Improving Reading and Eye Movement Control in Readers with Oculomotor and Visuo-Attentional Deficits
Abstract
1. Introduction
1.1. Saccade-Targeting Strategies in Inexperienced and Poor Readers
1.2. Improving Saccadic Eye Movements
1.3. Present Study
2. Method
2.1. Participants
2.2. Material
2.3. Apparatus and Procedure
2.4. Data Analysis
2.5. Statistical Analysis
2.6. Initial Landing Positions
2.7. Number of Fixations
2.8. Response Time (For Correct Responses Only) (RT)
2.9. Percentage of Errors
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McConkie, G.W.; Kerr, P.W.; Reddix, M.D.; Zola, D. Eye movement control during reading: I. The location of initial eye fixations on words. Vis. Res. 1988, 28, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K. Eye guidance in reading: Fixation locations within words. Perception 1979, 8, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Ducrot, S.; Pynte, J. What determines the eyes’ landing position in words? Percept. Psychophys. 2002, 64, 1130–1144. [Google Scholar] [CrossRef] [PubMed]
- Hautala, J.; Hyönä, J.; Aro, M.; Lyytinen, H. Sublexical effects on eye movements during repeated reading of words and pseudowords in Finnish. Psychol. Lang. Commun. 2011, 15, 129–149. [Google Scholar] [CrossRef]
- Hautala, J.; Loberg, O. Breaking down the word length effect on readers’ eye movements. Lang. Cogn. Neurosci. 2015, 30, 993–1007. [Google Scholar] [CrossRef]
- Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 1998, 124, 372–422. [Google Scholar] [CrossRef]
- Snell, J.; Theeuwes, J. A story about statistical learning in a story: Regularities impact eye movements during book reading. J. Mem. Lang. 2020, 113, 104127. [Google Scholar] [CrossRef]
- Reichle, E.D.; Rayner, K.; Pollatsek, A. The EZ Reader model of eye-movement control in reading: Comparisons to other models. Behav. Brain Sci. 2003, 26, 445–476. [Google Scholar] [CrossRef]
- Vitu, F. The basic assumptions of EZ Reader are not well-founded. Behav. Brain Sci. 2003, 26, 506–507. [Google Scholar] [CrossRef]
- Nuthmann, A.; Engbert, R.; Kliegl, R. Mislocated fixations during reading and the inverted optimal viewing position effect. Vis. Res. 2005, 45, 2201–2217. [Google Scholar] [CrossRef]
- O’Regan, J.K.; Levy-Schoen, A. Eye movement strategy and tactics in word recognition and reading. In Attention and Performance XII: The Psychology of Reading; Coltheart, M., Ed.; Erlbaum: Hillsdale, NJ, USA, 1987; pp. 263–284. [Google Scholar]
- Johnson, R.L.; Starr, E.L. The preferred viewing location in top-to-bottom sentence reading. Q. J. Exp. Psychol. 2018, 71, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, A.; Rayner, K. Initial fixation location effects in reading hebrew words. Lang. Cogn. Process. 1999, 14, 393–421. [Google Scholar]
- Farid, M.; Grainger, J. How initial fixation position influences visual word recognition: A comparison of French and Arabic. Brain Lang. 1996, 53, 351–368. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, J.K. The “convenient viewing position” hypothesis. In Eye movements: Cognition and Visual Perception; Fisher, D.F., Monty, R.A., Senders, J.W., Eds.; Erlbaum: Hillsdale, NJ, USA, 1981; pp. 289–298. [Google Scholar]
- Nazir, T.A.; Ben-Boutayab, N.; Decoppet, N.; Deutsch, A.; Frost, R. Reading habits, perceptual learning, and recognition of printed words. Brain Lang. 2004, 88, 294–311. [Google Scholar] [CrossRef]
- Blythe, H.I. Developmental Changes in Eye Movements and Visual Information Encoding Associated With Learning to Read. Curr. Dir. Psychol. Sci. 2014, 23, 201–207. [Google Scholar] [CrossRef]
