Visual Word Segmentation Cues in Tibetan Reading: Comparing Dictionary-Based and Psychological Word Segmentation
Abstract
1. Introduction
2. Methods and Hypotheses
- (1)
- Inter-word spaces have a facilitative effect on Tibetan reading and aid in lexical recognition. Specifically, the presence of spaces positively influences reading metrics, including average fixation duration, average saccade amplitude, number of fixations, sentence reading time, number of forward saccades, and number of regressions, with psychological word segmentation (spaces) outperforming dictionary word segmentation (spaces), and dictionary word segmentation (spaces) outperforming normal sentences. Similarly, inter-word spaces positively impact lexical recognition metrics, such as first fixation duration, gaze duration, total fixation duration, number of first-pass fixations, total number of fixations, and number of refixations, where psychological word segmentation (spaces) outperforms dictionary word segmentation (spaces), and dictionary word segmentation (spaces) outperforms normal sentences.
- (2)
- Color alternation markings have a facilitative effect on Tibetan reading and aid in lexical recognition. Specifically, the presence of color alternation positively influences reading metrics, including average fixation duration, average saccade amplitude, number of fixations, sentence reading time, number of forward saccades, and number of regressions, with psychological word segmentation (color alternation) outperforming dictionary word segmentation (color alternation), and dictionary word segmentation (color alternation) outperforming normal sentences. Similarly, color alternation positively impacts lexical recognition metrics, such as first fixation duration, gaze duration, total fixation duration, number of first-pass fixations, total number of fixations, and number of refixations, where psychological word segmentation (color alternation) outperforms dictionary word segmentation (color alternation), and dictionary word segmentation (color alternation) outperforms normal sentences.
- (3)
- Psychological words are more likely to be the basic information processing unit in Tibetan reading than dictionary words, and psychological words possess greater psychological reality. In other words, readers demonstrate superior performance in the areas of reading and lexical recognition when exposed to psychological word segmentation conditions (both spaces and color alternation) compared to dictionary word segmentation conditions (both spaces and color alternation), across all relevant metrics.
3. Experiment
3.1. Participants
3.2. Design
- Normal Sentence 1 (continuous text with no additional segmentation cues),
- Dictionary Word Segmentation (spaces inserted between dictionary-defined words),
- Psychological Word Segmentation (spaces inserted between psychologically salient word units),
- Normal Sentence 2 (same as Normal Sentence 1, but the color is totally green),
- Dictionary Word Segmentation with Alternating Colors (dictionary-defined words separated by spaces and presented in alternating colors),
- Psychological Word Segmentation with Alternating Colors (psychologically salient word units separated by spaces and presented in alternating colors).
4. Materials
4.1. Apparatus
4.2. Procedure
5. Experimental Indicators
5.1. Global Analysis Indicators
5.2. Local Analysis Indicators
6. Result
6.1. Global Analysis
6.2. Local Analysis
7. General Discussion
