Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption
Abstract
:1. Introduction
2. Related Works—Non-Intrusive Load Monitoring (NILM) and Its Value Added
3. Research Methodology and Research Problem Formulation
- Insights from artificial intelligence (AI) and cognitive computing and the value added they bring into the process of designing, managing and utilizing smart energy systems
- Insights from smart cities and smart villages research, as well as considerations specific to the debate on sustainability, including the SDGs, and their value added consistent with an emphasis on wellbeing and inclusive socio-economic growth and development
- Insights from the broad field pertinent to energy supply and demand and related questions the value added if ICT-driven coherent and effective policymaking
4. Overview of Empirical Testing and Analysis
4.1. Datasets of Electric Appliances
4.2. Features Extraction
4.3. Optimal Design of GA-SVM-MKL Classifier
5. Performance Evaluation and Comparisons
5.1. Performance Evaluation of GA-SVM-MKL Classifier
5.2. Comparisons to Single Kernel Based SVM Classifier
5.3. Feasibility Study of Assignment a Class Label for Different Modes of Electric Appliance
5.4. Tunable Mode for GA-SVM-MKL Classifier
5.5. Comparisons to Related Works
- Standardization of Smart Energy data sets;
- Interoperability in the Energy Smart Grid;
- Adoption of machine learning techniques for the provision and measurement of Behavioral analytics;
- Integration of Smart Grid approaches in Energy Sector with a new era of Key Performance Indicators (KPIs) and Energy Analytics;
- Large scale experimentation with millions of electrical devices for pattern analysis;
- Optimization of electricity consumption on real time basis based on smart energy data;
- Ontological Engineering and Semantic Annotation of smart energy data.
6. Conclusions
- Insights from artificial intelligence (AI) and cognitive computing and the value added they bring into the process of smart systems [32]
Author Contributions
Funding
Conflicts of Interest
Appendix A
No. | P | kNILM | No. | P | kNILM | No. | P | kNILM | No. | P | kNILM | No. | P | kNILM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | k1 + k1 | 2 | 1 | k1 + k2 | 3 | 1 | k1 + k3 | 4 | 1 | k1 + k4 | 5 | 1 | k1 + k5 |
6 | 1 | k2 + k2 | 7 | 1 | k2 + k3 | 8 | 1 | k2 + k4 | 9 | 1 | k2 + k5 | 10 | 1 | k3 + k3 |
11 | 1 | k3 + k4 | 12 | 1 | k3 + k5 | 13 | 1 | k4 + k4 | 14 | 1 | k4 + k5 | 15 | 1 | k5 + k5 |
16 | 2 | ck1 | 17 | 2 | ck2 | 18 | 2 | ck3 | 19 | 2 | ck4 | 20 | 2 | ck5 |
21 | 3 | k1 + c | 22 | 3 | k2 + c | 23 | 3 | k3 + c | 24 | 3 | k4 + c | 25 | 3 | k5 + c |
26 | 4 | k1k1 | 27 | 4 | k1k2 | 28 | 4 | k1k3 | 29 | 4 | k1k4 | 30 | 4 | k1k5 |
31 | 4 | k2k2 | 32 | 4 | k2k3 | 33 | 4 | k2k4 | 34 | 4 | k2k5 | 35 | 4 | k3k3 |
36 | 4 | k3k4 | 37 | 4 | k3k5 | 38 | 4 | k4k4 | 39 | 4 | k4k5 | 40 | 4 | k5k5 |
41 | 1.2 | c1k1 + c2k2 | 42 | 1.2 | ck1 + k2 | 43 | 1.2 | k1 + ck2 | 44 | 1.2 | c1k1 + c2k3 | 45 | 1.2 | ck1 + k3 |
46 | 1.2 | k1 + ck3 | 47 | 1.2 | c1k1 + c2k4 | 48 | 1.2 | ck1 + k4 | 49 | 1.2 | k1 + ck4 | 50 | 1.2 | c1k1 + c2k5 |
51 | 1.2 | ck1 + k5 | 52 | 1.2 | k1 + ck5 | 53 | 1.2 | c1k2 + c2k3 | 54 | 1.2 | ck2 + k3 | 55 | 1.2 | k2 + ck3 |
56 | 1.2 | c1k2 + c2k4 | 57 | 1.2 | ck2 + k4 | 58 | 1.2 | k2 + ck4 | 59 | 1.2 | c1k2 + c2k5 | 60 | 1.2 | ck2 + k5 |
61 | 1.2 | k2 + ck5 | 62 | 1.2 | c1k3 + c2k4 | 63 | 1.2 | ck3 + k4 | 64 | 1.2 | k3 + ck4 | 65 | 1.2 | c1k3 + c2k5 |
66 | 1.2 | ck3 + k5 | 67 | 1.2 | k3 + ck5 | 68 | 1.2 | c1k4 + c2k5 | 69 | 1.2 | ck4 + k5 | 70 | 1.2 | k4 + ck5 |
71 | 1.3 | k1 + k1 + c | 72 | 1.3 | k1 + k2 + c | 73 | 1.3 | k1 + k3 + c | 74 | 1.3 | k1 + k4 + c | 75 | 1.3 | k1 + k5 + c |