- Blythe, H.I.; Joseph, H.S.S.L. Children’s eye movements during reading. In The Oxford Handbook of Eye Movements; Liversedge, S.P., Gilchrist, I., Everling, S., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 634–662. [Google Scholar] [CrossRef]
- Ducrot, S.; Pynte, J.; Ghio, A.; Lété, B. Visual and linguistic determinants of the eyes’ initial fixation position in reading development. Acta Psychol. 2013, 142, 287–298. [Google Scholar] [CrossRef]
- Häikiö, T.; Bertram, R.; Hyönä, J.; Niemi, P. Development of the letter identity span in reading: Evidence from the eye movement moving window paradigm. J. Exp. Child Psychol. 2009, 102, 167–181. [Google Scholar] [CrossRef]
- Vorstius, C.; Radach, R.; Lonigan, C.J. Eye movements in developing readers: A comparison of silent and oral sentence reading. Vis. Cogn. 2014, 22, 458–485. [Google Scholar] [CrossRef]
- Huestegge, L.; Radach, R.; Corbic, D.; Huestegge, S.M. Oculomotor and linguistic determinants of reading development: A longitudinal study. Vis. Res. 2009, 49, 2948–2959. [Google Scholar] [CrossRef]
- Joseph, H.S.S.L.; Liversedge, S.P.; Blythe, H.I.; White, S.J.; Rayner, K. Word length and landing position effects during reading in children and adults. Vis. Res. 2009, 49, 2078–2086. [Google Scholar] [CrossRef]
- Coltheart, M.; Rastle, K.; Perry, C.; Langdon, R.; Ziegler, J. DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 2001, 108, 204. [Google Scholar] [CrossRef] [PubMed]
- Ablinger, I.; Huber, W.; Radach, R. Eye movement analyses indicate the underlying reading strategy in the recovery of lexical readers. Aphasiology 2014, 28, 640–657. [Google Scholar] [CrossRef]
- Vernet, M.; Bellocchi, S.; Danna, J.; Massendari, D.; Jover, M.; Chaix, Y.; Ducrot, S. The determinants of saccade targeting strategy in neurodevelopmental disorders: The influence of suboptimal reading experience. Vis. Res. 2023, 204, 108162. [Google Scholar] [CrossRef] [PubMed]
- Gagl, B.; Hawelka, S.; Hutzler, F. A similar correction mechanism in slow and fluent readers after suboptimal landing positions. Front. Hum. Neurosci. 2014, 8, 355. [Google Scholar] [CrossRef]
- Hawelka, S.; Gagl, B.; Wimmer, H. A dual-route perspective on eye movements of dyslexic readers. Cognition 2010, 115, 367–379. [Google Scholar] [CrossRef]
- Kirkby, J.A.; Barrington, R.S.; Drieghe, D.; Liversedge, S.P. Parafoveal processing and transposed-letter effects in dyslexic reading. Dyslexia 2022, 28, 359–374. [Google Scholar] [CrossRef]
- De Luca, M.; Borrelli, M.; Judica, A.; Spinelli, D.; Zoccolotti, P. Reading words and pseudowords: An eye movement study of developmental dyslexia. Brain Lang. 2002, 80, 617–626. [Google Scholar] [CrossRef]
- Hyönä, J. An eye movement analysis of topic-shift effect during repeated reading. J. Exp. Psychol. Learn. Mem. Cogn. 1995, 21, 1365–1373. [Google Scholar] [CrossRef]
- McKeben, M.; Trauzettel-Klosinski, S.; Reinhanrd, J.; Duerrwaechter, U.; Adler, M.; Klosinski, G. Eye movement control during single-word reading in dyslexics. J. Vis. 2004, 4, 388–402. [Google Scholar] [CrossRef]
- Aghababian, V.; Nazir, T.A. Developing normal reading skills: Aspects of the visual processes underlying word recognition. J. Exp. Child Psychol. 2000, 76, 123–150. [Google Scholar] [CrossRef]
- McDonald, S.A.; Spitsyna, G.; Shillcock, R.C.; Wise, R.J.; Leff, A.P. Patients with hemianopic alexia adopt an inefficient eye movement strategy when reading text. Brain 2006, 129, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Reichle, E.D.; Liversedge, S.P.; Drieghe, D.; Blythe, H.I.; Joseph, H.S.; White, S.J.; Rayner, K. Using EZ Reader to examine the concurrent development of eye-movement control and reading skill. Dev. Rev. 2013, 33, 110–149. [Google Scholar] [CrossRef] [PubMed]