7.1. Interaction Effect and Simple Effect
7.2. Custom Contrast Analysis
7.3. The Effect of Inter-Word Spaces in Tibetan Reading
7.4. The Effect of Color Alternation Markings in Tibetan Reading
7.5. The Basic Information Processing Units in Tibetan Reading
8. Limitations and Prospects
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dechant, E. Understanding and Teaching Reading: An Interactive Model; Routledge: London, UK, 2013. [Google Scholar]
- Zutell, J.; Rasinski, T.V. Training teachers to attend to their students’ oral reading fluency. Theory Pract. 1991, 30, 211–217. [Google Scholar] [CrossRef]
- Wolf, M.; Katzir-Cohen, T. Reading fluency and its intervention. In The Role of Fluency in Reading Competence, Assessment, and Instruction; Routledge: London, UK, 2001; pp. 211–238. [Google Scholar]
- Dole, J.A.; Duffy, G.G.; Roehler, L.R.; Pearson, P.D. Moving from the old to the new: Research on reading comprehension instruction. Rev. Educ. Res. 1991, 61, 239–264. [Google Scholar] [CrossRef]
- Freire, P. The importance of the act of reading. J. Educ. 1983, 165, 5–11. [Google Scholar] [CrossRef]
- Stanovich, K.E. Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. J. Educ. 2009, 189, 23–55. [Google Scholar] [CrossRef]
- Long, B.W. The reader, the text, the poem: The transactional theory of a literary work. JSTOR 1981, 14, 54–57. [Google Scholar]
- Rousoulioti, T.; Melissaropoulou, D. Vocabulary learning strategies in a multilingual academic environment: Is morphological segmentation quite sustainable? Sustainability 2022, 14, 14412. [Google Scholar] [CrossRef]
- Wang, D.; Niu, D.; Li, T.; Gao, X. The effect of visual word segmentation cues in Tibetan reading. Brain Sci. 2024, 14, 964. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Yang, G. Test the activation model of transforming characters to words in Chinese reading: Evidence from delay word-boundary effects. Acta Psychol. Sin. 2016, 48, 1082–1092. [Google Scholar] [CrossRef]
- Gao, J.; Li, M.; Huang, C.N.; Wu, A. Chinese word segmentation and named entity recognition: A pragmatic approach. Comput. Linguist. 2005, 31, 531–574. [Google Scholar] [CrossRef]
- Kuperman, V.; Bertram, R. Moving spaces: Spelling alternation in English noun-noun compounds. Lang. Cogn. Process. 2013, 28, 939–966. [Google Scholar] [CrossRef]
- McGowan, V.A.; White, S.J.; Paterson, K.B. The effects of interword spacing on the eye movements of young and older readers. J. Cogn. Psychol. 2015, 27, 609–621. [Google Scholar] [CrossRef]
- Patel, S.K.; Gordon, E.J.; Wong, C.A.; Grobman, W.A.; Goucher, H.; Toledo, P. Readability, content, and quality assessment of web-based patient education materials addressing neuraxial labor analgesia. Anesth. Analg. 2015, 121, 1295–1300. [Google Scholar] [CrossRef]
- Walsh, T.M.; Volsko, T.A. Readability assessment of internet-based consumer health information. Respir. Care 2008, 53, 1310–1315. [Google Scholar]
- Shen, D.; Liversedge, S.P.; Tian, J.; Zang, C.; Cui, L.; Bai, X.; Rayner, K. Eye movements of second language learners when reading spaced and unspaced Chinese text. J. Exp. Psychol. Appl. 2012, 18, 192–202. [Google Scholar] [CrossRef]
- Bai, X.; Yan, G.; Liversedge, S.P.; Zang, C.; Rayner, K. Reading spaced and unspaced Chinese text: Evidence from eye movements. J. Exp. Psychol. Hum. Percept. Perform. 2008, 34, 1277–1287. [Google Scholar] [CrossRef]
- Oralova, G.; Kuperman, V. Effects of spacing on sentence reading in Chinese. Front. Psychol. 2021, 12, 765335. [Google Scholar] [CrossRef]
