A Method for the Realization of an Interruption Generator Based on Voltage Source Converters
Abstract
:1. Introduction
2. Structure of the Main Circuit in VSCs
2.1. Mathematical Models in an abc Coordinate System
- (1)
- A 3-phase infinite power supply is ideal and symmetrical.
- (2)
- The switch is ideal, and its switching-delay is ignored.
2.2. The Design of AC Side Inductance
- (1)
- The steady-state active transmission capacity index: the inductance voltage should not be greater than 20% of the AC rated voltage.
- (2)
- Transient operation performance: the current variation in a control cycle should be less than 10% of the AC rated current. It reflects the transient condition constraints.
- (3)
- Filtering performance: the total harmonic distortion of current should be less than or equal to 5%.
2.3. The Design of DC Side Capacitor
2.4. Constraint of Disturbance Load
3. Design of the Controller Device
3.1. Dynamic Mathematical Model in dq Coordinate System
3.2. Decoupling Method Based on State Feedback Linearization
3.3. Optimization of Controller Dynamic Performance
4. Analysis of Simulation Case
4.1. Parameters of Simulation Case
4.2. Verification of Controller Performance
4.3. Simulation Research
5. Experimental Results and Analyses
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Luís, R.; Silva, J.F.; Quadrado, J.C. Output Voltage Quality Evaluation of Stand-alone Four-Leg Inverters Using Linear and Non-Linear Controllers. Energies 2017, 10, 504. [Google Scholar] [CrossRef]
- Yao, W.; Jiang, L.; Wen, J.; Wu, Q.; Cheng, S. Wide-area Damping Controller for Power System Interarea Oscillations: A Networked Predictive Control Approach. IEEE Tran. Control Syst. Technol. 2015, 23, 27–36. [Google Scholar] [CrossRef]
- Pinto, R.; Mariano, S.; Calado, M.; de Souza, J. Impact of Rural Grid-Connected Photovoltaic Generation Systems on Power Quality. Energies 2016, 9, 739. [Google Scholar] [CrossRef]
- Arias-Guzmán, S.; Ruiz-Guzmán, O.A.; Garcia-Arías, L.F.; Jaramillo-Gonzáles, M.; Cardona-Orozco, P.D.; Ustariz-Farfán, A.J.; Cano-Plata, E.A.; Salazar-Jiménez, A.F. Analysis of Voltage Sag Severity Case Study in an Industrial Circuit. IEEE Trans. Ind. Appl. 2017, 53, 15–21. [Google Scholar] [CrossRef]
- Zhu, K.; Ni, J.; Liu, Y.; Sun, Y.; Sun, Y. Detect Transient Power Disturbance for Power Disturbance Data Analytics. Trans. China Electrotech. Soc. 2017, 32, 35–44. [Google Scholar]
- Kumar, R.; Singh, B.; Shahani, D.T. Symmetrical Components-Based Modified Technique for Power-Quality Disturbances Detection and Classification. IEEE Trans. Ind. Appl. 2016, 52, 3443–3450. [Google Scholar] [CrossRef]
- Fan, X.; Xie, W.; Jiang, W.; Yi, L.; Huang, X. An Improved Threshold Function Method for Power Quality Disturbance Signal De-Noising Based on Stationary Wavelet Transform. Trans. China Electrotech. Soci. 2016, 31, 219–226. [Google Scholar]
- Wang, J.; Qi, Y.; Xv, L.; Chen, X.; Qiu, Z. Development of 10 kV Power Quality Disturbance Generator. Power Capacit. React. Power Compens. 2015, 36, 66–72. [Google Scholar]
- Cao, S.; Yin, Z.D. Study of Multi Objectives Voltage Disturbance Generator Based on Carrier Phase Shift. Power Electron. 2013, 47, 93–95. [Google Scholar]
- Wang, Y.; Wang, L.; Ye, Q. Research on a Novel Multi-functional VDG of Cascade Multilevel. Power Electron. 2016, 50, 19–21. [Google Scholar] [CrossRef]
- Chen, X.; Li, K.; Xiao, J.; Meng, Q.; Cai, D. A Method of Real-Time Power Quality Disturbance Classification. Trans. China Electrotech. Soc. 2017, 32, 45–55. [Google Scholar]
- Yin, J.; Li, G.; Tang, W.; Liu, L. A Kind of Power Electronic Voltage Disturbance Generator Used in Thermal Power Units. Power Syst. Prot. Control 2016, 44, 109–113. [Google Scholar]
- Ma, Y.; Karady, G.G. A Single-Phase Voltage Sag Generator for Testing Electrical Equipments. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–5. [Google Scholar]
- Dong, L.; Zhang, Y.; Yao, J.; Yu, Z. Design of an Interleaved Paralleled High Capacity 380V Voltage Disturbance Generator. Power Electron. 2014, 48, 71–74. [Google Scholar]
- Renedo, J.; Garcı´a-Cerrada, A.G.; Rouco, L. Active Power Control Strategies for Transient Stability Enhancement of AC/DC Grid With VSC-HVDC Multi-Terminal Systems. IEEE Trans. Power Syst. 2016, 31, 4595–4604. [Google Scholar] [CrossRef]
