Pore Structure Characterization and the Controlling Factors of the Bakken Formation
Abstract
:1. Introduction
2. Samples and Methods
2.1. Geological Background and Samples
2.2. Experimental Methods
3. Results
3.1. Mineralogical Compositions and Geochemical Characteristics
3.2. Pore Structure Characteristics
4. Discussion
4.1. Correlation of the Pore Structure Parameters
4.2. Control of Mineral Composition on Pore Structure
4.3. Relationship between TOC Content and Pore Structure
4.4. Relationship between Thermal Maturity and Pore Structure
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, K.; Ostadhassan, M.; Zhou, J.; Gentzis, T.; Rezaee, R. Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel 2017, 209, 567–578. [Google Scholar] [CrossRef]
- Wood, D.A.; Hazra, B. Characterization of organic-rich shales for petroleum exploration & exploitation: A review—Part 1: Bulk properties, multi-scale geometry and gas adsorption. J. Earth Sci. 2017, 28, 739–757. [Google Scholar] [CrossRef]
- Mendhe, V.A.; Mishra, S.; Khangar, R.G.; Kamble, A.D.; Kumar, D.; Varma, A.K.; Singh, H.; Kumar, S.; Bannerjee, M. Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications to shale gas reservoir. J. Earth Sci. 2017, 28, 897–916. [Google Scholar] [CrossRef]
- Jia, C.Z.; Zou, C.N.; Li, J.Z.; Li, D.H.; Zheng, M. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Pet. Sin. 2012, 33, 343–350. [Google Scholar]
- Zhao, P.; Ma, H.; Rasouli, V.; Liu, W.; Cai, J.; Huang, Z. An improved model for estimating the TOC in shale formations. Mar. Pet. Geol. 2017, 83, 174–183. [Google Scholar] [CrossRef]
- Dullien, F.A. Porous Media: Fluid Transport and Pore Structure; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Cai, J.; Wei, W.; Hu, X.; Liu, R.; Wang, J. Fractal characterization of dynamic fracture network extension in porous media. Fractals 2017, 25, 1750023. [Google Scholar] [CrossRef]
- Verweij, J.M. Hydrocarbon Migration Systems Analysis; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Kong, L.; Ostadhassan, M.; Li, C.; Tamimi, N. Pore characterization of 3D-printed gypsum rocks: A comprehensive approach. J. Mater. Sci. 2018, 53, 5063–5078. [Google Scholar] [CrossRef]
- Cai, J.; Yu, B.; Zou, M.; Mei, M. Fractal analysis of invasion depth of extraneous fluids in porous media. Chem. Eng. Sci. 2010, 65, 5178–5186. [Google Scholar] [CrossRef]
- International Union of Pure and Applied Chemistry. Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: recommendations for the characterization of porous solids (technical report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Bai, B.; Zhu, R.; Wu, S.; Yang, W.; Gelb, J.; Gu, A.; Zhang, X.; Su, L. Multi-scale method of Nano (Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin. Pet. Explor. Dev. 2013, 40, 354–358. [Google Scholar] [CrossRef]
- Tüysüz, H.; Lehmann, C.W.; Bongard, H.; Tesche, B.; Schmidt, R.; Schüth, F. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J. Am. Chem. Soc. 2008, 130, 11510–11517. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Wang, Z.L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175. [Google Scholar] [CrossRef]
- Wang, X.; Hou, J.; Liu, Y.; Zhao, P.; Ma, K.; Wang, D.; Ren, X.; Yan, L. Overall PSD and fractal characteristics of tight oil reservoirs: A case study of Lucaogou Formation in Junggar Basin, China. Fractals 2019, 27, 1940005. [Google Scholar] [CrossRef]