- Li, X.; Pollatsek, A. An integrated model of word processing and eye-movement control during Chinese reading. Psychol. Rev. 2020, 127, 1139–1162. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Kliegl, R.; Richter, E.M.; Nuthmann, A.; Shu, H. Flexible saccade-target selection in Chinese reading. Q. J. Exp. Psychol. 2010, 63, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Drieghe, D.; Fitzsimmons, G.; Liversedge, S.P. Parafoveal preview effects in reading unspaced text. J. Exp. Psychol. Hum. Percept. Perform. 2017, 43, 1701–1712. [Google Scholar] [CrossRef]
- Kohsom, C.; Gobet, F. Adding spaces to Thai and English: Effects on reading. In Proceedings of the 19th Annual Conference of the Cognitive Science Society; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1997; pp. 388–393. [Google Scholar]
- Li, X.W.; Li, S.; Gao, L.; Niu, Z.B.; Wang, D.H.; Zeng, M.; Gao, X.L. Eye movement control in Tibetan reading: The roles of word length and frequency. Brain Sci. 2022, 12, 1205. [Google Scholar] [CrossRef]
- Wang, D. Progress of bilingual reading studies in Tibetan and Chinese. Structure 2022, 1, 3. [Google Scholar]
- Nuo, M.; Liu, H.; Long, C.; Wu, J. Tibetan unknown word identification from news corpora for supporting lexicon-based Tibetan word segmentation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2025; Association for Computational Linguistics: Beijing, China, 2015; Volume 2, pp. 451–457. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Van Thin, D.; Van Nguyen, K.; Nguyen, N.L.T. Vietnamese word segmentation with SVM: Ambiguity reduction and suffix capture. In Proceedings of the 17th International Conference of the Pacific Association for Computational Linguistics, Hanoi, Vietnam, 11–13 October 2019; Springer: Singapore, 2019; pp. 400–413. [Google Scholar] [CrossRef]
- Huang, J.; Tsang, Y.K.; Xiao, W.; Wang, S. Morphosemantic activation of opaque Chinese words in sentence comprehension. PLoS ONE 2020, 15, e0236697. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bao, Y.; Huang, S.; Dai, X.; Chen, J. Explicit semantic decomposition for definition generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 6–8 July 2020; Association for Computational Linguistics: Kerrville, TX, USA, 2020; pp. 708–717. [Google Scholar] [CrossRef]
- Noraset, T.; Liang, C.; Birnbaum, L.; Downey, D. Definition modeling: Learning to define word embeddings in natural language. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; AAAI Press: Palo Alto, CA, USA, 2017; pp. 3259–3266. [Google Scholar]
- Tissier, J.; Gravier, C.; Habrard, A. Dict2vec: Learning word embeddings using lexical dictionaries. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 254–263. [Google Scholar] [CrossRef]
- Yan, G.L.; Zhang, L.L.; Zhang, X.; Sun, S.S. Processing of psychological words in Chinese reading. J. Psychol. Behav. Stud. 2012, 10, 183. (In Chinese) [Google Scholar]
- Fu, Y. Eye Movement Study on the Reading of “Psychological Words” in Chinese Texts. Master’s Thesis, Tianjin Normal University, Tianjin, China, 2015. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Bo5Zm1RyAim5v8amHDx2jerLJpec9yZJeydlwQW6Ug7d7cDnGBOTg3XCJqNjBgTiUTENCnJypmoZgNEQlbi-xnfzkoBj6F1ikb9bfFK9Ss4pSsO0jEbx5464S8ALIAoasU6zICZINERG77mIJLP4kQjcpFiNbhKPMAGSEqfdDp_Pnqln0N-OOH_PbH4Lzwy5YnucB3CB9b0=&uniplatform=NZKPT&language=CHS (accessed on 3 May 2025). (In Chinese).