- Vitu, F.; McConkie, G.W.; Kerr, P.; O’Regan, J.K. Fixation location effects on fixation durations during reading: An inverted optimal viewing position effect. Vis. Res. 2001, 41, 3513–3533. [Google Scholar] [CrossRef] [PubMed]
- Bellocchi, S.; Massendari, D.; Grainger, J.; Ducrot, S. Effects of inter-character spacing on saccade programming in beginning readers and dyslexics. Child Neuropsychol. 2019, 25, 482–506. [Google Scholar] [CrossRef]
- Facoetti, A. Spatial attention disorders in developmental dyslexia: Towards the prevention of reading acquisition deficits. Vis. Asp. Dyslexia 2012, 123–136. [Google Scholar]
- Facoetti, A.; Corradi, N.; Ruffino, M.; Gori, S.; Zorzi, M. Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia 2010, 16, 226–239. [Google Scholar] [CrossRef]
- Lobier, M.; Zoubrinetzky, R.; Valdois, S. The visual attention span deficit in dyslexia is visual and not verbal. Cortex 2012, 48, 768–773. [Google Scholar] [CrossRef]
- Valdois, S.; Bosse, M.-L.; Tainturier, M.-J. The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia 2004, 10, 339–363. [Google Scholar] [CrossRef]
- Gavril, L.; Roșan, A.; Szamosközi, Ș. The role of visual-spatial attention in reading development: A meta-analysis. Cogn. Neuropsychol. 2021, 38, 387–407. [Google Scholar] [CrossRef]
- Smyrnakis, I.; Andreadakis, V.; Selimis, V.; Kalaitzakis, M.; Bachourou, T.; Kaloutsakis, G.; Kymionis, G.D.; Smirnakis, S.; Aslanides, I.M. RADAR: A novel fast-screening method for reading difficulties with special focus on dyslexia. PLoS ONE 2017, 12, e0182597. [Google Scholar] [CrossRef]
- Al-Barhamtoshy, H.M.; Motaweh, D.M. Diagnosis of Dyslexia using computation analysis. In Proceedings of the 2017 international conference on informatics, Health & Technology (ICIHT), Riyadh, Saudi Arabia, 21–23 February 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Asvestopoulou, T.; Manousaki, V.; Psistakis, A.; Smyrnakis, I.; Andreadakis, V.; Aslanides, I.M.; Papadopouli, M. Dyslexml: Screening tool for dyslexia using machine learning. arXiv 2019, arXiv:1903.06274. [Google Scholar]
- Nilsson Benfatto, M.; Öqvist Seimyr, G.; Ygge, J.; Pansell, T.; Rydberg, A.; Jacobson, C. Screening for dyslexia using eye tracking during reading. PLoS ONE 2016, 11, e0165508. [Google Scholar] [CrossRef] [PubMed]
- Prabha, J.A.; Bhargavi, R.; Rani, B.D. Prediction of dyslexia severity levels from fixation and saccadic eye movement using machine learning. Biomed. Signal Process. Control 2023, 79, 104094. [Google Scholar]
- Raatikainen, P.; Hautala, J.; Loberg, O.; Kärkkäinen, T.; Leppänen, P.; Nieminen, P. Detection of developmental dyslexia with machine learning using eye movement data. Array 2021, 12, 100087. [Google Scholar] [CrossRef]
- Zingoni, A.; Taborri, J.; Calabrò, G. A machine learning-based classification model to support university students with dyslexia with personalized tools and strategies. Sci. Rep. 2024, 14, 273. [Google Scholar] [CrossRef]
- Prabha, J.A.; Bhargavi, R. Prediction of dyslexia using machine learning—A research travelogue. In Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems: MCCS 2018, Ranchi, India, 12–13 May 2018; Springer: Singapore, 2019; pp. 23–34. [Google Scholar]
- Ceple, I.; Krauze, L.; Serpa, E.; Svede, A.; Goliskina, V.; Vasiljeva, S.; Kassaliete, E.; Ganebnaya, A.; Volberga, L.; Truksa, R.; et al. Eye Movement Parameters in Children with Reading Difficulties. Appl. Sci. 2025, 15, 954. [Google Scholar] [CrossRef]
- Hutzler, F.; Kronbichler, M.; Jacobs, A.M.; Wimmer, H. Perhaps correlational but not causal: No effect of dyslexic readers’ magnocellular system on their eye movements during reading. Neuropsychologia 2006, 44, 637–648. [Google Scholar] [CrossRef]
