Marine Current Energy Converters to Power a Reverse Osmosis Desalination Plant
Abstract
:1. Introduction
1.1. Uppsala Marine Current Energy Converter
Power from a Vertical Axis Turbine
1.2. Reverse Osmosis Desalination
1.3. Freshwater Demand and Marine Currents by the WIO
2. Case Study: Western Indian Ocean
2.1. Estimating Water Speed and Determining Turbine Placement
2.2. Suggested System of Marine Current Driven Desalination
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shannak, S.; Mabrey, D.; Vittorio, M. Moving from theory to practice in the water–energy–food nexus: An evaluation of existing models and frameworks. Water-Energy Nexus 2018, 1, 17–25. [Google Scholar] [CrossRef]
- Virgili, F.; Brown, H.; Pankratz, T. IDA Desalination Yearbook 2017–2018; Media Analytics Ltd.: Oxford, UK, 2017. [Google Scholar]
- Ghaffour, N.; Bundschuh, J.; Mahmoudi, H.; Goosen, M.F.A. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 2015, 356, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Abdelkareem, M.A.; Assad, M.E.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Pouyfaucon, A.B.; García-Rodríguez, L. Solar thermal-powered desalination: A viable solution for a potential market. Desalination 2018, 435, 60–69. [Google Scholar] [CrossRef]
- Kershman, S.A.; Rheinlander, J.; Gabler, H. Seawater reverse osmosis powered by reneawable energy sources—Hybrid wind/photovoltaic power/grid power supply for small-scale desalination in Libya. Desalination 2002, 153, 17–23. [Google Scholar] [CrossRef]
- Li, Z.; Siddiqi, A.; Anadon, L.D.; Narayanamurti, V. Towards sustainability in water-energy nexus: Ocean energy for seawater desalination. Renew. Sustain. Energy Rev. 2018, 82, 3833–3847. [Google Scholar] [CrossRef]
- Leijon, J.; Boström, C. Freshwater production from the motion of ocean waves—A review. Desalination 2018, 435, 161–171. [Google Scholar] [CrossRef]
- Davies, P.A. Wave-powered desalination: resource assessment and review of technology. Desalination 2005, 186, 97–109. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, Y. Theoretical study on multi-effect solar distillation system driven by tidal energy. Desalination 2009, 249, 566–570. [Google Scholar] [CrossRef]
- Segura, E.; Morales, R.; Somolinos, J.A.; López, A. Techno-economic challenges of tidal energy conversion systems: Current status and trends. Renew. Sustain. Energy Rev. 2017, 77, 536–550. [Google Scholar] [CrossRef]
- Segura, E.; Morales, R.; Somolinos, J.A. A strategic analysis of tidal current energy conversion systems in the European Union. Appl. Energy 2018, 212, 527–551. [Google Scholar] [CrossRef]
- Zhou, Z.; Benbouzid, M.; Charpentier, J.F.; Scuiller, F.; Tang, T. Developments in large marine current turbine technologies—A review. Renew. Sustain. Energy Rev. 2017, 71, 852–858. [Google Scholar] [CrossRef]
- Ng, K.W.; Lam, W.H.; Ng, K.C. 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies 2013, 6, 1497–1526. [Google Scholar] [CrossRef] [Green Version]
- Lundin, S.; Forslund, J.; Carpman, N.; Grabbe, M.; Yuen, K.; Apelfröjd, S.; Goude, A.; Leijon, M. The Söderfors Project: Experimental Hydrokinetic Power Station Deployment and First Results. In Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC), Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Ekergård, B. Full Scale Applications of Permanent Magnet Electromagnetic Energy Converters—From Nd2Fe14B to Ferrite. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2013. [Google Scholar]
- Yuen, K.; Lundin, S.; Grabbe, M.; Lalander, E.; Goude, A.; Leijon, M. The Söderfors Project: Construction of an Experimental Hydrokinetic Power Station. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011. [Google Scholar]
- Grabbe, M.; Yuen, K.; Apelfröjd, S.; Leijon, M. Efficiency of a directly driven generator for hydrokinetic energy conversion. Adv. Mech. Eng. 2013, 5. [Google Scholar] [CrossRef]
- Ribrant, J.; Bertling, L.M. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Trans. Energy Convers. 2007, 22, 167–173. [Google Scholar] [CrossRef]
- Lundin, S.; Forslund, J.; Goude, A.; Grabbe, M.; Yuen, K.; Leijon, M. Experimental demonstration of performance of a vertical axis marine current turbine in a river. J. Renew. Sustain. Energy 2016, 8, 1–6. [Google Scholar] [CrossRef]
- Forslund, J.; Lundin, S.; Thomas, K.; Leijon, M. Experimental results of a DC bus voltage level control for a load-controlled marine current energy converter. Energies 2015, 8, 4572–4586. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- UN-Water. Water for a Sustainable World, The United Nations World Water Development Report 2015; UN-Water: Geneva, Switzerland, 2015. [Google Scholar]
- Voutchkov, N. Energy use for membrane seawater desalination—Current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Shemer, H.; Semiat, R. Sustainable RO desalination—Energy demand and environmental impact. Desalination 2017, 424, 10–16. [Google Scholar] [CrossRef]
- Lai, W.; Ma, Q.; Lu, H.; Weng, S.; Fan, J.; Fang, H. Effects of wind intermittence and fluctuation on reverse osmosis desalination process and solution strategies. Desalination 2016, 395, 17–27. [Google Scholar] [CrossRef]
- Missimer, T.M.; Sinha, S.; Ghaffour, N. Strategic Aquifer Storage and Recovery of Desalinated Water to Achieve Water Security in the GCC/MENA Region. Int. J. Environ. Sustain. 2012, 1, 87–99. [Google Scholar] [CrossRef]
- Loutatidou, S.; Liosis, N.; Pohl, R.; Ouarda, T.B.M.J.; Arafat, H.A. Wind-powered desalination for strategic water storage: Techno-economic assessment of concept. Desalination 2017, 408, 36–51. [Google Scholar] [CrossRef]
- WHO/UNICEF JMP. 2018. Available online: https://washdata.org/data (accessed on 6 August 2018).