- Berko, J. The child’s learning of English morphology. Word 1958, 14, 150–177. [Google Scholar] [CrossRef]
- Li, Y.B. Social influencing factors of Mandarin use among Tibetan residents. China Tibetol. 2012, 2, 217–219. (In Chinese) [Google Scholar]
- Tournadre, N. The Tibetic languages and their classification. In Trans-Himalayan Linguistics: Historical and Descriptive Linguistics of the Himalayan Area; De Gruyter Mouton: Berlin, Germany, 2014; Volume 266, pp. 105–129. [Google Scholar] [CrossRef]
- Cao, H.; Lan, Z.; Gao, F.; Yu, H.; Li, P.; Wang, J. The role of character positional frequency on word recognition during Chinese reading: Lexical decision and eye movements studies. Acta Psychol. Sin. 2023, 55, 159–172. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 37, 175–191. [Google Scholar] [CrossRef]
- Ma, G.; Li, D.; Zhuang, X. Do visual word segmentation cues improve reading performance in Chinese reading? Ergonomics 2019, 62, 1086–1097. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Lan, Z.; Yuan, X.; Zhang, L.; Yan, G. Effects of word spacing on children’s reading: Evidence from eye movements. Read. Writ. 2022, 36, 1139–1157. [Google Scholar] [CrossRef]
- Bai, X.J.; Guo, Z.Y.; Gu, J.J.; Cao, Y.X.; Yan, G.L. Effect of word segmentation cues on Japanese-Chinese bilingual’s Chinese reading: Evidence from eye movements. Acta Psychol. Sin. 2011, 43, 1273–1282. [Google Scholar]
- Yan, G.; Xiong, J.; Zang, C.; Yu, L.; Cui, L.; Bai, X. Review of eye-movement measures in reading research. Adv. Psychol. Sci. 2013, 21, 589–606. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, A.; Shu, H.; Kliegl, R.; Yan, M. Word segmentation by alternating colors facilitates eye guidance in Chinese reading. Mem. Cogn. 2018, 46, 729–740. [Google Scholar] [CrossRef]
- Pan, J.; Liu, M.; Li, H.; Yan, M. Chinese children benefit from alternating-color words in sentence reading. Read. Writ. 2021, 34, 355–369. [Google Scholar] [CrossRef]
- Haber, L.R.; Haber, R.N. Does silent reading involve articulation? Evidence from tongue twisters. Am. J. Psychol. 1982, 95, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Jonides, J.; Marshuetz, C.; Koeppe, R.A. Components of verbal working memory: Evidence from neuroimaging. Proc. Natl. Acad. Sci. USA 1998, 95, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Caplan, D.; Alpert, N.; Waters, G.; Olivieri, A. Activation of Broca’s area by syntactic processing under conditions of concurrent articulation. Hum. Brain Mapp. 2000, 9, 65–71. [Google Scholar] [CrossRef]
- Camos, V.; Barrouillet, P. Attentional and non-attentional systems in the maintenance of verbal information in working memory: The executive and phonological loops. Front. Hum. Neurosci. 2014, 8, 900. [Google Scholar] [CrossRef]
- Coiro, J.; Dobler, E. Exploring the online reading comprehension strategies used by sixth-grade skilled readers to search for and locate information on the Internet. Read. Res. Q. 2007, 42, 214–257. [Google Scholar] [CrossRef]
- Zhou, W.; Ye, W.; Yan, M. Alternating-color words facilitate reading and eye movements among second-language learners of Chinese. Appl. Psycholinguist. 2020, 41, 685–699. [Google Scholar] [CrossRef]
- Pettijohn, K.A.; Radvansky, G.A. Narrative event boundaries, reading times, and expectation. Mem. Cogn. 2016, 44, 1064–1075. [Google Scholar] [CrossRef]
- Lüdtke, J.; Froehlich, E.; Jacobs, A.M.; Hutzler, F. The SLS-Berlin: Validation of a German computer-based screening test to measure reading proficiency in early and late adulthood. Front. Psychol. 2019, 10, 1682. [Google Scholar] [CrossRef]