- Prado, C.; Dubois, M.; Valdois, S. The eye movements of dyslexic children during reading and visual search: Impact of the visual attention span. Vis. Res. 2007, 47, 2521–2530. [Google Scholar] [CrossRef]
- Franzen, L.; Stark, Z.; Johnson, A.P. Individuals with dyslexia use a different visual sampling strategy to read text. Sci. Rep. 2021, 11, 6449. [Google Scholar] [CrossRef]
- Raghuram, A.; Gowrisankaran, S.; Swanson, E.; Zurakowski, D.; Hunter, D.G.; Waber, D.P. Frequency of Visual Deficits in Children With Developmental Dyslexia. JAMA Ophthalmol. 2018, 136, 1089. [Google Scholar] [CrossRef]
- Tiadi, A.; Gérard, C.-L.; Peyre, H.; Bui-Quoc, E.; Bucci, M.P. Immaturity of Visual Fixations in Dyslexic Children. Front. Hum. Neurosci. 2016, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Freedman, E.G.; Molholm, S.; Gray, M.J.; Belyusar, D.; Foxe, J.J. Saccade adaptation deficits in developmental dyslexia suggest disruption of cerebellar-dependent learning. J. Neurodev. Disord. 2017, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Vagge, A.; Cavanna, M.; Traverso, C.E.; Iester, M. Evaluation of ocular movements in patients with dyslexia. Ann. Dyslexia 2015, 65, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Facoetti, A.; Franceschini, S.; Gori, S. Role of Visual Attention in Developmental Dyslexia. In Developmental Dyslexia across Languages and Writing Systems; Cambridge University Press: Cambridge, UK, 2019; pp. 307–326. [Google Scholar] [CrossRef]
- Facoetti, A.; Luisa Lorusso, M.; Paganoni, P.; Umiltà, C.; Gastone Mascetti, G. The role of visuospatial attention in developmental dyslexia: Evidence from a rehabilitation study. Cogn. Brain Res. 2003, 15, 154–164. [Google Scholar] [CrossRef]
- Franceschini, S.; Bertoni, S.; Puccio, G. Hidden in the Labyrinth: Visuo-spatial Attention Deficit in Children with Developmental Dyslexia. Preprints 2022, 1–18. [Google Scholar] [CrossRef]
- Franceschini, S.; Gori, S.; Ruffino, M.; Pedrolli, K.; Facoetti, A. A causal link between visual spatial attention and reading acquisition. Curr. Biol. 2012, 22, 814–819. [Google Scholar] [CrossRef]
- Vernet, M.; Jover, M.; Bellocchi, S.; Maziero, S.; Jucla, M.; Tallet, J.; Danna, J.; Chaix, Y.; Ducrot, S. Visual-processing deficits in children with neurofibromatosis type 1: A clinical marker of reading difficulties. Eur. J. Paediatr. Neurol. 2022, 38, 25–32. [Google Scholar] [CrossRef]
- Jafarlou, F. Oculomotor Rehabilitation Improves Reading Abilities in Dyslexic Children With Concurrent Eye Movement Abnormalities. Clin. Pediatr. 2024, 63, 1276–1286. [Google Scholar] [CrossRef]
- Moiroud, L.; Gerard, C.L.; Peyre, H.; Bucci, M.P. Developmental Eye Movement test and dyslexic children: A pilot study with eye movement recordings. PLoS ONE 2018, 13, e0200907. [Google Scholar] [CrossRef]
- Seassau, M.; Gérard, C.L.; Bui-Quoc, E.; Bucci, M.P. Binocular saccade coordination in reading and visual search: A developmental study in typical reader and dyslexic children. Front. Integr. Neurosci. 2014, 8, 85. [Google Scholar] [CrossRef]
- Frith, U. Beneath the surface of developmental dyslexia. In Surface Dyslexia; Patterson, K.E., Marshall, J.C., Coltheart, M., Eds.; Routledge: London, UK, 1985; pp. 301–330. [Google Scholar] [CrossRef]
- Goswami, U.; Bryant, P.E. Phonological Skills and Learning to rEad; Erlbaum: Hillsdale, NJ, USA, 1990. [Google Scholar]
- Toffalini, E.; Giofrè, D.; Pastore, M.; Carretti, B.; Fraccadori, F.; Szűcs, D. Dyslexia treatment studies: A systematic review and suggestions on testing treatment efficacy with small effects and small samples. Behav. Res. Methods 2021, 53, 1954–1972. [Google Scholar] [CrossRef] [PubMed]