- Wang, X.; Hou, J.; Song, S.; Wang, D.; Gong, L.; Ma, K.; Liu, Y.; Li, Y.; Yan, L. Combining pressure-controlled porosimetry and rate-controlled porosimetry to investigate the fractal characteristics of full-range pores in tight oil reservoirs. J. Pet. Sci. Eng. 2018, 171, 353–361. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, N.; Sima, L.; Meng, F.; Guo, Y. Pore structure characterization of the tight reservoir: systematic integration of mercury injection and nuclear magnetic resonance. Energy Fuels 2018, 32, 7471–7484. [Google Scholar] [CrossRef]
- Zhao, P.; Sun, Z.; Luo, X.; Wang, Z.; Mao, Z.; Wu, Y.; Xia, P. Study on the response mechanisms of nuclear magnetic resonance (NMR) log in tight oil reservoirs. Chin. J. Geophys. 2016, 29, 1927–1937. [Google Scholar]
- Kruk, M.; Jaroniec, M.; Sayari, A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 1997, 13, 6267–6273. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Hu, Q.; Sun, M.; Hu, D.; Yi, J. Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin (China). Fuel 2017, 197, 91–99. [Google Scholar] [CrossRef]
- Ferrero, G.A.; Preuss, K.; Fuertes, A.B.; Sevilla, M.; Titirici, M.M. The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. J. Mater. Chem. A 2016, 4, 2581–2589. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Díaz, L.E.; Aragon-Quiroz, J.A.; Ruíz-Cardona, Y.S.; Domínguez-Monterroza, A.R.; Trujillo, C.A. Fractal analysis at mesopore scale of modified USY zeolites by nitrogen adsorption: A classical thermodynamic approach. Microporous Mesoporous Mater. 2017, 237, 260–267. [Google Scholar] [CrossRef]
- Saidian, M.; Prasad, M. Effect of mineralogy on nuclear magnetic resonance surface relaxivity: A case study of Middle Bakken and Three Forks formations. Fuel 2015, 161, 197–206. [Google Scholar] [CrossRef]
- Wang, L.; Fu, Y.; Li, J.; Sima, L.; Wu, Q.; Jin, W.; Wang, T. Mineral and pore structure characteristics of gas shale in Longmaxi formation: A case study of Jiaoshiba gas field in the southern Sichuan Basin, China. Arab. J. Geosci. 2016, 9, 733. [Google Scholar] [CrossRef]
- Su, S.; Jiang, Z.; Shan, X.; Zhang, C.; Zou, Q.; Li, Z.; Zhu, R. The effects of shale pore structure and mineral components on shale oil accumulation in the Zhanhua Sag, Jiyang Depression, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2018, 165, 365–374. [Google Scholar] [CrossRef]
- Webster, R.L. Petroleum source rocks and stratigraphy of the Bakken Formation in North Dakota. AAPG Bull. 1984, 68, 953. [Google Scholar]
- Meissner, F.F. Petroleum geology of the Bakken Formation Williston Basin, North Dakota and Montana. In 1991 Guidebook to Geology and Horizontal Drilling of the Bakken Formation: Billings; Hanson, W.B., Ed.; Montana Geological Society: Billings, MT, USA, 1991. [Google Scholar]
- Smith, M.G.; Bustin, R.M. Lithofacies and paleoenvironments of the Upper Devonian and Lower Mississippian Bakken Formation, Williston Basin. Bull. Can. Pet. Geol. 1996, 44, 495–507. [Google Scholar]
- Pitman, J.K.; Price, L.C.; LeFever, J.A. Diagenesis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality in the Middle Member (No. 1653); U.S. Department of the Interior, U.S. Geological Survey: Denver, CO, USA, 2001.