76 | 1.3 | k2 + k2 + c | 77 | 1.3 | k2 + k3 + c | 78 | 1.3 | k2 + k4 + c | 79 | 1.3 | k2 + k5 + c | 80 | 1.3 | k3 + k3 + c |
81 | 1.3 | k3 + k4 + c | 82 | 1.3 | k3 + k5 + c | 83 | 1.3 | k4 + k4 + c | 84 | 1.3 | k4 + k5 + c | 85 | 1.3 | k5 + k5 + c |
86 | 1.4 | k1k1 + k1 | 87 | 1.4 | k1k1 + k2 | 88 | 1.4 | k1k1 + k3 | 89 | 1.4 | k1k1 + k4 | 90 | 1.4 | k1k1 + k5 |
91 | 1.4 | k1k2 + k1 | 92 | 1.4 | k1k2 + k2 | 93 | 1.4 | k1k2 + k3 | 94 | 1.4 | k1k2 + k4 | 95 | 1.4 | k1k2 + k5 |
96 | 1.4 | k1k3 + k1 | 97 | 1.4 | k1k3 + k2 | 98 | 1.4 | k1k3 + k3 | 99 | 1.4 | k1k3 + k4 | 100 | 1.4 | k1k3 + k5 |
101 | 1.4 | k1k4 + k1 | 102 | 1.4 | k1k4 + k2 | 103 | 1.4 | k1k4 + k3 | 104 | 1.4 | k1k4 + k4 | 105 | 1.4 | k1k4 + k5 |
106 | 1.4 | k1k5 + k1 | 107 | 1.4 | k1k5 + k2 | 108 | 1.4 | k1k5 + k3 | 109 | 1.4 | k1k5 + k4 | 110 | 1.4 | k1k5 + k5 |
111 | 1.4 | k2k2 + k1 | 112 | 1.4 | k2k2 + k2 | 113 | 1.4 | k2k2 + k3 | 114 | 1.4 | k2k2 + k4 | 115 | 1.4 | k2k2 + k5 |
116 | 1.4 | k2k3 + k1 | 117 | 1.4 | k2k3 + k2 | 118 | 1.4 | k2k3 + k3 | 119 | 1.4 | k2k3 + k4 | 120 | 1.4 | k2k3 + k5 |
121 | 1.4 | k2k4 + k1 | 122 | 1.4 | k2k4 + k2 | 123 | 1.4 | k2k4 + k3 | 124 | 1.4 | k2k4 + k4 | 125 | 1.4 | k2k4 + k5 |
126 | 1.4 | k2k5 + k1 | 127 | 1.4 | k2k5 + k2 | 128 | 1.4 | k2k5 + k3 | 129 | 1.4 | k2k5 + k4 | 130 | 1.4 | k2k5 + k5 |
131 | 1.4 | k3k3 + k1 | 132 | 1.4 | k3k3 + k2 | 133 | 1.4 | k3k3 + k3 | 134 | 1.4 | k3k3 + k4 | 135 | 1.4 | k3k3 + k5 |
136 | 1.4 | k3k4 + k1 | 137 | 1.4 | k3k4 + k2 | 138 | 1.4 | k3k4 + k3 | 139 | 1.4 | k3k4 + k4 | 140 | 1.4 | k3k4 + k5 |
141 | 1.4 | k3k5 + k1 | 142 | 1.4 | k3k5 + k2 | 143 | 1.4 | k3k5 + k3 | 144 | 1.4 | k3k5 + k4 | 145 | 1.4 | k3k5 + k5 |
146 | 1.4 | k4k4 + k1 | 147 | 1.4 | k4k4 + k2 | 148 | 1.4 | k4k4 + k3 | 149 | 1.4 | k4k4 + k4 | 150 | 1.4 | k4k4 + k5 |
151 | 1.4 | k4k5 + k1 | 15yh72 | 1.4 | k4k5 + k2 | 153 | 1.4 | k4k5 + k3 | 154 | 1.4 | k4k5 + k4 | 155 | 1.4 | k4k5 + k5 |
156 | 1.4 | k5k5 + k1 | 157 | 1.4 | k5k5 + k2 | 158 | 1.4 | k5k5 + k3 | 159 | 1.4 | k5k5 + k4 | 160 | 1.4 | k5k5 + k5 |
161 | 2.3 | c1k1(k1 + c2) | 162 | 2.3 | c1k1(k2 + c2) | 163 | 2.3 | c1k1(k3 + c2) | 164 | 2.3 | c1k1(k4 + c2) | 165 | 2.3 | c1k1(k5 + c2) |
166 | 2.3 | c1k2(k1 + c2) | 167 | 2.3 | c1k2(k2 + c2) | 168 | 2.3 | c1k2(k3 + c2) | 169 | 2.3 | c1k2(k4 + c2) | 170 | 2.3 | c1k2(k5 + c2) |
171 | 2.3 | c1k3(k1 + c2) | 172 | 2.3 | c1k3(k2 + c2) | 173 | 2.3 | c1k3(k3 + c2) | 174 | 2.3 | c1k3(k4 + c2) | 175 | 2.3 | c1k3(k5 + c2) |
176 | 2.3 | c1k4(k1 + c2) | 177 | 2.3 | c1k4(k2 + c2) | 178 | 2.3 | c1k4(k3 + c2) | 179 | 2.3 | c1k4(k4 + c2) | 180 | 2.3 | c1k4(k5 + c2) |
181 | 2.3 | c1k5(k1 + c2) | 182 | 2.3 | c1k5(k2 + c2) | 183 | 2.3 | c1k5(k3 + c2) | 184 | 2.3 | c1k5(k4 + c2) | 185 | 2.3 | c1k5(k5 + c2) |
186 | 2.4 | ck1(k1k2) | 187 | 2.4 | ck1(k1k3) | 188 | 2.4 | ck1(k1k4) | 189 | 2.4 | ck1(k1k5) | 190 | 2.4 | ck1(k2k3) |
191 | 2.4 | ck1(k2k4) | 192 | 2.4 | ck1(k2k5) | 193 | 2.4 | ck1(k3k4) | 194 | 2.4 | ck1(k3k5) | 195 | 2.4 | ck1(k4k5) |
196 | 2.4 | ck2(k1k2) | 197 | 2.4 | ck2(k1k3) | 198 | 2.4 | ck2(k1k4) | 199 | 2.4 | ck2(k1k5) | 200 | 2.4 | ck2(k2k3) |
201 | 2.4 | ck2(k2k4) | 202 | 2.4 | ck2(k2k5) | 203 | 2.4 | ck2(k3k4) | 204 | 2.4 | ck2(k3k5) | 205 | 2.4 | ck2(k4k5) |
206 | 2.4 | ck3(k1k2) | 207 | 2.4 | ck3(k1k3) | 208 | 2.4 | ck3(k1k4) | 209 | 2.4 | ck3(k1k5) | 210 | 2.4 | ck3(k2k3) |
211 | 2.4 | ck3(k2k4) | 212 | 2.4 | ck3(k2k5) | 213 | 2.4 | ck3(k3k4) | 214 | 2.4 | ck3(k3k5) | 215 | 2.4 | ck3(k4k5) |
216 | 2.4 | ck4(k1k2) | 217 | 2.4 | ck4(k1k3) | 218 | 2.4 | ck4(k1k4) | 219 | 2.4 | ck4(k1k5) | 220 | 2.4 | ck4(k2k3) |
221 | 2.4 | ck4(k2k4) | 222 | 2.4 | ck4(k2k5) | 223 | 2.4 | ck4(k3k4) | 224 | 2.4 | ck4(k3k5) | 225 | 2.4 | ck4(k4k5) |