- Gaggi, O.; Palazzi, C.E.; Ciman, M.; Galiazzo, G.; Franceschini, S.; Ruffino, M.; Gori, S.; Facoetti, A. Serious games for early identification of developmental dyslexia. Comput. Entertain. (CIE) 2017, 15, 1–24. [Google Scholar] [CrossRef]
- Geiger, G.; Lettvin, J.Y. Developmental dyslexia: A different perceptual strategy and how to learn a new strategy for reading. Saggi 2000, 26, 73–89. [Google Scholar]
- Gori, S.; Facoetti, A. How the visual aspects can be crucial in reading acquisition: The intriguing case of crowding and developmental dyslexia. J. Vis. 2015, 15, 8. [Google Scholar] [CrossRef]
- Pasqualotto, A.; Altarelli, I.; De Angeli, A.; Menestrina, Z.; Bavelier, D.; Venuti, P. Enhancing reading skills through a video game mixing action mechanics and cognitive training. Nat. Hum. Behav. 2022, 6, 545–554. [Google Scholar] [CrossRef]
- Valdois, S.; Zaher, A.; Meyer, S.; Diard, J.; Mandin, S.; Bosse, M.L. Effectiveness of Visual Attention Span Training on Learning to Read and Spell: A Digital-game-based Intervention in Classrooms. Read. Res. Q. 2025, 60, e576. [Google Scholar] [CrossRef]
- Zoubrinetzky, R.; Collet, G.; Nguyen-Morel, M.A.; Valdois, S.; Serniclaes, W. Remediation of allophonic perception and visual attention span in developmental dyslexia: A joint assay. Front. Psychol. 2019, 10, 1502. [Google Scholar] [CrossRef]
- Franceschini, S.; Bertoni, S.; Ronconi, L.; Molteni, M.; Gori, S.; Facoetti, A. “Shall we play a game?”: Improving reading through action video games in developmental dyslexia. Curr. Dev. Disord. Rep. 2015, 2, 318–329. [Google Scholar] [CrossRef]
- Hautala, J.; Hawelka, S.; Ronimus, M. An eye movement study on the mechanisms of reading fluency development. Cogn. Dev. 2024, 69, 101395. [Google Scholar] [CrossRef]
- Leong, D.F.; Master, C.L.; Messner, L.V.; Pang, Y.; Smith, C.; Starling, A.J. The effect of saccadic training on early reading fluency. Clin. Pediatr. 2014, 53, 858–864. [Google Scholar] [CrossRef]
- Thiagarajan, P.; Ciuffreda, K.J.; Capo-Aponte, J.E.; Ludlam, D.P.; Kapoor, N. Oculomotor neurorehabilitation for reading in Mild Traumatic Brain Injury (mTBI): An integrative approach. Neuro Rehabil. 2014, 34, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Tahri Sqalli, M.; Aslonov, B.; Gafurov, M.; Mukhammadiev, N.; Sqalli Houssaini, Y. Eye tracking technology in medical practice: A perspective on its diverse applications. Front. Med. Technol. 2023, 5, 1253001. [Google Scholar] [CrossRef] [PubMed]
- Ablinger, I.; Friede, A.; Radach, R. A combined lexical and segmental therapy approach in a participant with pure alexia. Aphasiology 2019, 33, 579–605. [Google Scholar] [CrossRef]
- Spitzyna, G.A.; Wise, R.J.S.; McDonald, S.A.; Plant, G.T.; Kidd, D.; Crewes, H.; Leff, A.P. Optokinetic therapy improves text reading in patients with hemianopic alexia: A controlled trial. Neurology 2007, 68, 1922–1930. [Google Scholar] [CrossRef]
- Bucci, M.P.; Carzola, B.; Fiucci, G.; Potente, C.; Caruso, L. Computer based oculomotor training improves reading abilities in dyslexic children: Results from A Pilot Study. Sports Inj. Med. 2018, 2, 130. [Google Scholar] [CrossRef]
- Chan, A.S.; Lee, T.L.; Sze, S.L.; Yang, N.S.; Han, Y.M. Eye-tracking training improves the learning and memory of children with learning difficulty. Sci. Rep. 2022, 12, 13974. [Google Scholar] [CrossRef]
- Jafarlou, F.; Jarollahi, F.; Ahadi, M.; Sadeghi-Firoozabadi, V. Effects of oculomotor rehabilitation on the cognitive performance of dyslexic children with concurrent eye movement abnormalities. Early Child Dev. Care 2022, 192, 665–677. [Google Scholar] [CrossRef]
- Peters, J.L.; Crewther, S.G.; Murphy, M.J.; Bavin, E.L. Action video game training improves text reading accuracy, rate and comprehension in children with dyslexia: A randomized controlled trial. Sci. Rep. 2021, 11, 18584. [Google Scholar] [CrossRef]