- Havens, J.B.; Batzle, M.L. Minimum horizontal stress in the Bakken Formation. In Proceedings of the 45th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 26–29 June 2011. [Google Scholar]
- Sayers, C.M.; Dasgupta, S. Elastic anisotropy of the Middle Bakken Formation. Geophysics 2014, 80, D23–D29. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M. Quantification of the microstructures of Bakken shale reservoirs using multi-fractal and lacunarity analysis. J. Nat. Gas Sci. Eng. 2017, 39, 62–71. [Google Scholar] [CrossRef]
- Li, H.; Hart, B.; Dawson, M.; Radjef, E. Characterizing the Middle Bakken: Laboratory measurement and rock typing of the Middle Bakken Formation. In Proceedings of the Unconventional Resources Technology Conference, San Antonio, TX, USA, 20–22 July 2015. [Google Scholar]
- Liu, K.; Ostadhassan, M.; Kong, L. Fractal and multifractal characteristics of pore throats in the Bakken Shale. Transp. Porous Med. 2018, 1–20. [Google Scholar] [CrossRef]
- Sonnonberg, S.A.; Jin, H.; Sarg, J.F. Bakken mudrocks of the Williston Basin, world class source rocks. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 11–13 April 2011. [Google Scholar]
- Zhao, P.; Ostadhassan, M.; Shen, B.; Liu, W.; Abarghani, A.; Liu, K.; Luo, M.; Cai, J. Estimating thermal maturity of organic-rich shale from well logs: Case studies of two shale plays. Fuel 2019, 235, 1195–1206. [Google Scholar] [CrossRef]
- Li, C.; Ostadhassan, M.; Gentzis, T.; Kong, L.; Carvajal-Ortiz, H.; Bubach, B. Nanomechanical characterization of organic matter in the Bakken formation by microscopy-based method. Mar. Pet. Geol. 2018, 96, 128–138. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E.J. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Abarghani, A.; Ostadhassan, M.; Gentzis, T.; Carvajal-Ortiz, H.; Bubach, B. Organofacies study of the Bakken source rock in North Dakota, USA, based on organic petrology and geochemistry. Int. J. Coal Geol. 2018, 188, 79–93. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.; Pérez-Ramírez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Chen, D.; Wang, Z.; Xu, Z.; Chen, J.; Liu, L.; Huyan, Y.; Liu, Y. Pore characteristic analysis of a lacustrine shale: A case study in the Ordos Basin, NW China. Mar. Pet. Geol. 2016, 73, 554–571. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Liu, R.; Wang, Q. Characteristics and controlling factors of micropore structures of the Longmaxi Shale in the Jiaoshiba area, Sichuan Basin. Nat. Gas Ind. B 2014, 1, 165–171. [Google Scholar] [CrossRef]
- Wei, X.; Liu, R.; Zhang, T.; Liang, X. Micro-pores structure characteristics and development control factors of shale gas reservoir: A case of Longmaxi formation in XX area of southern Sichuan and northern Guizhou. Nat. Gas Geosci. 2013, 24, 1048–1059. [Google Scholar]
- Liu, Y.; Zhang, B.; Dong, Y.; Qu, Z.; Hou, J. The determination of variogram in the presence of horizontal wells—An application to a conglomerate reservoir modeling, East China. J. Pet. Sci. Eng. 2018. [Google Scholar] [CrossRef]
- Zhai, Z.; Wang, X.; Li, Z.; Li, J.; Liu, Q. The influence of shale sedimentary environments on oil and gas potential: Examples from China and North America. Geol. J. China Univ. 2016, 22, 690–697. [Google Scholar]