226 | 2.4 | ck5(k1k2) | 227 | 2.4 | ck5(k1k3) | 228 | 2.4 | ck5(k1k4) | 229 | 2.4 | ck5(k1k5) | 230 | 2.4 | ck5(k2k3) |
231 | 2.4 | ck5(k2k4) | 232 | 2.4 | ck5(k2k5) | 233 | 2.4 | ck5(k3k4) | 234 | 2.4 | ck5(k3k5) | 235 | 2.4 | ck5(k4k5) |
236 | 3.4 | (k1 + c)k1k2 | 237 | 3.4 | (k1 + c)k1k3 | 238 | 3.4 | (k1 + c)k1k4 | 239 | 3.4 | (k1 + c)k1k5 | 240 | 3.4 | (k1 + c)k2k3 |
241 | 3.4 | (k1 + c)k2k4 | 242 | 3.4 | (k1 + c)k2k5 | 243 | 3.4 | (k1 + c)k3k4 | 244 | 3.4 | (k1 + c)k3k5 | 245 | 3.4 | (k1 + c)k4k5 |
246 | 3.4 | (k2 + c)k1k2 | 247 | 3.4 | (k2 + c)k1k3 | 248 | 3.4 | (k2 + c)k1k4 | 249 | 3.4 | (k2 + c)k1k5 | 250 | 3.4 | (k2 + c)k2k3 |
251 | 3.4 | (k2 + c)k2k4 | 252 | 3.4 | (k2 + c)k2k5 | 253 | 3.4 | (k2 + c)k3k4 | 254 | 3.4 | (k2 + c)k3k5 | 255 | 3.4 | (k2 + c)k4k5 |
256 | 3.4 | (k3 + c)k1k2 | 257 | 3.4 | (k3 + c)k1k3 | 258 | 3.4 | (k3 + c)k1k4 | 259 | 3.4 | (k3 + c)k1k5 | 260 | 3.4 | (k3 + c)k2k3 |
261 | 3.4 | (k3 + c)k2k4 | 262 | 3.4 | (k3 + c)k2k5 | 263 | 3.4 | (k3 + c)k3k4 | 264 | 3.4 | (k3 + c)k3k5 | 265 | 3.4 | (k3 + c)k4k5 |
266 | 3.4 | (k4 + c)k1k2 | 267 | 3.4 | (k4 + c)k1k3 | 268 | 3.4 | (k4 + c)k1k4 | 269 | 3.4 | (k4 + c)k1k5 | 270 | 3.4 | (k4 + c)k2k3 |
271 | 3.4 | (k4 + c)k2k4 | 272 | 3.4 | (k4 + c)k2k5 | 273 | 3.4 | (k4 + c)k3k4 | 274 | 3.4 | (k4 + c)k3k5 | 275 | 3.4 | (k4 + c)k4k5 |
276 | 3.4 | (k5 + c)k1k2 | 277 | 3.4 | (k5 + c)k1k3 | 278 | 3.4 | (k5 + c)k1k4 | 279 | 3.4 | (k5 + c)k1k5 | 280 | 3.4 | (k5 + c)k2k3 |
281 | 3.4 | (k5 + c)k2k4 | 282 | 3.4 | (k5 + c)k2k5 | 283 | 3.4 | (k5 + c)k3k4 | 284 | 3.4 | (k5 + c)k3k5 | 285 | 3.4 | (k5 + c)k4k5 |
No. | Performance (%) | No. | Performance (%) | No. | Performance (%) | No. | Performance (%) | No. | Performance (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Se | Sp | OA | Se | Sp | OA | Se | Sp | OA | Se | Sp | OA | Se | Sp | OA | |||||
1 | 71.8 | 72.3 | 72.1 | 2 | 73.1 | 72.7 | 72.9 | 3 | 75.3 | 76.3 | 75.8 | 4 | 76.4 | 75.9 | 76.2 | 5 | 72.9 | 73.6 | 73.3 |
6 | 72.4 | 72.7 | 72.6 | 7 | 75.7 | 76.4 | 76.1 | 8 | 78.5 | 78.8 | 78.7 | 9 | 75.7 | 76.1 | 75.9 | 10 | 74.8 | 75.4 | 75.1 |
11 | 79.3 | 80.1 | 79.7 | 12 | 76.9 | 77.8 | 77.4 | 13 | 76.5 | 77.1 | 76.8 | 14 | 77.1 | 76.2 | 76.7 | 15 | 75.4 | 74.2 | 74.8 |
16 | 73.4 | 72.9 | 73.2 | 17 | 74.9 | 75.3 | 75.1 | 18 | 75.9 | 76.1 | 76 | 19 | 78.2 | 78.8 | 78.5 | 20 | 76.2 | 75.8 | 76 |
21 | 71.9 | 72.6 | 72.3 | 22 | 74.6 | 75.1 | 74.9 | 23 | 75.3 | 76.3 | 75.8 | 24 | 76.7 | 77.3 | 77 | 25 | 76.8 | 76.0 | 76.4 |
26 | 70.8 | 71.5 | 71.2 | 27 | 72.6 | 72.8 | 72.7 | 28 | 73.6 | 73.4 | 73.5 | 29 | 75.7 | 76.3 | 76 | 30 | 73.3 | 72.9 | 73.1 |
31 | 70.3 | 71.9 | 71.1 | 32 | 75.1 | 74.5 | 74.8 | 33 | 78.2 | 77.6 | 77.9 | 34 | 75.3 | 76.8 | 76.1 | 35 | 72.9 | 73.7 | 73.3 |
36 | 77.4 | 78.4 | 77.9 | 37 | 76.4 | 77.5 | 77.0 | 38 | 76.3 | 75.6 | 76.0 | 39 | 76.8 | 75.3 | 76.1 | 40 | 72.8 | 73.1 | 73.0 |
41 | 80.3 | 81.4 | 80.9 | 42 | 79.4 | 78.8 | 79.1 | 43 | 79.5 | 78.5 | 79 | 44 | 82.7 | 83.7 | 83.2 | 45 | 79.4 | 78.6 | 79 |
46 | 80.4 | 81.1 | 80.8 | 47 | 84.3 | 85.1 | 84.7 | 48 | 81.8 | 82.3 | 82.1 | 49 | 82.4 | 82.9 | 82.7 | 50 | 81.5 | 82.4 | 82.0 |
51 | 78.6 | 79.5 | 79.1 | 52 | 80.1 | 81.4 | 80.8 | 53 | 83.9 | 82.9 | 83.4 | 54 | 82.7 | 81.6 | 82.2 | 55 | 83.5 | 84.2 | 83.9 |
56 | 85.6 | 84.9 | 85.3 | 57 | 84.5 | 84.9 | 84.7 | 58 | 85.3 | 86.2 | 85.8 | 59 | 84.3 | 83.6 | 84.0 | 60 | 82.5 | 83.1 | 82.8 |
61 | 83.5 | 84.0 | 83.8 | 62 | 86.8 | 87.2 | 87 | 63 | 85.7 | 86.4 | 86.1 | 64 | 85.3 | 85.7 | 85.5 | 65 | 85.2 | 86.3 | 85.8 |
66 | 84.8 | 84.2 | 84.5 | 67 | 84.3 | 85.4 | 84.9 | 68 | 87.3 | 86.9 | 87.1 | 69 | 85.4 | 86.7 | 86.1 | 70 | 86.1 | 86.6 | 86.4 |
