Torsional Component of Microsaccades During Fixation and Quick Phases During Optokinetic Stimulation
Abstract
:Introduction
Methods
Subjects
Apparatus
Experimental paradigm and visual stimuli
Data analysis
Results
Discussion
Ethics and Conflict of Interest
Acknowledgments
References
- Clarke, A. H., W. Teiwes, and H. Scherer. 1991. Vide-ooculography—An alternative method for measure-ment of three-dimensional eye movements. In Oculomo-tor Control and Cognitive Processes. Amsterdam: Elsevier: pp. 431–43. [Google Scholar]
- Engbert, R., and R. Kliegl. 2003. Microsaccades uncover the orientation of covert attention. Vision Research 43, 9: 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Enright, J. T. 1990. Stereopsis, cyclotorsional “noise” and the apparent vertical. Vision Research 30, 10: 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S. J., F. A. Proudlock, and I. Gottlob. 2004. Torsional optokinetic nystagmus: Normal response characteristics. British Journal of Ophthalmology 88, 6: 796–802. [Google Scholar] [CrossRef] [PubMed]
- Ferman, L., H. Collewijn, T. C. Jansen, and A. V. Van den Berg. 1987. Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a three-dimensional scleral induction coil technique. Vision Research 27, 5: 811–828. [Google Scholar] [CrossRef] [PubMed]
- Frens, M. A. 2002. Scleral Search Coils Influence Saccade Dynamics. Journal of Neurophysiology 88, 2: 692–698. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J. B., and L. F. Dell’Osso. 2004. Congenital nystagmus: Hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. Journal of Vision 4, 7: 7. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, M., D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard. 2007. What’s new in psychtoolbox-3. Perception 36, 14: 1–16. [Google Scholar]
- Leigh, R., and D. Zee. 2015. The Neurology of Eye Movements, 5th ed. Oxford University Press. [Google Scholar]
- Martinez-Conde, S., J. Otero-Millan, and S. L. Macknik. 2013. The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience 14, 2: 83–96. [Google Scholar] [CrossRef] [PubMed]
- McCamy, M. B., N. Collins, J. Otero-Millan, M. Al-Kalbani, S. L. Macknik, D. Coakley, X. G. Troncoso, G. Boyle, V. Narayanan, T. R. Wolf, and S. Martinez-Conde. 2013. Simultaneous recordings of ocular microtremor and microsaccades with a piezoelectric sensor and a video-oculography system. PeerJ 1: e14. [Google Scholar] [CrossRef] [PubMed]
- Ohki, Y., H. Shimazu, and I. Suzuki. 1988. Excitatory input to burst neurons from the labyrinth and its mediating pathway in the cat: Location and functional characteristics of burster-driving neurons. Experi-mental Brain Research 72, 3: 457–472. [Google Scholar] [CrossRef]
- Ong, J. K. Y., and T. Haslwanter. 2010. Measuring torsional eye movements by tracking stable iris features. Journal of Neuroscience Methods 192, 2: 261–267. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J., L. M. Optican, S. L. Macknik, and S. Martinez-Conde. 2018. Modeling the Triggering of Saccades, Microsaccades, and Saccadic Intrusions. Frontiers in Neurology 9. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J., D. C. Roberts, A. Lasker, D. S. Zee, and A. Kheradmand. 2015. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion. Journal of Vision 15, 14: 11. [Google Scholar] [CrossRef] [PubMed]
- Ott, D., S. H. Seidman, and R. J. Leigh. 1992. The stability of human eye orientation during visual fixation. Neuroscience Letters 142, 2: 183–186. [Google Scholar] [CrossRef] [PubMed]
- Rolfs, M. 2009. Microsaccades: Small steps on a long way. Vision Research 49, 20: 2415–2441. [Google Scholar] [CrossRef] [PubMed]
- Ron, S., D. A. Robinson, and A. A. Skavenski. 1972. Saccades and the quick phase of nystagmus. Vision Research 12, 12: 2015–2022. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, L. J., J. Van Der Steen, and H. Collewijn. 1994. Instability of ocular torsion during fixation: Cyclovergence is more stable than cycloversion. Vision Research 34, 8: 1077–1087. [Google Scholar] [CrossRef]
- Zhang, X., and J. Li. 2012. A Novel Methodology for High Accuracy Fixational Eye Movements Detection. International Proceedings of Chemical, Biological & Environmental Engineering, vol. 29. [Google Scholar]
© 2020 by the authors. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Sadeghpour, S.; Otero-Millan, J. Torsional Component of Microsaccades During Fixation and Quick Phases During Optokinetic Stimulation. J. Eye Mov. Res. 2020, 13, 1-8. https://doi.org/10.16910/jemr.13.5.5
Sadeghpour S, Otero-Millan J. Torsional Component of Microsaccades During Fixation and Quick Phases During Optokinetic Stimulation. Journal of Eye Movement Research. 2020; 13(5):1-8. https://doi.org/10.16910/jemr.13.5.5
Chicago/Turabian StyleSadeghpour, Shirin, and Jorge Otero-Millan. 2020. "Torsional Component of Microsaccades During Fixation and Quick Phases During Optokinetic Stimulation" Journal of Eye Movement Research 13, no. 5: 1-8. https://doi.org/10.16910/jemr.13.5.5
APA StyleSadeghpour, S., & Otero-Millan, J. (2020). Torsional Component of Microsaccades During Fixation and Quick Phases During Optokinetic Stimulation. Journal of Eye Movement Research, 13(5), 1-8. https://doi.org/10.16910/jemr.13.5.5