- Comte, J.C.; Cassidy, R.; Obando, J.; Robins, N.; Ibrahim, K.; Melchioly, S.; Mjemah, I.; Shauri, H.; Bourhane, A.; Mohamed, I.; et al. Challenges in groundwater resource management in coastal aquifers of East Africa: Investigations and lessons learnt in the Comoros Islands, Kenya and Tanzania. J. Hydrol. Reg. Stud. 2016, 5, 179–199. [Google Scholar] [CrossRef]
- Francisco, F.; Leijon, J.; Boström, C.; Engström, J.; Sundberg, J. Wave Power as Solution for Off-Grid Water Desalination Systems: Resource Characterization for Kilifi-Kenya. Energies 2018, 11, 1004. [Google Scholar] [CrossRef]
- Hammar, L.; Ehnberg, J.; Mavume, A.; Cuamba, B.C.; Molander, S. Renewable ocean energy in the Western Indian Ocean. Renew. Sustain. Energy Rev. 2012, 16, 4938–4950. [Google Scholar] [CrossRef]
- Williams, A.; Nthontho, M.; Chowdhury, S.; Chowdhury, S.P. Modelling South African Agulhas marine Current Profile data for electricity generation. In Proceedings of the 2012 IEEE International Conference on Power System Technology (POWERCON), Auckland, New Zealand, 30 October–2 November 2012; pp. 1–7. [Google Scholar]
- Marais, E.; Chowdhury, S.; Chowdhury, S.P. Theoretical resource assessment of marine current energy in the Agulhas Current along South Africa’s East coast. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- Dyachuk, E.; Goude, A.; Lalander, E.; Bernhoff, H. Influence of Incoming Flow Direction on Spacing between Vertical Axis Marine Current Turbines Placed in a Row. In Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 1–6 July 2012; pp. 1–7. [Google Scholar]
- Leijon, J.; Engström, J.; Dolguntseva, I.; Boström, C. Investigation of wave powered desalination for sustaianble freshwater production. In Proceedings of the International Desalination Association World Congress, São Paulo, Brazil, 15–20 October 2017. [Google Scholar]
0–50 m from Coastline | 51–100 m from Coastline | 101–200 m from Coastline | |
---|---|---|---|
0–50 m depth | 0.9 | 2.0 | 3.2 |
50–100 m depth | - | 1.0 | 1.6 |
100–200 m depth | - | - | 0.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leijon, J.; Forslund, J.; Thomas, K.; Boström, C. Marine Current Energy Converters to Power a Reverse Osmosis Desalination Plant. Energies 2018, 11, 2880. https://doi.org/10.3390/en11112880
Leijon J, Forslund J, Thomas K, Boström C. Marine Current Energy Converters to Power a Reverse Osmosis Desalination Plant. Energies. 2018; 11(11):2880. https://doi.org/10.3390/en11112880
Chicago/Turabian StyleLeijon, Jennifer, Johan Forslund, Karin Thomas, and Cecilia Boström. 2018. "Marine Current Energy Converters to Power a Reverse Osmosis Desalination Plant" Energies 11, no. 11: 2880. https://doi.org/10.3390/en11112880
APA StyleLeijon, J., Forslund, J., Thomas, K., & Boström, C. (2018). Marine Current Energy Converters to Power a Reverse Osmosis Desalination Plant. Energies, 11(11), 2880. https://doi.org/10.3390/en11112880