71 | 73.4 | 72.5 | 73.0 | 72 | 74.5 | 73.8 | 74.2 | 73 | 77.1 | 76.2 | 76.7 | 74 | 77.5 | 76.9 | 77.2 | 75 | 75.6 | 74.9 | 75.3 |
76 | 73.8 | 74.5 | 74.2 | 77 | 76.3 | 77.1 | 76.7 | 78 | 79.9 | 78.5 | 79.2 | 79 | 77.3 | 78.4 | 77.9 | 80 | 76.3 | 77.6 | 77.0 |
81 | 81.2 | 80.6 | 80.9 | 82 | 78.5 | 79.1 | 78.8 | 83 | 76.8 | 77.7 | 77.3 | 84 | 76.3 | 77.4 | 76.9 | 85 | 76.4 | 75.3 | 75.9 |
86 | 72.4 | 73.4 | 72.9 | 87 | 73.5 | 74.2 | 73.9 | 88 | 74.8 | 75.6 | 75.2 | 89 | 75.6 | 76.2 | 75.9 | 90 | 74.6 | 75.1 | 74.9 |
91 | 74.2 | 73.6 | 73.9 | 92 | 74.1 | 75.9 | 75 | 93 | 74.3 | 74.9 | 74.6 | 94 | 76.3 | 77.4 | 76.9 | 95 | 75.2 | 74.6 | 74.9 |
96 | 74.5 | 75.6 | 75.1 | 97 | 75.3 | 76.2 | 75.8 | 98 | 75.6 | 76.5 | 76.1 | 99 | 77.8 | 78.2 | 78 | 100 | 77.4 | 76.3 | 76.9 |
101 | 75.8 | 76.4 | 76.1 | 102 | 77.4 | 78.4 | 77.9 | 103 | 77.5 | 76.3 | 76.9 | 104 | 80.1 | 79.7 | 79.9 | 105 | 78.4 | 79.6 | 79 |
106 | 76.1 | 75.9 | 76 | 107 | 76.7 | 77.9 | 77.3 | 108 | 75.4 | 76.6 | 76 | 109 | 75.7 | 76.1 | 75.9 | 110 | 74.2 | 75.8 | 75 |
111 | 73.4 | 74.8 | 74.1 | 112 | 75.1 | 74.7 | 74.9 | 113 | 75.1 | 76.3 | 75.7 | 114 | 75.9 | 76.7 | 76.3 | 115 | 76.8 | 75.3 | 76.1 |
116 | 74.8 | 75.6 | 75.2 | 117 | 75.5 | 76.1 | 75.8 | 118 | 77.5 | 76.2 | 76.9 | 119 | 78.1 | 78.9 | 78.5 | 120 | 77.3 | 78.2 | 77.8 |
121 | 75.1 | 75.2 | 75.2 | 122 | 77.4 | 76.7 | 77.1 | 123 | 77.3 | 78.9 | 78.1 | 124 | 79.5 | 78.9 | 79.2 | 125 | 76.3 | 75.8 | 76.1 |
126 | 75.3 | 74.5 | 74.9 | 127 | 76.4 | 77.1 | 76.8 | 128 | 76.1 | 76.4 | 76.3 | 129 | 78.3 | 77.3 | 77.8 | 130 | 76.8 | 75.9 | 76.4 |
131 | 75.4 | 74.6 | 75 | 132 | 75.8 | 76.8 | 76.3 | 133 | 76.2 | 77.3 | 76.8 | 134 | 77.3 | 76.4 | 76.9 | 135 | 76.8 | 76.4 | 76.6 |
136 | 76.4 | 76.2 | 76.3 | 137 | 78.4 | 77.9 | 78.2 | 138 | 78.1 | 79.3 | 78.7 | 139 | 81.2 | 80.4 | 80.8 | 140 | 80.9 | 80.4 | 80.7 |
141 | 76.4 | 75.3 | 75.9 | 142 | 76.8 | 77.4 | 77.1 | 143 | 78.4 | 79.5 | 79.0 | 144 | 79.6 | 80.1 | 79.9 | 145 | 79.9 | 78.9 | 79.4 |
146 | 75.6 | 76.3 | 76.0 | 147 | 76.2 | 76.1 | 76.2 | 148 | 77.5 | 78.4 | 78.0 | 149 | 79.4 | 78.8 | 79.1 | 150 | 77.9 | 78.4 | 78.2 |
151 | 75.6 | 74.8 | 75.2 | 152 | 76.4 | 76.7 | 76.6 | 153 | 75.6 | 75.3 | 75.5 | 154 | 78.6 | 79.1 | 78.9 | 155 | 77.5 | 78.1 | 77.8 |
156 | 74.6 | 73.5 | 74.1 | 157 | 74.9 | 75.8 | 75.4 | 158 | 74.3 | 75.9 | 75.1 | 159 | 77.6 | 75.9 | 76.8 | 160 | 75.3 | 76.3 | 75.8 |
161 | 81.9 | 82.4 | 82.2 | 162 | 81.8 | 82.3 | 82.1 | 163 | 83.6 | 84.6 | 84.1 | 164 | 84.1 | 84.6 | 84.4 | 165 | 83.3 | 84.1 | 83.7 |
166 | 83.4 | 82.7 | 83.1 | 167 | 82.3 | 83.8 | 83.1 | 168 | 83.5 | 84.1 | 83.8 | 169 | 84.8 | 85.7 | 85.3 | 170 | 85.1 | 84.9 | 85 |
171 | 86.1 | 85.7 | 85.9 | 172 | 86.8 | 87.2 | 87 | 173 | 88.9 | 87.5 | 88.2 | 174 | 91.5 | 90.3 | 90.9 | 175 | 91.2 | 90.8 | 91 |
176 | 88.9 | 89.5 | 89.2 | 177 | 88.6 | 89.8 | 89.2 | 178 | 92.1 | 91.5 | 91.8 | 179 | 91.2 | 91.5 | 91.4 | 180 | 90.3 | 90.1 | 90.2 |
181 | 88.5 | 89.2 | 88.9 | 182 | 88.8 | 89.6 | 89.2 | 183 | 88.3 | 89.2 | 88.8 | 184 | 88.4 | 89.7 | 89.1 | 185 | 88.5 | 89.1 | 88.8 |
186 | 83.1 | 82.5 | 82.8 | 187 | 83.4 | 84.1 | 83.8 | 188 | 85.6 | 84.7 | 85.2 | 189 | 83.9 | 84.2 | 84.1 | 190 | 83.9 | 84.5 | 84.2 |
191 | 85.3 | 86.1 | 85.7 | 192 | 83.7 | 84.1 | 83.9 | 193 | 85.2 | 84.6 | 84.9 | 194 | 83.8 | 82.9 | 83.4 | 195 | 84.1 | 83.7 | 83.9 |
196 | 83.4 | 82.7 | 83.1 | 197 | 84.3 | 85.1 | 84.7 | 198 | 86.3 | 85.8 | 86.1 | 199 | 84.8 | 85.7 | 85.3 | 200 | 85.5 | 86.2 | 85.9 |
201 | 85.7 | 86.3 | 86 | 202 | 84.9 | 85.1 | 85 | 203 | 86.1 | 87.3 | 86.7 | 204 | 84.9 | 85.3 | 85.1 | 205 | 85.2 | 86.2 | 85.7 |
206 | 84.5 | 85.1 | 84.8 | 207 | 85.7 | 86.8 | 86.3 | 208 | 86.2 | 86.4 | 86.3 | 209 | 85.9 | 84.8 | 85.4 | 210 | 84.6 | 84.9 | 84.8 |