- Reichle, E.D.; Pollatsek, A.; Fisher, D.L.; Rayner, K. Toward a model of eye movement control in reading. Psychol. Rev. 1998, 105, 125–157. [Google Scholar] [CrossRef]
- Yang, W.; Ren, L.; Tang, R. A dictionary mechanism for Chinese word segmentation based on the finite automata. In Proceedings of the 2010 International Conference on Asian Language Processing, Harbin, China, 28–30 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 39–42. [Google Scholar] [CrossRef]
- Yang, C.C.; Li, K.W. A heuristic method based on a statistical approach for Chinese text segmentation. J. Am. Soc. Inf. Sci. Technol. 2005, 56, 1438–1447. [Google Scholar] [CrossRef]
- Guo, C.Y.; Tang, Y.Y.; Zhang, Z.C.; Li, B.; Liu, C.S. An OCR post-processing method based on dictionary matching and matrix transforming. Appl. Mech. Mater. 2013, 427, 1861–1865. [Google Scholar] [CrossRef]
- Yen, M.H.; Radach, R.; Tzeng, O.J.L.; Tsai, J.L. Usage of statistical cues for word boundary in reading Chinese sentences. Read. Writ. 2012, 25, 1007–1029. [Google Scholar] [CrossRef]
- Zang, C.; Wang, Y.; Bai, X.; Yan, G.; Drieghe, D.; Liversedge, S.P. The use of probabilistic lexicality cues for word segmentation in Chinese reading. Q. J. Exp. Psychol. 2016, 69, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Kasisopa, B.; Reilly, R.G.; Luksaneeyanawin, S.; Burnham, D. Eye movements while reading an unspaced writing system: The case of Thai. Vis. Res. 2013, 86, 71–80. [Google Scholar] [CrossRef]
Average Fixation Duration | Average Saccade Amplitude | Number of Fixations | Sentence Reading Time | Number of Regressions | Number of Forward Saccades | |
---|---|---|---|---|---|---|
Normal Sentence 1 | 180.051 (44.901) | 4.165 (4.881) | 10.732 (6.321) | 3056.004 (1888.369) | 3.584 (3.051) | 8.233 (4.916) |
Dictionary Word Segmentation (spaces) | 172.190 (37.764) | 5.204 (5.646) | 10.089 (5.926) | 2826.196 (1760.988) | 3.967 (3.302) | 7.361 (4.602) |
Psychological Word Segmentation (spaces) | 172.393 (42.858) | 4.738 (5.150) | 9.595 (6.055) | 2685.635 (1804.014) | 3.659 (3.376) | 7.126 (4.815) |
Normal Sentence 2 | 175.803 (42.718) | 4.108 (4.634) | 9.857 (6.218) | 2756.544 (1801.468) | 3.359 (3.338) | 7.577 (4.819) |
Dictionary Word Segmentation (color alternation) | 177.778 (42.385) | 4.143 (4.699) | 9.929 (5.943) | 2754.793 (1760.599) | 3.347 (3.008) | 7.584 (4.754) |
Psychological Word Segmentation (color alternation) | 179.220 (44.215) | 4.232 (4.809) | 10.205 (6.437) | 2833.881 (1804.929) | 3.670 (3.440) | 7.719 (4.895) |
Average Fixation Duration | Average Saccade Amplitude | Number of Fixations | Sentence Reading Time | Number of Regressions | Number of Forward Saccades | |
---|---|---|---|---|---|---|
Main Effects: Dictionary-based vs. Normal | −5.845 *** | 13.404 *** | −2.899 ** | −2.921 ** | 2.603 ** | −4.529 *** |
Main Effects: Psycholinguistic vs. Normal | −5.248 *** | 7.483 *** | −4.635 *** | −4.708 *** | 0.511 | −5.756 *** |
Main Effects: Segmentation Method | −2.750 ** | −0.555 | −3.494 *** | −3.823 *** | −1.525 | −3.417 *** |
Interaction Effect: Dictionary-based (Color) | 4.885 *** | −9.106 *** | 1.996 * | 1.996 * | −1.885 § | 3.244 ** |
Interaction Effect: Psycholinguistic (Color) | 4.903 *** | −4.238 *** | 4.033 *** | 3.988 *** | 1.128 | 4.591 *** |
Simple Main Effects: Dictionary-based (Space) | −5.930 *** | 12.787 *** | −2.840 ** | −2.817 ** | 2.643** | −4.546 *** |