- Peyre, H.; Gérard, C.L.; Vanderhorst, I.D.; Larger, S.; Lemoussu, C.; Vesta, J.; Quoc, E.B.; Gouleme, N.; Delorme, R.; Bucci, M.P. Rééducation oculomotrice informatisée dans la dyslexie: Essai clinique randomisé en crossover en population pédiatrique. L’Encéphale 2018, 44, 247–255. [Google Scholar] [CrossRef]
- Dodick, D.; Starling, A.J.; Wethe, J.; Pang, Y.; Messner, L.V.; Smith, C.; Master, C.L.; Halker-Singh, R.B.; Vargas, B.B.; Bogle, J.M.; et al. The effect of in-school saccadic training on reading fluency and comprehension in first and second grade students: A randomized controlled trial. J. Child Neurol. 2017, 32, 104–111. [Google Scholar] [CrossRef]
- Nazir, M.; Nabeel, T.; Ahmad, S. Measuring the impact of training of Visual Saccadic Competence on the Reading Ability of Youth with Oculomotor Dysfunction in Mainstreamed Regular Schools. Compet. Educ. Res. J. 2021, 2, 85–98. [Google Scholar]
- Bucci, M.P. Visual training could be useful for improving reading capabilities in dyslexia. Appl. Neuropsychol. Child 2021, 10, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Chouake, T.; Levy, T.; Javitt, D.C.D.; Lavidor, M. Magnocellular training improves visual word recognition. Front. Hum. Neurosci. 2012, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, G.; Bertoni, S.; Menghini, D.; Costanzo, F.; Franceschini, S.; Varuzza, C.; Ronconi, L.; Battisti, A.; Gori, S.; Facoetti, A.; et al. Beyond reading modulation: Temporo-parietal tDCS alters visuo-spatial attention and motion perception in dyslexia. Brain Sci. 2021, 11, 263. [Google Scholar] [CrossRef]
- Valdois, S.; Peyrin, C.; Lassus-Sangosse, D.; Lallier, M.; Démonet, J.F.; Kandel, S. Dyslexia in a French–Spanish bilingual girl: Behavioural and neural modulations following a visual attention span intervention. Cortex 2014, 53, 120–145. [Google Scholar] [CrossRef]
- Lehtimäki, T.M.; Reilly, R.G. Improving eye movement control in young readers. Artif. Intell. Rev. 2005, 24, 477–488. [Google Scholar] [CrossRef]
- Deuble, H.; Wolf, W.; Hauske, G. The evaluation of the oculomotor error signal. Adv. Psychol. 1984, 22, 55–62. [Google Scholar]
- Findlay, J.M. Global visual processing for saccadic eye movements. Vis. Res. 1982, 22, 1033–1045. [Google Scholar] [CrossRef]
- Theeuwes, J.; Kramer, A.F.; Hahn, S.; Irwin, D.E.; Zelinsky, G.J. Influence of attentional capture on oculomotor control. J. Exp. Psychol. Hum. Percept. Perform. 1999, 25, 1595. [Google Scholar] [CrossRef]
- Beauvillain, C.; Doré, K. Effect of luminance and linguistic information on the center of gravity of words. Stud. Vis. Inf. Process. 1995, 6, 393–403. [Google Scholar]
- Beauvillain, C.; Doré, K.; Baudouin, V. The ‘center of gravity’of words: Evidence for an effect of the word-initial letters. Vis. Res. 1996, 36, 589–603. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. 59th General Assembly; WM, A., Ed.; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Lété, B.; Sprenger-Charolles, L.; Colé, P. MANULEX: A grade-level lexical database from French elementary school readers. Behav. Res. Methods Instrum. Comput. 2004, 36, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Garzia, R.P.; Richman, J.E.; Nicholson, S.B.; Gaines, C.S. A new visual-verbal saccade test: The development eye movement test (DEM). J. Am. Optom. Assoc. 1990, 61, 124–135. [Google Scholar] [PubMed]
- Ayton, L.N.; Abel, L.A.; Fricke, T.R.; McBrien, N.A. Developmental eye movement test: What is it really measuring? Optom. Vis. Sci. 2009, 86, 722–730. [Google Scholar] [CrossRef]
- Lefavrais, P. Test de l’alouette: Manuel, Les éditions du Centre de Psychologie Appliquée: Paris, France, 1967.