211 | 85.2 | 86.4 | 85.8 | 212 | 85.7 | 86.5 | 86.1 | 213 | 86.7 | 87.1 | 86.9 | 214 | 86.3 | 87.4 | 86.9 | 215 | 86.7 | 87.2 | 87.0 |
216 | 85.8 | 86.7 | 86.3 | 217 | 88.2 | 87.1 | 87.7 | 218 | 87.8 | 88.5 | 88.2 | 219 | 86.3 | 87.2 | 86.8 | 220 | 85.1 | 86.3 | 85.7 |
221 | 86.6 | 87.3 | 87.0 | 222 | 87.3 | 86.4 | 86.9 | 223 | 88.9 | 88.2 | 88.6 | 224 | 86.7 | 87.5 | 87.1 | 225 | 87.5 | 88.2 | 87.9 |
226 | 85.6 | 86.8 | 86.2 | 227 | 86.3 | 87.3 | 86.8 | 228 | 86.1 | 85.9 | 86 | 229 | 85.4 | 85.8 | 85.6 | 230 | 85.9 | 84.3 | 85.1 |
231 | 84.6 | 85.1 | 84.9 | 232 | 86.1 | 87.4 | 86.8 | 233 | 87.1 | 86.4 | 86.8 | 234 | 86.3 | 87.8 | 87.1 | 235 | 85.2 | 86.3 | 85.8 |
236 | 83.4 | 84.9 | 84.2 | 237 | 83.3 | 84.1 | 83.7 | 238 | 84.9 | 85.6 | 85.3 | 239 | 84.7 | 85.1 | 84.9 | 240 | 85.8 | 86.6 | 86.2 |
241 | 86.1 | 86.7 | 86.4 | 242 | 85.6 | 84.8 | 85.2 | 243 | 86.7 | 85.9 | 86.3 | 244 | 85.3 | 84.1 | 84.7 | 245 | 85.1 | 85.9 | 85.5 |
246 | 86.1 | 85.3 | 85.7 | 247 | 86.2 | 85.6 | 85.9 | 248 | 87.1 | 86.3 | 86.7 | 249 | 86.2 | 85.9 | 86.1 | 250 | 86.1 | 86.8 | 86.5 |
251 | 87.2 | 86.4 | 86.8 | 252 | 86.7 | 85.7 | 86.2 | 253 | 87.8 | 88.3 | 88.1 | 254 | 86.7 | 86.5 | 86.6 | 255 | 86.3 | 87.3 | 86.8 |
256 | 86.4 | 87.3 | 86.9 | 257 | 86.9 | 85.8 | 86.4 | 258 | 86.3 | 87.3 | 86.8 | 259 | 87.1 | 86.3 | 86.7 | 260 | 87.5 | 88.1 | 87.8 |
261 | 86.9 | 87.6 | 87.3 | 262 | 87.4 | 88.1 | 87.8 | 263 | 89.4 | 88.4 | 88.9 | 264 | 87.4 | 86.7 | 87.1 | 265 | 87.4 | 87.9 | 87.7 |
266 | 86.3 | 87.4 | 86.9 | 267 | 86.9 | 87.5 | 87.2 | 268 | 88.2 | 87.1 | 87.7 | 269 | 85.7 | 86.4 | 86.1 | 270 | 86.7 | 87.5 | 87.1 |
271 | 87.5 | 86.7 | 87.1 | 272 | 87.4 | 88.3 | 87.9 | 273 | 88.4 | 87.5 | 88.0 | 274 | 88.6 | 89.2 | 88.9 | 275 | 86.9 | 87.2 | 87.1 |
276 | 86.7 | 86.8 | 86.8 | 277 | 87.1 | 86.5 | 86.8 | 278 | 88.5 | 87.5 | 88 | 279 | 86.3 | 87.2 | 86.8 | 280 | 86.5 | 86.8 | 86.7 |
281 | 86.4 | 87.1 | 86.8 | 282 | 86.7 | 87.8 | 87.3 | 283 | 87.5 | 88.6 | 88.1 | 284 | 87.1 | 87.5 | 87.3 | 285 | 86.7 | 87.9 | 87.3 |
References
- Yao, S.L.; Luo, J.J.; Huang, G.; Wang, P. Distinct global warming rates tied to multiple ocean surface temperature changes. Nat. Clim. Chang. 2017, 7, 486. [Google Scholar] [CrossRef]
- Voigt, C.; Lamprecht, R.E.; Marushchak, M.E.; Lind, S.E.; Novakovskiy, A.; Aurela, M.; Martikainen, P.J.; Biasi, C. Warming of subarctic tundra increases emissions of all three important greenhouse gases–carbon dioxide, methane, and nitrous oxide. Glob. Chang. Biol. 2017, 23, 3121–3138. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Saini, L.M. Performance analysis of smart metering for smart grid: An overview. Renew. Sustain. Energy Rev. 2015, 49, 720–735. [Google Scholar] [CrossRef]
- The Smart Meter Revolution Towards a Smarter Future; Telefonica: London, UK, 2014.
- Malvoni, M.; De Giorgi, M.G.; Congedo, P.M. Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data. Neurocomputing 2016, 211, 72–83. [Google Scholar] [CrossRef]
- Alahakoon, D.; Yu, X. Smart electricity meter data intelligence for future energy systems: A survey. IEEE Trans. Ind. Inform. 2016, 12, 425–436. [Google Scholar] [CrossRef]
- Armel, K.C.; Gupta, A.; Shrimali, G.; Albert, A. Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy 2013, 52, 213–234. [Google Scholar] [CrossRef] [Green Version]
- Zoha, A.; Gluhak, A.; Imran, M.A.; Rajasegarar, S. Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 2012, 12, 16838–16866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillis, J.M.; Alshareef, S.M.; Morsi, W.G. Nonintrusive load monitoring using wavelet design and machine learning. IEEE Trans. Smart Grid 2016, 7, 320–328. [Google Scholar] [CrossRef]
