Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting
Abstract
:1. Introduction
2. Design of Flat OFDS
2.1. Array of Spherical Lenses
2.2. Planar Waveguide
2.3. Plastic Optical Fiber Coupling
3. Simulation Results and Discussion
3.1. Optical Efficiency of System
3.2. Lateral Displacement Sun-Tracking Performance
3.3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vu, N.-H.; Shin, S. Optical fiber daylighting system combined with LED lighting and CPV based on stepped thickness waveguide for indoor lighting. J. Opt. Soc. Korea 2016, 20, 488–499. [Google Scholar] [CrossRef]
- Vu, N.-H.; Pham, T.-T.; Shin, S. Modified optical fiber daylighting system with sunlight transportation in free space. Opt. Express 2016, 24, A1528–A1545. [Google Scholar] [CrossRef] [PubMed]
- Krarti, M.; Erickson, P.M.; Hillman, T.C. A simplified method to estimate energy savings of artificial lighting use from daylighting. Build. Environ. 2005, 40, 747–754. [Google Scholar] [CrossRef]
- Volotinen, T.T.; Lingfors, D.H.S. Benefits of glass fibers in solar fiber optic lighting systems. Appl. Opt. 2013, 52, 6685–6695. [Google Scholar] [CrossRef] [PubMed]
- Mayhoub, M.S. Innovative daylighting systems’ challenges: A critical study. Energy Build. 2014, 80, 394–405. [Google Scholar] [CrossRef]
- Sapia, C. Daylighting in buildings: Developments of sunlight addressing by optical fiber. Sol. Energy 2013, 89, 113–121. [Google Scholar] [CrossRef]
- Lingfors, D.; Volotinen, T. Illumination performance and energy saving of a solar fiber optic lighting system. Opt. Express 2013, 21, A642. [Google Scholar] [CrossRef] [PubMed]
- Tsuei, C.-H.; Sun, W.-S.; Kuo, C.-C. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting. Opt. Express 2010, 18 (Suppl. 4), A640–A653. [Google Scholar] [CrossRef] [PubMed]
- PARANS Product Information. Available online: http://www.parans.com/eng/sp3/ (accessed on 14 December 2015).
- HIMAWARI Solar Lighting System. Available online: http://www.himawari-net.co.jp/e_page-index01.html (accessed on 14 December 2015).
- Vu, N.-H.; Shin, S. Cost-effective optical fiber daylighting system using modified compound parabolic concentrators. Sol. Energy 2016, 136, 145–152. [Google Scholar] [CrossRef]
- Vu, N.; Shin, S. A Large Scale Daylighting System Based on a Stepped Thickness Waveguide. Energies 2016, 9, 71. [Google Scholar] [CrossRef]
- Price, J.P.; Giebink, N. Concentrating photovoltaic panels for the rooftop. SPIE Newsroom 2015, 2, 2–4. [Google Scholar] [CrossRef]
- Price, J.S.; Sheng, X.; Meulblok, B.M.; Rogers, J.A.; Giebink, N.C. Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics. Nat. Commun. 2015, 6, 6223. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, R.; Lee, J.; Kim, J. Bio-inspired thin and flat solar concentrator for efficient, wide acceptance angle light collection. Appl. Opt. 2014, 53, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Winston, R.; Gordon, J.M. Planar concentrators near the étendue limit. Opt. Lett. 2005, 30, 2617–2619. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.-C.; Tung, Y.L.; Tien, C.-H. Ultracompact backlight-reversed concentration optics. Appl. Opt. 2009, 48, 4142–4148. [Google Scholar] [CrossRef] [PubMed]
- Vu, N.-H.; Shin, S. Development of daylighting systems with non-imaging concentrator. Proc. SPIE 2015, 9572. [Google Scholar] [CrossRef]
- Karp, J.H.; Ford, J.E. Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide. Proc. SPIE 2009, 7407. [Google Scholar] [CrossRef]
- Bouchard, S.; Thibault, S. GRIN planar waveguide concentrator used with a single axis tracker. Opt. Express 2014, 22, A248–A258. [Google Scholar] [CrossRef] [PubMed]
- Selimoglu, O.; Turan, R. Exploration of the horizontally staggered light guides for high concentration CPV applications. Opt. Express 2012, 20, 19137–19147. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, S.; Thibault, S. Planar waveguide concentrator used with a seasonal tracker. Appl. Opt. 2012, 51, 6848. [Google Scholar] [CrossRef] [PubMed]
- Karp, J.H.; Tremblay, E.J.; Ford, J.E. Planar micro-optic solar concentrator. Opt. Express 2010, 18, 1122–1133. [Google Scholar] [CrossRef] [PubMed]
- Plastic Optical Fiber. Available online: http://www.hktdc.com/suppliers-products/Plastic-Optical-Fiber-Cable/en/1X00K2VZ/2984370/ (accessed on 21 July 2017).
- European Standard: Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places. Available online: https://www.en-standard.eu/csn-en-12464-1-light-and-lighting-lighting-of-work-places-part-1-indoor-work-places/ (accessed on 27 September 2017).
- Cappellini, P.; Pierluigi, C.; Hassan, B. Flat Plastic Optical Fiber and Illumination Apparatus Using Such Fiber. U.S. Pantent No. 2004/0264899 A1, 30 December 2004. [Google Scholar]
POF Technical Specifications | |
---|---|
Attenuation | 0.46 dB/m |
Core/Cladding Diameter | 1.98/2.0 |
Refractive Index: Core/Cladding | 1.492/1.402 |
Minimum Bend Radius | 50 mm |
Spectral Trans. Range | 380–750 nm |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, N.H.; Shin, S. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting. Energies 2017, 10, 1679. https://doi.org/10.3390/en10101679
Vu NH, Shin S. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting. Energies. 2017; 10(10):1679. https://doi.org/10.3390/en10101679
Chicago/Turabian StyleVu, Ngoc Hai, and Seoyong Shin. 2017. "Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting" Energies 10, no. 10: 1679. https://doi.org/10.3390/en10101679
APA StyleVu, N. H., & Shin, S. (2017). Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting. Energies, 10(10), 1679. https://doi.org/10.3390/en10101679