Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System
Abstract
:1. Introduction
2. Wind–Hydro Power Plant and Power System Description
3. Model Description
3.1. Power System
3.2. Pump Station
3.2.1. Conduits
3.2.2. Hydraulic Machines
3.2.3. Electric Machines
3.3. Variable-Speed Wind Turbines
4. Pump Station Control System
4.1. Variable-Speed Pump Control
4.2. Fixed-Speed Pump Control
5. Simulations and Results
5.1. Normal Operating Conditions
5.2. Abnormal Operating Conditions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a | [m/s] | Wave speed |
ch,i,bh,i,ah,i | Coefficients of pump characteristic function | |
cp,i,bp,i,ap,i | Coefficients of pump characteristic function | |
Dnet | [p.u.] | System damping |
f | [p.u.] | System frequency |
fref | [p.u.] | Reference system frequency (50Hz) |
g | [m/s2] | Gravity acceleration |
Hb | [m] | Base head |
hhr | [p.u.] | Higher reservoir water lever |
hi | [p.u.] | Head at the end of the i-th Γ element of the penstock |
hlr | [p.u.] | Lower reservoir water lever |
hm | [p.u.] | Manifold pressure |
hn,i | [p.u.] | Pumped head by each pump |
hp,i | [p.u.] | Water pressure downstream each pump |
Hwt | [s] | VSWT inertia time |
i | Pump number | |
j | VSWT number | |
Ji | [s] | Rotor pump inertia |
Ki | Integral gain | |
Kp | Proportional gain | |
L | [m] | Penstock length |
Lp,i | [m] | Length of the conduit between manifold and each pump |
Nb | [rpm] | Base rotational speed |
Nbmax | [rpm] | VSP maximum rotational speed |
Nbmin | [rpm] | VSP minimum rotational speed |
Nnom,i | [rpm] | Nominal rotational speed of each pump |
nnom,i | [p.u.] | Nominal rotational speed of each pump |
np,i | [p.u.] | Rotational speed of each pump |
Nsyn | [rpm] | Synchronous speed |
nt | Number of segments of the penstock | |
Pb | [MW] | Base power |
pd | [p.u.] | Power demanded |
pe,i | [p.u.] | Power consumed by each pump |
pe,i0 | [p.u.] | Initial power consumed by each pump |
Pnom,i | [MW] | Nominal power of each pump |
pp,i | [p.u.] | Mechanical power of each pump |
pref,i | [p.u.] | Reference power of each VSP |
pw,j | [p.u.] | Wind power |
Pw | [MW] | VSWT rated power |
Qb | [m3/s] | Base flow in the penstock |
Qb,i | [m3/s] | Base flow of each pump |
qi | [p.u.] | Flow at the end of the i-th Γ element of the penstock |
Qnom,i | [m3/s] | Nominal flow of each pump |
qp,i | [p.u.] | Flow pumped by each pump |
qt | [p.u.] | Flow at the manifold |
r/2 | [p.u.] | Continuous head losses coefficient in the penstock |
rp,i/2 | [p.u.] | Continuous head losses coefficient in each conduit between pump and manifold |
S | [m2] | Penstock section |
snom | Electrical machine slip | |
Sp,i | [m2] | Section of the conduit between manifold and each pump |
Te | [s] | Elastic time (=L/a) |
Ti | [s] | VSWT transfer function constant time |
Tm | [s] | Hydraulic unit mechanical starting time |
Tw | [s] | Penstock water starting time |
Twp,i | [s] | Conduit between manifold and each pump water starting time |
Appendix A. Model Numerical Values
Power System | VSWT | ||
---|---|---|---|
Pb | 11.5 MW | Pw | 2.3 MW |
Dnet | 0.5 p.u. | Ti | 0.4 s |
Tm | 5.91 s | Hwt | 1.971 s |
Qb | Tw | 0.644 s | 0.030 p.u. | ||
---|---|---|---|---|---|
Hb | 665 m | Twp,i (i = 1, 8) | 0.017 s | (i = 1, 8) | 0.002 p.u. |
Te | 2.53 s | Twp,i (i [2, 7]) | 0.032 s | (i [2, 7]) | 0.006 p.u. |
FSP (i [2, 7]) | VSP (i = 1, 8) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pnom,i | 0.5 MW | ah,i | 1.244 | ap | 0.553 | Pnom,i | 1.5 MW | ah,i | 1.169 | ap | 0.524 |
Nnom,i | 2965 rpm | bh,i | 0.500 | bp | 0.638 | Nnom,i | 2973 rpm | bh,i | 0.173 | bp | 0.397 |
Qnom,i | 0.056 | ch,i | −0.737 | cp | −0.190 | Qnom,i | 0.183 | ch,i | −0.333 | cp | 0.080 |
Nsyn | 3.000 rpm | Ji | 0.35 s | Nb | 3.000 rpm | Nsyn | 3.000 rpm | Ji | 0.27 s | Nb | 3.000 rpm |
Kp | 10 1 | Ki | 2 1 |
References
- Pérez-Díaz, J.I.; Chazarra, M.; García-González, J.; Cavazzini, G.; Stoppato, A. Trends and challenges in the operation of pumped-storage hydropower plants. Renew. Sustain. Energy Rev. 2015, 44, 767–784. [Google Scholar] [CrossRef]
- Dursun, B.; Alboyaci, B.; Gokcol, C. Optimal wind-hydro solution for the Marmara region of Turkey to meet electricity demand. Energy 2011, 36, 864–872. [Google Scholar] [CrossRef]
- Ursat, X.; Jacquet-Francillon, H.; Rafai, I. Expérience d’EDF dans l’exploitation des STEP françaises. La Houille Blanche 2012, 3, 32–36. [Google Scholar] [CrossRef]
