The Interplay Between Task Difficulty and Microsaccade Rate: Evidence for the Critical Role of Visual Load
Abstract
:Introduction
Microsaccades and task difficulty
The present study
Method
Participants
Task and Stimuli
Experimental design
Apparatus
Measures
Eye movement recordings and analyses
Procedure
Data analysis
Results
Performance and subjective workload
Microsaccade rate
Discussion
Task manipulation
Limitations and future research
Implications
Acknowledgments
Ethics and Conflict of Interest
References
- Attneave, F., and M. D. Arnoult. 1956. The quantitative study of shape and pattern perception. Psychological Bulletin 53: 452–471. [Google Scholar] [CrossRef]
- Attneave, F. 1957. Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology 53: 221–227. [Google Scholar] [CrossRef]
- Au, J., E. Sheehan, N. Tsai, G. J. Duncan, M. Buschkuehl, and S. M. Jaeggi. 2015. Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin and Review 22, 2: 366–377. [Google Scholar] [CrossRef] [PubMed]
- Beer, A. L., A. H. Heckel, and M. W. Greenlee. 2008. A motion illusion reveals mechanisms of perceptual stabilization. PLoS One 3, 7: e2741. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, S., M. Pedrotti, and B. Bridgeman. 2011. Microsaccades and exploratory saccades in a naturalistic environment. Journal of Eye Movement Research 4, 2: 1–10. [Google Scholar] [CrossRef]
- Betta, E., and M. Turatto. 2006. Are you ready? I can tell by looking at your microsaccades. Neuroreport 17, 10: 1001–1004. [Google Scholar] [CrossRef] [PubMed]
- Brainard, D. H. 1997. The psychophysics toolbox. Spatial Vision 10: 433–436. [Google Scholar] [CrossRef]
- Collin, C. A., and P. A. McMullen. 2002. Using Matlab to generate families of similar Attneave shapes. Behavior Research Methods, Instruments, & Computers 34, 1: 55–68. [Google Scholar] [CrossRef]
- Dalmaso, M., L. Castelli, P. Scatturin, and G. Galfano. 2017. Working memory load modulates microsaccadic rate. Journal of Vision 17, 3: 6–6. [Google Scholar] [CrossRef]
- Engbert, R., and R. Kliegl. 2003. Microsaccades uncover the orientation of covert attention. Vision Research 43: 1035–1045. [Google Scholar] [CrossRef]
- Engbert, R. 2006a. Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research 154: 177–192. [Google Scholar] [PubMed]
- Engbert, R. 2006b. Flick-induced flips in perception. Neuron 49: 168–170. [Google Scholar] [CrossRef]
- Engbert, R., and K. Mergenthaler. 2006. Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences 103, 18: 7192–7197. [Google Scholar] [CrossRef]
- Gao, X, H. Yan, and H. Sun. 2015. Modulation of microsaccade rate by task difficulty revealed through between-and within-trial comparisons. Journal of Vision 15, (3): 1–5. [Google Scholar] [CrossRef]
- Hafed, Z. M., L. Goffart, and R. J. Krauzlis. 2009. A neural mechanism for microsaccade generation in the primate superior colliculus. science 323, 5916: 940–943. [Google Scholar] [CrossRef]
- Hart, S.G., and L.E. Staveland. 1988. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In Human Mental Workload. Edited by P. A. Hancock and N. Meshkah. Amsterdam: North Holland: pp. 139–183. [Google Scholar]
- Hart, S. G. 2006. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the human factors and ergonomics society annual meeting. Los Angeles, CA: Sage publications, October, Vol. 50, No. 9, pp. 904–908. [Google Scholar]
- Hicheur, H., S. Zozor, A. Campagne, and A. Chauvin. 2013. Microsaccades are modulated by both attentional demands of a visual discrimination task and background noise. Journal of Vision 13, 13: 18–18. [Google Scholar] [CrossRef]
- Kirchner, W. K. 1958. Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology 55, 352–358. [Google Scholar] [CrossRef]
- Kleiner, M., D. Brainard, D. Pelli, A. Ingling, R. Murray, C. Broussard, and others. 2007. What's new in Psychtoolbox-3. Perception 36, 14: 1. [Google Scholar]
- Krejtz, K., A. Duchowski, I. Krejtz, A. Szarkowska, and A. Kopacz. 2016. Discerning ambient/focal attention with coefficient K. ACM Transactions on Applied Perception (TAP) 13, 3: 1–20. [Google Scholar] [CrossRef]
- Krueger, E., A. Schneider, B. Sawyer, A. Chavaillaz, A. Sonderegger, R. Groner, and P. Hancock. 2019. Microsaccades distinguish looking from seeing. Journal of Eye Movement Research 12, 6: 2. [Google Scholar] [CrossRef]
- Laubrock, J., R. Engbert, and R. Kliegl. 2005. Microsaccade dynamics during covert attention. Vision Research 13: 721–730. [Google Scholar] [CrossRef]
- Lavie, N., A. Hirst, J. W. De Fockert, and E. Viding. 2004. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General 133, 3: 339. [Google Scholar] [CrossRef]