- Stankovic, L.; Stankovic, V.; Liao, J.; Wilson, C. Measuring the energy intensity of domestic activities from smart meter data. Appl. Energy 2016, 183, 1565–1580. [Google Scholar] [CrossRef]
- Zhao, B.; Stankovic, L.; Stankovic, V. On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access 2016, 4, 1784–1799. [Google Scholar] [CrossRef]
- Aiad, M.; Lee, P.H. Non-intrusive load disaggregation with adaptive estimations of devices main power effects and two-way interactions. Energy Build. 2016, 130, 131–139. [Google Scholar] [CrossRef]
- Parson, O.; Ghosh, S.; Weal, M.; Rogers, A. An unsupervised training method for non-intrusive appliance load monitoring. Artif. Intell. 2014, 217, 1–19. [Google Scholar] [CrossRef]
- Tsai, M.S.; Lin, Y.H. Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation. Appl. Energy 2012, 96, 55–73. [Google Scholar] [CrossRef]
- Giri, S.; Berges, M. An energy estimation framework for event-based methods in non-intrusive load monitoring. Energy Convers. Manag. 2015, 90, 488–498. [Google Scholar] [CrossRef]
- Kong, S.; Kim, Y.; Ko, R.; Joo, S.K. Home appliance load disaggregation using cepstrum-smoothing-based method. IEEE Trans. Consum. Electron. 2015, 61, 24–30. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Do, K.A.; Ambroise, C. Supervised classification of tissue samples. In Analyzing Microarray Gene Expression Data; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004; pp. 221–251. [Google Scholar]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 532–538. [Google Scholar]
- Ritchie, M.D.; Hahn, L.W.; Roodi, N.; Bailey, L.R.; Dupont, W.D.; Parl, F.F.; Moore, J.H. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 2001, 69, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Deb, K. Multi-Objective, Search Methodologies; Springer: Berlin, Germany, 2014. [Google Scholar]
- Wang, Y.; Cai, Z. Combining Multiobjective Optimization with Differential Evolution to Solve Constrained Optimization Problems. IEEE Trans. Evol. Comput. 2012, 16, 117–134. [Google Scholar] [CrossRef]
- Shim, V.A.; Tan, K.C.; Tang, H. Adaptive Memetic Computing for Evolutionary Multiobjective Optimization. IEEE Trans. Cybern. 2015, 45, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machine. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [PubMed]
- Herbrich, R. Learning Kernel Classifiers Theory and Algorithms; The MIT Press: London, UK, 2002. [Google Scholar]
- Marzband, M.; Sumper, A.; Domínguez-García, J.L.; Gumara-Ferret, R. Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP. Energy Convers. Manag. 2013, 76, 314–322. [Google Scholar] [CrossRef]
- Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.M.; Lightbody, G. Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renew. Energy 2018, 126, 95–106. [Google Scholar] [CrossRef]
- Marzband, M.; Fouladfar, M.H.; Akorede, M.F.; Lightbody, G.; Pouresmaeil, E. Framework for smart transactive energy in home-microgrids considering coalition formation and demand side management. Sustain. Cities Soc. 2018, 40, 136–154. [Google Scholar] [CrossRef]
- Tavakoli, M.; Shokridehaki, F.; Akorede, M.F.; Marzband, M.; Vechiu, I.; Pouresmaeil, E. CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids. Int. J. Electr. Power Energy Syst. 2018, 100, 1–9. [Google Scholar] [CrossRef]
- Marzband, M.; Javadi, M.; Pourmousavi, S.A.; Lightbody, G. An advanced retail electricity market for active distribution systems and home microgrid interoperability based on game theory. Electr. Power Syst. Res. 2018, 157, 187–199. [Google Scholar] [CrossRef]