Sample | Members | Ro (%) | TOC (wt%) | Mineral Composition (wt%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Clay | Quartz | Pyrite | Potassium Feldspar | Albite | Dolomite | Calcite | ||||
#1 | Upper Bakken | 0.94 | 13.57 | 44.87 | 39.57 | 4.50 | 6.11 | 3.35 | 1.60 | - |
#2 | Upper Bakken | 0.62 | 7.41 | 42.29 | 45.08 | 4.33 | 5.39 | 1.57 | 1.34 | - |
#3 | Upper Bakken | 0.88 | 9.14 | 36.24 | 48.90 | 4.32 | 6.65 | 3.34 | 0.23 | 0.32 |
#4 | Upper Bakken | 0.93 | 13.33 | 24.07 | 63.59 | 5.73 | 3.58 | 2.20 | 0.68 | 0.15 |
#5 | Middle Bakken | - | - | 27.45 | 31.43 | 3.61 | 7.57 | 5.89 | 15.56 | 8.49 |
#6 | Middle Bakken | - | - | 36.18 | 34.49 | 5.77 | 4.25 | 4.25 | 5.24 | 9.82 |
#7 | Middle Bakken | - | - | 26.16 | 43.28 | 2.65 | 1.31 | 2.61 | 16.44 | 7.55 |
#8 | Middle Bakken | - | - | 13.27 | 33.14 | 3.31 | 2.66 | 19.54 | 20.72 | 7.36 |
#9 | Lower Bakken | 0.82 | 6.58 | 49.23 | 38.36 | 5.06 | 2.05 | 3.85 | 1.12 | 0.33 |
#10 | Lower Bakken | 0.85 | 11.34 | 53.92 | 38.04 | 2.29 | 2.16 | 2.63 | 0.31 | 0.65 |
#11 | Lower Bakken | 1.11 | 15.86 | 36.63 | 50.27 | 4.58 | 3.20 | 4.05 | 0.74 | 0.45 |
#12 | Lower Bakken | 0.73 | 8.59 | 50.59 | 38.44 | 4.57 | 4.60 | 1.65 | 0.15 | - |
Type | Samples | Pore Morphology | Hysteresis Loop | Pore Model |
---|---|---|---|---|
I | 3, 10 | Pores closed at one end | No | Cylindrical pores closed at one end, wedge-shaped pores |
II | 1, 4, 5, 6, 7, 8, 9, 11, 12 | Open pores | Yes | Cylindrical pores, parallel-plate pores |
III | 2 | Ink bottle-like pores | Yes | Ink bottle-like pores |
Sample | Micropore Volume (cm3/kg) | Mesopore Volume (cm3/kg) | Macropore Volume (cm3/kg) | Total Pore Volume (cm3/kg) | BET Specific Surface Area (m2/g) | Average Pore Diameter (nm) |
---|---|---|---|---|---|---|
#1 | 0.48 | 3.06 | 1.07 | 4.61 | 2.886 | 4.67 |
#2 | 0.57 | 4.52 | 1.06 | 6.15 | 1.328 | 9.842 |
#3 | 0.42 | 2.17 | 0.84 | 3.43 | 2.435 | 4.221 |
#4 | 0.43 | 2.53 | 0.61 | 3.57 | 3.107 | 3.598 |
#5 | 0.56 | 6.38 | 6.58 | 13.52 | 1.276 | 25.716 |
#6 | 3.4 | 18.34 | 3.21 | 24.95 | 8.67 | 9.053 |
#7 | 0.66 | 7.6 | 7.11 | 15.37 | 1.449 | 23.166 |
#8 | 1.57 | 15.14 | 3.53 | 20.24 | 3.55 | 14.256 |
#9 | 0.37 | 1.79 | 0.83 | 2.99 | 1.156 | 8.804 |
#10 | 0.38 | 1.76 | 0.55 | 2.69 | 2.159 | 3.765 |
#11 | 0.52 | 2.67 | 0.75 | 3.94 | 2.522 | 4.549 |
#12 | 0.38 | 2.24 | 1.33 | 3.95 | 1.406 | 8.864 |
Ranges for the Coefficient of Determination (R2) | Degree of Correlation |
---|---|
0.9–1 | Strong |
0.7–0.9 | High |
0.4–0.7 | Medium |
0.2–0.4 | Low |
0.0–0.2 | Not exist |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shen, B.; Yang, Z.; Zhao, P. Pore Structure Characterization and the Controlling Factors of the Bakken Formation. Energies 2018, 11, 2879. https://doi.org/10.3390/en11112879
Liu Y, Shen B, Yang Z, Zhao P. Pore Structure Characterization and the Controlling Factors of the Bakken Formation. Energies. 2018; 11(11):2879. https://doi.org/10.3390/en11112879
Chicago/Turabian StyleLiu, Yuming, Bo Shen, Zhiqiang Yang, and Peiqiang Zhao. 2018. "Pore Structure Characterization and the Controlling Factors of the Bakken Formation" Energies 11, no. 11: 2879. https://doi.org/10.3390/en11112879
APA StyleLiu, Y., Shen, B., Yang, Z., & Zhao, P. (2018). Pore Structure Characterization and the Controlling Factors of the Bakken Formation. Energies, 11(11), 2879. https://doi.org/10.3390/en11112879