- Destro, N.; Korpas, M.; Sauterleute, J. Smoothing of offshore wind power variations with Norwegian pumped hydro: Case study. Energy Procedia 2016, 87, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Chelliah, T.; Agarwal, P. Power electronics in hydro electric energy systems—A review. Renew. Sustain. Energy Rev. 2014, 32, 944–959. [Google Scholar] [CrossRef]
- Valavi, M.; Nysveen, A. Variable-Speed Operation of Hydropower Plants: A Look at the Past, Present, and Future. IEEE Ind. Appl. Mag. 2018, 24, 18–27. [Google Scholar] [CrossRef]
- Bessa, R.; Moreira, C.; Silva, B.; Filipe, J.; Fulgencio, N. Role of pump hydro in electric power systems. J. Phys. Conf. Ser. 2017, 813, 012002. [Google Scholar] [CrossRef] [Green Version]
- Kirby, B. Frequency Regulation Basics and Trends; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2004.
- Vasconcelos, H.; Moreira, C.; Madureira, A.; Pecas Lopes, J.; Miranda, V. Advanced Control Solutions for Operating Isolated Power Systems: Examining the Portuguese islands. IEEE Electrif. Mag. 2015, 3, 25–35. [Google Scholar] [CrossRef]
- Rodrigues, E.; Osório, G.; Godina, R.; Bizuayehu, A.; Lujano-Rojas, J.; Catalão, J. Grid code reinforcements for deeper renewable generation in insular energy systems. Renew. Sustain. Energy Rev. 2016, 53, 163–177. [Google Scholar] [CrossRef]
- Martinez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.Á.; Wilhelmi, J.R. Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel. Renew. Energy 2016, 90, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.Á. Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System. Energies 2018, 11, 239. [Google Scholar] [CrossRef]
- Beires, P.; Vasconcelos, M.; Moreira, C.; Peças Lopes, J. Stability of autonomous power systems with reversible hydro powerplants. A study case for large scale renewables integration. Electr. Power Syst. Res. 2018, 158, 1–14. [Google Scholar] [CrossRef]
- Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.Á. Eigen analysis of wind–hydro joint frequency regulation in an isolated power system. Electr. Power Energy Syst. 2018, 103, 511–524. [Google Scholar] [CrossRef]
- Shankar, V.K.A.; Umashankar, S.; Paramasivam, S.; Hanigovszki, N. A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Appl. Energy 2016, 181, 495–513. [Google Scholar] [CrossRef]
- Filipe, J.; Bessa, R.; Moreira, C.; Silva, B. On the Profitability of Variable Speed Pump-Storage-Power in Frequency Restoration Reserve. J. Phys. Conf. Ser. 2017, 813, 012010. [Google Scholar] [CrossRef] [Green Version]
- Chazarra, M.; Pérez-Díaz, J.; García-González, J. Optimal Joint Energy and Secondary Regulation Reserve Hourly Scheduling of Variable Speed Pumped Storage Hydropower Plants. IEEE Trans. Power Syst. 2018, 33, 103–115. [Google Scholar] [CrossRef]
- Lung, J.-K.; Lu, Y.; Hung, W.-L.; Kao, W.-S. Modeling and Dynamic Simulations of Doubly Fed Adjustable-Speed Pumped Storage Units. IEEE Trans. Energy Convers. 2007, 22, 250–258. [Google Scholar] [CrossRef]
- Mercier, T.; Oliver, M.; Dejaeger, E. Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower. J. Phys. Conf. Ser. 2017, 813, 012004. [Google Scholar] [CrossRef] [Green Version]
- Nicolet, C.; Pannatier, Y.; Kawkabani, B.; Schwery, A.; Avellan, F.; Simond, J.-J. Benefits of Variable Speed Pumped Storage Units in Mixed Islanded Power Network during Transient Operation. In Proceedings of the 16th Annual Hydro Conference, Lyon, France, 26–28 October 2009. [Google Scholar]
- Suul, J.A.; Uhlen, K.; Undeland, T. Wind power integration in isolated grids enabled by variable speed pumped storage hydropower plant. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies (ICSET), Singapore, 24–27 November 2008. [Google Scholar]
- Iglesias, G.; Carballo, R. Wave resource in El Hierro—An island towards energy self-sufficiency. Renew. Energy 2011, 36, 689–698. [Google Scholar] [CrossRef]
- Pezic, M.; Cedrés, V.M. Unit commitment in fully renewable, hydro-wind energy systems. In Proceedings of the 2013 10th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 27–31 May 2013. [Google Scholar]
- Platero, C.; Nicolet, C.; Sánchez, J.; Kawkabani, B. Increasing wind power penetration in autonomous power systems through no-flow operation of Pelton turbines. Renew. Energy 2014, 68, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Canary Government. Anuario Energético de Canarias 2016; Consejería de Economía, Industria, Comercio y Conocimiento: Santa Cruz de Tenerife, Spain, 2017.