- Tavakoli, M.; Shokridehaki, F.; Marzband, M.; Godina, R.; Pouresmaeil, E. A Two Stage Hierarchical Control Approach for the Optimal Energy Management in Commercial Building Microgrids Based on Local Wind Power and PEVs. Sustain. Cities Soc. 2018, 41, 332–340. [Google Scholar] [CrossRef]
- Selvakumar, A.I.; Thanushkodi, K. A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans. Power Syst. 2007, 22, 42–51. [Google Scholar] [CrossRef]
- Lytras, M.D.; Raghavan, V.; Damiani, E. Big data and data analytics research: From metaphors to value space for collective wisdom in human decision making and smart machines. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Lytras, M.; Visvizi, A. Who uses smart city services and what to make of it: Toward interdisciplinary smart cities research. Sustainability 2018, 10, 1998. [Google Scholar] [CrossRef]
- Visvizi, A.; Lytras, M.D. Rescaling and refocusing smart cities research: From mega cities to smart villages. J. Sci. Technol. Policy Manag. 2018, 9, 134–145. [Google Scholar] [CrossRef]
- Visvizi, A.; Lytras, M.D. Smart Cities: Issues and Challenges; Elsevier-US: New York, NY, USA, 2019. [Google Scholar]
- Visvizi, A.; Lytras, M.D. Editorial: Policy Making for Smart Cities: Innovation and Social Inclusive Economic Growth for Sustainability. J. Sci. Technol. Policy Manag. 2018, 9, 126–133. [Google Scholar] [CrossRef]
- Sicilia, M.A.; Visvizi, A. Blockchain and OECD data repositories: Opportunities and policymaking implications. Libr. Hi Tech 2018. [Google Scholar] [CrossRef]
- Malvoni, M.; De Giorgi, M.G.; Congedo, P.M. Forecasting of PV Power Generation using weather input data-preprocessing techniques. Energy Procedia 2017, 126, 651–658. [Google Scholar] [CrossRef]
- Gajowniczek, K.; Ząbkowski, T. Two-stage electricity demand modelling using machine learning algorithms. Energies 2017, 10, 1547. [Google Scholar] [CrossRef]
- Singh, S.; Yassine, A. Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting. Energies 2018, 11, 452. [Google Scholar] [CrossRef]
- Gajowniczek, K.; Ząbkowski, T. Short term electricity forecasting based on user behavior using individual smart meter data. Intell. Fuzzy Syst. 2015, 30, 223–234. [Google Scholar] [CrossRef]
Type of Activity | Electric Appliance | Modes | No. of Brands | Maximum No. of Appliances at One Time | Type of Activity | Electric Appliance | Modes | No. of Brands | Maximum No. of Appliances at One Time |
---|---|---|---|---|---|---|---|---|---|
Cooking | Electric stove | 2 | 3 | 2 | Lighting | Fluorescent light | 1 | 2 | 3 |
microwave oven | 3 | 2 | 1 | Light bulb | 1 | 2 | 3 | ||
cooker | 3 | 2 | 1 | LED tube | 1 | 3 | 3 | ||
Home living | Ironbrush | 4 | 2 | 1 | LED light bulb | 1 | 2 | 3 | |
Vacuum cleaner | 1 | 2 | 1 | Computing | Notebook | 1 | 6 | 3 | |
Fan | 3 | 3 | 2 | desktop | 1 | 3 | 3 | ||
Hair dryer | 2 | 3 | 2 | All in one printer and scanner | 1 | 2 | 1 | ||
Electric heater | 2 | 2 | 1 | Mobile charger | 1 | 5 | 3 | ||
Renovation | Electric drill | 1 | 2 | 1 | Audio and video | Radio | 1 | 2 | 1 |
Electric sander | 1 | 2 | 1 | Television | 1 | 2 | 1 |
Method | Se (%) | Sp (%) | OA (%) |
---|---|---|---|
GA-SVM-MKL | 92.1 | 91.5 | 91.8 |
SVM using k1 | 71.6 | 72.2 | 71.9 |
SVM using k2 | 72.3 | 72.8 | 72.6 |
SVM using k3 | 73.5 | 74.2 | 73.9 |
SVM using k4 | 75.9 | 75.3 | 75.6 |
SVM using k5 | 74.9 | 75.1 | 75 |
Scenario (S1 to S4) | Se (%) | Sp (%) | OA (%) |
---|---|---|---|
S1: 20 appliances (Different modes, same class) | 92.1 | 91.5 | 91.8 |
S2: 32 appliances (Different modes, different classes) | 79.6 | 80.0 | 79.8 |
S3: 32 appliances (only cooking related combinations) | 77.4 | 77.1 | 77.3 |
S4: 32 appliances (only home living related combinations) | 75.3 | 76.6 | 76.0 |