- Lavie, N. 2010. Attention, distraction, and cognitive control under load. Current directions in psychological science 19, 3: 143–148. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, and D. H. Hubel. 2004. The role of fixational eye movements in visual perception. Nature Reviews Neuroscience 5: 229–240. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S.L. Macknik, X.G. Troncoso, and T.A. Dyar. 2006. Microsaccades counteract visual fading during fixation. Neuron 49: 297–305. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and D. H. Hubel. 2009. Microsaccades: a neurophysiological analysis. Trends in Neurosciences 32, 9: 463–475. [Google Scholar] [CrossRef]
- Martinez-Conde, S., J. Otero-Millan, and S.L. Macknik. 2013. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nature Review Neuroscience 14: 83–96. [Google Scholar] [CrossRef]
- Møller, F., M. Laursen, J. Tygesen, and A. Sjølie. 2002. Binocular quantification and characterization of microsaccades. Graefe’s Archive for Clinical and Experimental Ophthalmology 240: 765–770. [Google Scholar] [CrossRef]
- Otero-Millan, J., X.G. Troncoso, S.L. Macknik, I. Serrano-Pedraza, and S. Martinez-Conde. 2008. Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. Journal of vision 8, 14: 21–21. [Google Scholar] [CrossRef]
- Pastukhov, A., and J. Braun. 2010. Rare but precious: Microsaccades are highly informative about attentional allocation. Vision Research 50, 12: 1173–1184. [Google Scholar] [CrossRef]
- Pelli, D.G. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision 10, 4: 437–442. [Google Scholar] [CrossRef] [PubMed]
- Ravizza, S. M., M. R. Delgado, J. M. Chein, J. T. Becker, and J. A. Fiez. 2004. Functional dissociations within the inferior parietal cortex in verbal working memory. Neuroimage 22, 2: 562–573. [Google Scholar] [CrossRef] [PubMed]
- Ragland, J. D., B. I. Turetsky, R. C. Gur, F. Gunning-Dixon, T. Turner, L. Schroeder, and R. E. Gur. 2002. Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks. Neuropsychology 16, 3: 370. [Google Scholar] [CrossRef]
- Rolfs, M. 2009. Microsaccades: small steps on a long way. Vision Research 49: 2415–2441. [Google Scholar] [CrossRef] [PubMed]
- Siegenthaler, E., F. M. Costela, M. B. McCamy, L. L. Di Stasi, J. Otero-Millan, A. Sonderegger, R. Groner, S. Macknik, and S. Martinez-Conde. 2013. Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. European Journal of Neuroscience 39: 1–8. [Google Scholar] [CrossRef]
- Troncoso, X. G., S. L. Macknik, and S. Martinez-Conde. 2008. Microsaccades counteract perceptual filling-in. Journal of Vision 8, (14):15: 1–9. [Google Scholar] [CrossRef]
- Troncoso, X. G., S. L. Macknik, J. Otero-Millan, and S. Martinez-Conde. 2008. Microsaccades drive illusory motion in the Enigma illusion. PNAS 104, 41: 16033–16038. [Google Scholar] [CrossRef]
- Valsecchi, M., and M. Turatto. 2007. Microsaccadic response to visual events that are invisible to the superior colliculus. Behavioral neuroscience 121, 4: 786. [Google Scholar] [CrossRef]
- Valsecchi, M., and M. Turatto. 2009. Microsaccadic responses in a bimodal oddball task. Psychological research 73, 1: 23–33. [Google Scholar] [CrossRef]
- Vanderplas, J. M., and E. A. Garvin. 1959. The association value of random shapes. Journal of Experimental Psychology 57, 3: 147. [Google Scholar] [CrossRef]
- Xue, L., D. Huang, T. Wang, Q. Hu, X. Chai, L. Li, and Y. Chen. 2017. Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task. Scientific reports 7, 1: 16496. [Google Scholar] [CrossRef] [PubMed]
Task difficulty | Letters M (SD) | Figures M (SD) | t(10) | p | ηp² |
Control | 1.41 (0.44) | 1.39 (0.59) | 00.173 | .866 | 0.055 |
1-back | 1.46 (0.53) | 1.86 (0.42) | -4.776 | .001 | 0.834 |
2-back | 1.42 (0.50) | 1.67 (0.51) | -2.461 | .034 | 0.614 |
3-back | 1.52 (0.50) | 1.82 (0.50) | -3.831 | .003 | 0.771 |
4-back | 1.58 (0.48) | 2.00 (0.47) | -8.068 | .000 | 0.931 |
© 2021 by the authors. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Schneider, A.; Sonderegger, A.; Krueger, E.; Meteier, Q.; Luethold, P.; Chavaillaz, A. The Interplay Between Task Difficulty and Microsaccade Rate: Evidence for the Critical Role of Visual Load. J. Eye Mov. Res. 2020, 13, 1-12. https://doi.org/10.16910/jemr.13.5.6
Schneider A, Sonderegger A, Krueger E, Meteier Q, Luethold P, Chavaillaz A. The Interplay Between Task Difficulty and Microsaccade Rate: Evidence for the Critical Role of Visual Load. Journal of Eye Movement Research. 2020; 13(5):1-12. https://doi.org/10.16910/jemr.13.5.6
Chicago/Turabian StyleSchneider, Andrea, Andreas Sonderegger, Eva Krueger, Quentin Meteier, Patrick Luethold, and Alain Chavaillaz. 2020. "The Interplay Between Task Difficulty and Microsaccade Rate: Evidence for the Critical Role of Visual Load" Journal of Eye Movement Research 13, no. 5: 1-12. https://doi.org/10.16910/jemr.13.5.6
APA StyleSchneider, A., Sonderegger, A., Krueger, E., Meteier, Q., Luethold, P., & Chavaillaz, A. (2020). The Interplay Between Task Difficulty and Microsaccade Rate: Evidence for the Critical Role of Visual Load. Journal of Eye Movement Research, 13(5), 1-12. https://doi.org/10.16910/jemr.13.5.6