- Mansoor, S.; Jones, D.; Bradley, F.; Jones, G. Reproducing oscillatory behaviour of a hydroelectric power station by computer simulation. Control Eng. Pract. 2000, 8, 1261–1272. [Google Scholar] [CrossRef]
- O’Sullivan, J.; Power, M.; Flynn, M.; O’Malley, M. Modelling of frequency control in an island system. In Proceedings of the IEEE Power Engineering Society 1999 Winter Meeting, New York, NY, USA, 31 January–4 February 1999. [Google Scholar]
- Pérez-Díaz, J.I.; Sarasúa, J.I.; Wilhelmi, J.R. Contribution of a hydraulic short-circuit pumped-storage power plant to the load–frequency regulation of an isolated power system. Electr. Power Energy Syst. 2014, 62, 199–211. [Google Scholar] [CrossRef]
- Souza, O.H.; Barberi, N.; Santos, A.H.M. Study of hydraulic transients in hydropower plants through simulation of nonlinear model of penstock and hydraulic turbine model. IEEE Trans. Power Syst. 1999, 14, 1269–1272. [Google Scholar] [CrossRef]
- Chaudhry, M. Applied Hydraulic Transients, 2nd ed.; Van Nostrand: New York, NY, USA, 1987. [Google Scholar]
- Andrews, R. An Independent Evaluation of the El Hierro Wind & Pumped Hydro System. 23 February 2017. Available online: http://euanmearns.com/an-independent-evaluation-of-the-el-hierro-wind-pumped-hydro-system/ (accessed on 25 September 2018).
- ENERCON GmbH. ENERCON Product Overview; Technical Report for ENERCON: Bremen, Germany, 2016. [Google Scholar]
- Martínez-Lucas, G.; Pérez-Díaz, J.I.; Chazarra, M.; Sarasúa, J.I.; Cavazzini, G.; Pavesi, G.; Ardizzon, G. Risk of penstock fatigue in pumped-storage power plants operating with variable speed in pumping mode. Renew. Energy 2018, 133, 636–646. [Google Scholar] [CrossRef]
- European Standards EN 50160, Voltage Characteristics of Electricity Supplied by Public Distribution Networks; CEN-CENELEC: Brussels, Belgium, 2007.
- Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez, J.Á.; Wilhemi, J.R. Power-frequency control of hydropower plants with long penstocks in isolated systems with wind generation. Renew. Energy 2015, 83, 245–255. [Google Scholar] [CrossRef] [Green Version]
Demand | Energy Supplied | ||
---|---|---|---|
Hydropower Plant | VSWTs | Diesel Generators | |
58.58 MWh | 2.13 MWh | 28.88 MWh | 27.58 MWh |
100% | 3.63% | 49.29% | 47.07% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarasúa, J.I.; Martínez-Lucas, G.; Platero, C.A.; Sánchez-Fernández, J.Á. Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System. Energies 2018, 11, 2865. https://doi.org/10.3390/en11112865
Sarasúa JI, Martínez-Lucas G, Platero CA, Sánchez-Fernández JÁ. Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System. Energies. 2018; 11(11):2865. https://doi.org/10.3390/en11112865
Chicago/Turabian StyleSarasúa, José Ignacio, Guillermo Martínez-Lucas, Carlos A. Platero, and José Ángel Sánchez-Fernández. 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System" Energies 11, no. 11: 2865. https://doi.org/10.3390/en11112865
APA StyleSarasúa, J. I., Martínez-Lucas, G., Platero, C. A., & Sánchez-Fernández, J. Á. (2018). Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System. Energies, 11(11), 2865. https://doi.org/10.3390/en11112865