- Baggu, M.M.; Chowdhury, B.H.; Kimball, J.W. Comparison of Advanced Control Techniques for Grid Side Converter of Doubly-Fed Induction Generator Back-to-Back Converters to Improve Power Quality Performance During Unbalanced Voltage Dips. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 516–524. [Google Scholar] [CrossRef]
- Tummuru, N.R.; Mishra, M.K.; Srinivas, S. An Improved Current Controller for Grid Connected Voltage Source Converter in Microgrid Applications. IEEE Trans. Sustain. Energy 2015, 6, 595–605. [Google Scholar] [CrossRef]
- Dou, X.; Yang, K.; Quan, X.; Hu, Q.; Wu, Z.; Zhao, B.; Li, P.; Zhang, S.; Jiao, Y. An Optimal PR Control Strategy with Load Current Observer for a Three-Phase Voltage Source Inverter. Energies 2015, 8, 7542–7562. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ma, X.K. A Study about Method for Capacitor Reactive Power Compensation by Adjusting Voltage with Thyristors. J. Northeast Dianli Univ. 2015, 35, 23–27. [Google Scholar]
- Ortega, Á.; Milano, F. Generalized Model of VSC-Based Energy Storage Systems for Transient Stability Analysis. IEEE Trans. Power Syst. 2016, 31, 3369–3380. [Google Scholar] [CrossRef]
- Ma, C.L.; Pan, W.M.; Yao, T.L.; Sun, L. Research on Control Strategy of VSC-HVDC in AC Power Grid. J. Northeast Dianli Univ. 2015, 35, 26–32. [Google Scholar]
- Bukhari, S.S.H.; Atiq, S.; Kwon, B.I. A Sag Compensator That Eliminates the Possibility of Inrush Current While Powering Transformer-Coupled Loads. IEEE J. Emerg. Sel. Top. Power Electron. Power Electron. 2017, 5, 891–900. [Google Scholar] [CrossRef]
- Alawasa, K.M.; Mohamed, Y.A.R.I. Impedance and Damping Characteristics of Grid-Connected VSCs With Power Synchronization Control Strategy. IEEE Trans. Power Syst. 2015, 30, 952–961. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Z.; An, T.; Bian, Z. Improved Analytical Model for the Study of Steady State Performance of Droop-Controlled VSC-MTDC Systems. IEEE Trans. Power Syst. 2017, 32, 2083–2093. [Google Scholar] [CrossRef]
- Jiang, W.; Li, W.; She, Y.; Wu, Z.; Hu, Y. Control Strategy for PWM Rectifier Based on Feedback of the Energy Stored in Capacitor and Load Power Feed-Forward. Trans. China Electrotech. Soc. 2015, 30, 151–158. [Google Scholar]
- Zhang, W.; Remon, D.; Cantarellas, A.M.; Rodriguez, P. A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters. Energies 2016, 9, 723. [Google Scholar] [CrossRef]
- Yang, W.; Song, Q.; Zhu, Z.; Li, J.; Xu, S.; Liu, W. Decoupled Control of Inner DC Electric Potential of Modular Multilevel Converter. Proc. CSEE 2016, 36, 648–655. [Google Scholar]
- Qader, M. Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality. Energy 2015, 89, 576–592. [Google Scholar] [CrossRef]
- Oates, C. Modular Multilevel Converter Design for VSC HVDC Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 505–515. [Google Scholar] [CrossRef]
Parameters of Main Circuit | Values |
---|---|
AC phase voltage/V | 220 |
Grid-side reactor/mH | 2.3 |
Equivalent loss resistance/Ω | 0.05 |
Equivalent capacitance of DC side/μF | 7050 |
Operating voltage of DC side capacitor/V | 700 |
Control cycle/ms | 0.25 |
Equivalent disturbance load/Ω | 50 |
PI Parameters of Current Loop | PI Parameters of Voltage Loop | ||
---|---|---|---|
kp | Ti | kvp | Tvi |
1400 | 0.00089 s | 0.6 | 0.02 s |
Electrical Parameters | Technical Indexes |
---|---|
Capacity of device | 30 kVA |
Capacity of load | 100 A |
Error of DC voltage | ±1% |
Range of disturbance voltage | 0–112% |
Maximum harmonic number of voltage | 17 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, T.; Qi, L.; Yan, G. A Method for the Realization of an Interruption Generator Based on Voltage Source Converters. Energies 2017, 10, 1642. https://doi.org/10.3390/en10101642
Li J, Zhang T, Qi L, Yan G. A Method for the Realization of an Interruption Generator Based on Voltage Source Converters. Energies. 2017; 10(10):1642. https://doi.org/10.3390/en10101642
Chicago/Turabian StyleLi, Junhui, Tianyang Zhang, Lei Qi, and Gangui Yan. 2017. "A Method for the Realization of an Interruption Generator Based on Voltage Source Converters" Energies 10, no. 10: 1642. https://doi.org/10.3390/en10101642
APA StyleLi, J., Zhang, T., Qi, L., & Yan, G. (2017). A Method for the Realization of an Interruption Generator Based on Voltage Source Converters. Energies, 10(10), 1642. https://doi.org/10.3390/en10101642