Simple Main Effects: Psycholinguistic (Space) | −5.344 *** | 6.992 *** | −4.582 *** | −4.559 *** | 0.521 | −5.773 *** |
Custom Contrast: Space Condition | 0.598 | −5.684 *** | −1.724 § | −1.784 § | −2.091 * | −1.23 |
Custom Contrast: Color Condition | 0.618 | 1.126 | 1.148 | 1.034 | 2.171 * | 0.676 |
Number of Refixations | First Fixation Duration | Gaze Duration | Number of First-Pass Fixations | Total Number of Fixations | Total Fixation Duration | |
---|---|---|---|---|---|---|
Normal Sentence 1 | 1.231 (1.336) | 183.115 (101.347) | 704.577 (752.028) | 3.654 (3.237) | 6.538 (4.062) | 1368.154 (1113.218) |
Dictionary Word Segmentation (spaces) | 0.455 (0.800) | 168.136 (96.826) | 358.500 (262.896) | 2.136 (1.167) | 2.818 (2.039) | 463.500 (389.658) |
Psychological Word Segmentation (spaces) | 0.565 (0.844) | 171.913 (65.739) | 351.043 (323.837) | 2.087 (1.649) | 3.174 (2.367) | 552.130 (473.019) |
Normal Sentence 2 | 1.000 (1.024) | 181.045 (88.283) | 343.955 (427.593) | 1.909 (1.743) | 4.273 (3.453) | 798.500 (733.170) |
Dictionary Word Segmentation (color alternation) | 0.875 (0.797) | 179.375 (111.714) | 451.500 (571.092) | 2.208 (2.085) | 4.625 (3.019) | 865.833 (644.746) |
Psychological Word Segmentation (color alternation) | 1.125 (1.154) | 187.000 (99.135) | 687.083 (559.872) | 3.333 (2.496) | 5.500 (3.230) | 1153.833 (761.722) |
Number of Refixations | First Fixation Duration | Gaze Duration | Number of First-Pass Fixations | Total Number of Fixations | Total Fixation Duration | |
---|---|---|---|---|---|---|
Main Effects—Word Segmentation Type (Dictionary) | −2.584 * | −0.454 | −1.845 § | −2.173 * | −3.746 *** | −3.273 ** |
Main Effects—Word Segmentation Type (Psycholinguistic) | −2.240 * | −0.373 | −1.895 § | −2.253 * | −3.408 ** | −2.978 ** |
Main Effects—Segmentation Method | −0.77 | −0.116 | −1.964 § | −2.517 * | −2.316 * | −2.136 * |
Interaction Effect—Dictionary | 1.521 | 0.32 | 1.726 § | 1.836 § | 2.902 ** | 2.522 * |
Interaction Effect—Psycholinguistic | 1.856 § | 0.423 | 2.649 * | 3.023 ** | 3.276 ** | 3.047 ** |
Simple Main Effects—Space (Dictionary) | −2.361 * | −0.566 | −1.95 § | −2.144 * | −3.412 ** | −2.827 ** |
Simple Main Effects—Space (Psycholinguistic) | −2.035 § | −0.432 | −2.004 § | −2.226 * | −3.079 ** | −2.568 * |
Custom Contrast—Space | 0.359 | 0.082 | −0.036 | −0.057 | 0.36 | 0.304 |
Custom Contrast—Color-Alternation | 0.835 | 0.229 | 1.259 | 1.614 | 0.88 | 1.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, D.; Xie, Z.; Liu, J.; Wang, C.; Zhang, Z. Visual Word Segmentation Cues in Tibetan Reading: Comparing Dictionary-Based and Psychological Word Segmentation. J. Eye Mov. Res. 2025, 18, 33. https://doi.org/10.3390/jemr18040033
Niu D, Xie Z, Liu J, Wang C, Zhang Z. Visual Word Segmentation Cues in Tibetan Reading: Comparing Dictionary-Based and Psychological Word Segmentation. Journal of Eye Movement Research. 2025; 18(4):33. https://doi.org/10.3390/jemr18040033
Chicago/Turabian StyleNiu, Dingyi, Zijian Xie, Jiaqi Liu, Chen Wang, and Ze Zhang. 2025. "Visual Word Segmentation Cues in Tibetan Reading: Comparing Dictionary-Based and Psychological Word Segmentation" Journal of Eye Movement Research 18, no. 4: 33. https://doi.org/10.3390/jemr18040033
APA StyleNiu, D., Xie, Z., Liu, J., Wang, C., & Zhang, Z. (2025). Visual Word Segmentation Cues in Tibetan Reading: Comparing Dictionary-Based and Psychological Word Segmentation. Journal of Eye Movement Research, 18(4), 33. https://doi.org/10.3390/jemr18040033