Activity | Mode of Classifier | ||||
---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | |
Lighting | ✓ | ✓ | ✓ | ✓ | X |
Cooking | ✓ | ✓ | X | X | X |
Home living | ✓ | ✓ | ✓ | ✓ | X |
Computing | ✓ | ✓ | ✓ | ✓ | X |
Renovating | ✓ | X | ✓ | X | ✓ |
Audio and video | ✓ | ✓ | ✓ | ✓ | X |
Se | Sp and OA (%) of GA-SVM-MKL Classifier | |||||||||
---|---|---|---|---|---|---|---|---|---|
TM 1 | TM 2 | TM 3 | TM 4 | TM 5 | |||||
Se | Sp | Se | Sp | Se | Sp | Se | Sp | Se | Sp |
92.1 | 91.5 | 93.8 | 94.3 | 94.6 | 94.1 | 96.6 | 96.1 | 98.4 | 98.8 |
OA | 91.8 | OA | 94.1 | OA | 94.4 | OA | 96.4 | OA | 98.6 |
Work | Features | Dataset | Cross-Validation | Detection Interval | OA |
---|---|---|---|---|---|
Decision tree and wavelet transform [14] | approximation level and detail level | Four electric appliances—battery charger, compact fluorescent lamp, personal computer and incandescent light bulb (total 864 samples) | No | 0.0167 s (60 Hz) | 96.65% |
Decision tree method [15] | the first increasing edge at the start of the event and the last decreasing edge at the end of the event | Ten Activities—cooking, washing, laundering, cleaning, watching TV, listening to radio, games, computing, hobbies and socializing (unknown sample size) | N/A | 8 s | 59% |
Graph signal processing [16] | Active power edges | Nine electric appliances—416 microwave oven, 311 washer dryer, 61 oven, 330 lighting, 2228 refrigerator, 264 dishwasher, 138 stove, 62 heater and 54 air conditioner | No | 1 min | 77.2% |
Factorial Hidden Markov Model [17] | Factorial main factors | Five electric appliances—90 microwave oven, 121 electric stove, 883 refrigerator, 58 dishwasher and 189 lighting | N/A | 1 min | 70.84% |
Hidden Markov model [18] | log-odds score | Four electric appliances—2228 refrigerator, 416 microwave oven, 311 washing machine and 264 dishwasher | 50-fold | 1 min | N/A |
k-nearest neighbor and artificial neural network [19] | maximum, average and root mean square of the current wave in transient stage | Four electric appliances—27 Fan, 30 Fluorescent light, 19 radio and 18 microwave oven | No | 0.02 s (50 Hz) | 97.87% |
Clustering [20] | real power, reactive power, apparent power and voltage features | Seven electric appliances—800 oven, 56 refrigerator, 452 dishwasher, 65 lighting, 154 washer, 443 microwave oven, 236 dryer | No | 1 min | 77.6% |
Cepstrum-smoothing [21] | Frequency and amplitude of the dominant peaks in the smoothed cepstrum | Six electric appliances—television, computer, monitor, refrigerator, washer and vacuum cleaner (unknown sample size) | N/A | 0.5 s | 96.37% |
Proposed GA-SVM-MKL | Imax, Irms, Iavg, Pact, Papp, Prea and PF | 20 electric appliances—Fluorescent light, light bulb, LED tube, LED light bulb, electric stove, microwave oven, cooker, ironbrush, vacuum cleaner, fan, hair dryer, electric heater, notebook, desktop, all in one printer and scanner, mobile charger, electric drill, electric sander, radio and television (each of 1500 samples) | 10-fold | 0.02 s (50 Hz) | 91.8%, 94.1%, 94.4%, 96.4%, 98.6% for TM1 to TM5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies 2018, 11, 2869. https://doi.org/10.3390/en11112869
Chui KT, Lytras MD, Visvizi A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies. 2018; 11(11):2869. https://doi.org/10.3390/en11112869
Chicago/Turabian StyleChui, Kwok Tai, Miltiadis D. Lytras, and Anna Visvizi. 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption" Energies 11, no. 11: 2869. https://doi.org/10.3390/en11112869
APA StyleChui, K. T., Lytras, M. D., & Visvizi, A. (2018). Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies, 11(11), 2869. https://doi.org/10.3390/en11112869