 3106. https://doi.org/10.3390/en11113106