- Lefavrais, P. Alouette-R, Les éditions du Centre de Psychologie Appliquée: Paris, France, 2005.
- Ducrot, S.; Lété, B.; Descottes, C.; Muneaux, M.; Ghio, A. The Emaa (EyeMovement Acquisition and Analysis) Software Package; Unpublished Technical Report; University of Provence: Marseille, France, 2006; 67p. [Google Scholar]
- Ablinger, I.; Huber, W.; Schattka, K.I.; Radach, R. Recovery in a letter-by-letter reader: More efficiency at the expense of normal reading strategy. Neurocase 2013, 19, 236–255. [Google Scholar] [CrossRef]
- Hansen, T.; Pracejus, L.; Gegenfurtner, K.R. Color perception in the intermediate periphery of the visual field. J. Vis. 2009, 9, 26. [Google Scholar] [CrossRef]
- Juhasz, B.J.; White, S.J.; Liversedge, S.P.; Rayner, K. Eye movements and the use of parafoveal word length information in reading. J. Exp. Psychol. Hum. Percept. Perform. 2008, 34, 1560. [Google Scholar] [CrossRef]
- Tydgat, I.; Grainger, J. Serial Position Effects in the Identification of Letters, Digits, and Symbols. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 480–498. [Google Scholar] [CrossRef]
- Hautala, J.; Hawelka, S.; Loberg, O.; Leppänen, P.H. A dynamic adjustment model of saccade lengths in reading for word-spaced orthographies: Evidence from simulations and invisible boundary experiments. J. Cogn. Psychol. 2022, 34, 435–453. [Google Scholar] [CrossRef]
- Livingstone, M.S.; Hubel, D.H. Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 1988, 240, 740–749. [Google Scholar] [CrossRef]
- Pinna, B.; Deiana, K. On the role of color in reading and comprehension tasks in dyslexic children and adults. i-Perception 2018, 9, 2041669518779098. [Google Scholar] [CrossRef] [PubMed]
- Caldani, S.; Gerard, C.L.; Peyre, H.; Bucci, M.P. Visual attentional training improves reading capabilities in children with dyslexia: An eye tracker study during a reading task. Brain Sci. 2020, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Häikiö, T.; Hyönä, J.; Bertram, R. The role of syllables in word recognition among beginning Finnish readers: Evidence from eye movements during reading. J. Cogn. Psychol. 2015, 27, 562–577. [Google Scholar] [CrossRef]
- Häikiö, T.; Bertram, R.; Hyönä, J. The development of whole-word representations in compound word processing: Evidence from eye fixation patterns of elementary school children. Appl. Psycholinguist. 2011, 32, 533–551. [Google Scholar] [CrossRef]
- Schuett, S.; Kentridge, R.W.; Zihl, J.; Heywood, C.A. Are hemianopic reading and visual exploration impairments visually elicited? New insights from eye movements in simulated hemianopia. Neuropsychologia 2009, 47, 733–746. [Google Scholar] [CrossRef]
- Schuett, S. The rehabilitation of hemianopic dyslexia. Nat. Rev. Neurol. 2009, 5, 427–437. [Google Scholar] [CrossRef]
- Buchner, A.; Baumgartner, N. Text–background polarity affects performance irrespective of ambient illumination and colour contrast. Ergonomics 2007, 50, 1036–1063. [Google Scholar] [CrossRef]
- Komban, S.J.; Kremkow, J.; Jin, J.; Wang, Y.; Lashgari, R.; Li, X.; Zaidi, Q.; Alonso, J.M. Neuronal and perceptual differences in the temporal processing of darks and lights. Neuron 2014, 82, 224–234. [Google Scholar] [CrossRef]
Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|
Demographics | |||
N | 23 | 14 | 12 |
Participant ratio (Children/adults) | 8/15 | 11/3 | 5/7 |
Sex ratio (F/H) | 17/23 | 8/6 | 5/12 |
Participant age | |||
Children | 92 (5.2) | 93 (6.2) | 94 (4.0) |
Adult | 246 (18.4) | 249 (26.5) | 246 (12.7) |
DEM-test | |||
VT (Z-score) (SD) | 0.440 (0.633) | 0.029 (0.577) | −1.414 (13.7) |
HTaj (Z-score) (SD) | 0.052 (0.513) | −0.013 (1.077) | −1.945 (30.9) |
Alouette test | |||
Reading Fluency (Z-score) (SD) | 0.630 (1.060) | −1.261 (0.789) | −0.348 (0.558) |
ILP Frequency Mean (SD) | |||
---|---|---|---|
Cluster 1 | Cluster 2 | Cluster 3 | |
Neutral | |||
P1 | 22.8 (0.13) | 66.4 (0.19) | 17.2 (0.22) |
P2 | 63.2 (0.11) | 27.2 (0.08) | 40.3 (0.07) |
P3 | 13.2 (0.9) | 4.5 (0.16) | 35.1 (0.20) |
P4 | 1.0 (0.02) | 1.6 (0.06) | 7.1 (0.08) |
P5 | 0.0 (0) | 0.0 (0) | 0.0 (0) |
Brightness | |||
P1 | 23.9 (0.21) | 42.0 (0.19) | 18.3 (0.17) |
P2 | 58.4 (0.17) | 53.2 (0.14) | 57.0 (0.16) |
P3 | 15.1 (0.16) | 4.4 (0.09) | 20.1 (0.20) |
P4 | 2.7 (0.06) | 0.2 (0.01) | 4.6 (0.05) |
P5 | 0.0 (0) | 0.0 (0) | 0.0 (0) |
Color | |||
P1 | 26.7 (0.14) | 58.8 (0.21) | 26.3 (0.25) |
P2 | 60.0 (0.13) | 36.8 (0.14) | 47.1 (0.12) |
P3 | 13.5 (0.13) | 4.2 (0.09) | 24.4 (0.24) |
P4 | 1.0 (0.02) | 0.2 (0.01) | 2.2 (0.03) |
P5 | 0.0 (0) | 0.0 (0) | 0.0 (0) |
Number of Fixations Mean (SD) | RT Mean (SD) | Accuracy Mean (SD) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 1 | Cluster 2 | Cluster 3 | |
Saliency | |||||||||
Neutral | 1.63 (0.39) | 2.57 (0.40) | 2.44 (1.01) | 939.91 (132.44) | 1209.95 (153.33) | 1280.31 (255.13) | 97.81 (3.03) | 92.13 (5.93) | 91.30 (4.69) |
Brightness | 1.68 (0.39) | 2.26 (0.48) | 2.01 (0.81) | 964.30 (114.30) | 1006.95 (138.58) | 1090.52 (198.48) | 97.13 (3.63) | 91.76 (6.05) | 95.35 (4.26) |
Color | 1.68 (0.29) | 2.87 (0.84) | 2.00 (0.84) | 987.98 (132.44) | 1195.43 (121.28) | 1100.84 (200.04) | 93.89 (8.68) | 92.09 (6.31) | 95.92 (3.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ducrot, S.; Lété, B.; Vernet, M.; Massendari, D.; Danna, J. Improving Reading and Eye Movement Control in Readers with Oculomotor and Visuo-Attentional Deficits. J. Eye Mov. Res. 2025, 18, 25. https://doi.org/10.3390/jemr18040025
Ducrot S, Lété B, Vernet M, Massendari D, Danna J. Improving Reading and Eye Movement Control in Readers with Oculomotor and Visuo-Attentional Deficits. Journal of Eye Movement Research. 2025; 18(4):25. https://doi.org/10.3390/jemr18040025
Chicago/Turabian StyleDucrot, Stéphanie, Bernard Lété, Marie Vernet, Delphine Massendari, and Jérémy Danna. 2025. "Improving Reading and Eye Movement Control in Readers with Oculomotor and Visuo-Attentional Deficits" Journal of Eye Movement Research 18, no. 4: 25. https://doi.org/10.3390/jemr18040025
APA StyleDucrot, S., Lété, B., Vernet, M., Massendari, D., & Danna, J. (2025). Improving Reading and Eye Movement Control in Readers with Oculomotor and Visuo-Attentional Deficits. Journal of Eye Movement Research, 18(4), 25. https://doi.org/10.3390/jemr18040025