Next Article in Journal
Daily Peak Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm
Previous Article in Journal
Energy-Saving Performance of Flap-Adjustment-Based Centrifugal Fan
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessReview
Energies 2018, 11(1), 167; https://doi.org/10.3390/en11010167

A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor

1
Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
2
School of Materials Science and Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
3
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
*
Authors to whom correspondence should be addressed.
Received: 27 November 2017 / Revised: 30 December 2017 / Accepted: 5 January 2018 / Published: 10 January 2018
Full-Text   |   PDF [4007 KB, uploaded 10 January 2018]   |  

Abstract

Based on its unique features including 2D planar geometry, high specific surface area and electron conductivity, graphene has been intensively studied as oxygen reduction reaction (ORR) electrocatalyst and supercapacitor material. On the one hand, graphene possesses standalone electrocatalytic activity. It can also provide a good support for combining with other materials to generate graphene-based electrocatalysts, where the catalyst-support structure improves the stability and performance of electrocatalysts for ORR. On the other hand, graphene itself and its derivatives demonstrate a promising electrochemical capability as supercapacitors including electric double-layer capacitors (EDLCs) and pseudosupercapacitors. A hybrid supercapacitor (HS) is underlined and the advantages are elaborated. Graphene endows many materials that are capable of faradaic redox reactions with an outstanding pseudocapacitance behavior. In addition, the characteristics of graphene-based composite are also utilized in many respects to provide a porous 3D structure, formulate a novel supercapacitor with innovative design, and construct a flexible and tailorable device. In this review, we will present an overview of the use of graphene-based composites for sustainable energy conversion and storage. View Full-Text
Keywords: graphene-based composite; ORR; supercapacitor; electro-chemistry; electric double-layer (EDL) capacitance; pseudocapacitance graphene-based composite; ORR; supercapacitor; electro-chemistry; electric double-layer (EDL) capacitance; pseudocapacitance
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Huo, P.; Zhao, P.; Wang, Y.; Liu, B.; Yin, G.; Dong, M. A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor. Energies 2018, 11, 167.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top