Scanpath Visualization and Comparison Using Visual Aggregation Techniques
Abstract
:Introduction
Previous Work
Methodology
Fixation Detection
Fixation Clustering
Saccade Bundling
Flow Direction Map Visualization
Illustrations Datasets
Results and Discussion
Square Scanpath
Visual Search Task
Art Perception
Scanpaths Comparison
Conclusion and Future Work
Ethics and Conflict of Interest
References
- Andersson, R., L. Larsson, K. Holmqvist, M. Stridh, and M. Nyström. 2017. One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms. Behavior Research Methods 49, 2: 616–637. [Google Scholar] [CrossRef] [PubMed]
- Blascheck, T., K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl. 2014. State-of-the-art of visualization for eye tracking data. In Proceedings of Eurographics Conference on Visualization (EuroVis). pp. 63–82. [Google Scholar] [CrossRef]
- Blascheck, T., M. Schweizer, F. Beck, and T. Ertl. 2017. Visual Comparison of Eye Movement Patterns. Computer Graphics Forum 36, 3: 87–97. [Google Scholar] [CrossRef]
- Blascheck, T., K. Kurzhals, M. Raschke, S. Strohmaier, D. Weiskopf, and T. Ertl. 2016. AOI hierarchies for visual exploration of fixation sequences. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 111–118. [Google Scholar] [CrossRef]
- Borland, D., and Russell Li. 2007. Rainbow color map (still) considered harmful. IEEE Computer Graphics and Applications 27, 2: 14–17. [Google Scholar] [CrossRef] [PubMed]
- Burch, M. 2017. Eye movement plots. In Proceedings of the 10th International Symposium on Visual Information Communication and Interaction. pp. 101–108. [Google Scholar] [CrossRef]
- Burch, M., H. Schmauder, M. Raschke, and D. Weiskopf. 2014. Saccade plots. In Proceedings of the Symposium on Eye Tracking Research and Applications. pp. 307–310. [Google Scholar] [CrossRef]
- Burch, M., A. Kumar, K. Mueller, and D. Weiskopf. 2016. Color bands: Visualizing dynamic eye movement patterns. In IEEE Second Workshop on Eye Tracking and Visualization. pp. 40–44. [Google Scholar] [CrossRef]
- Burch, M., A. Kull, and D. Weiskopf. 2013. AOI rivers for visualizing dynamic eye gaze frequencies. Computer Graphics Forum 32, 3: 281–290. [Google Scholar] [CrossRef]
- Cabral, B., and L. C. Leedom. 1993. Imaging vector fields using line integral convolution. In Proceedings of the Conference on Computer Graphics and Interactive Techniques. pp. 263–270. [Google Scholar] [CrossRef]
- Comaniciu, D., and P. Meer. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5: 603–619. [Google Scholar] [CrossRef]
- Dinh, H. Q., and L. Xu. 2008. Measuring the similarity of vector fields using global distributions. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition. pp. 187–196. [Google Scholar] [CrossRef]
- Duchowski, A. T., J. Driver, S. Jolaoso, W. Tan, B. N. Ramey, and A. Robbins. 2010. Scanpath comparison revisited. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 219–226. [Google Scholar] [CrossRef]
- Duchowski, A. T. 2002. A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers 34, 4: 455–470. [Google Scholar] [CrossRef]
- Eraslan, S., Y. Yesilada, and S. Harper. 2015. Eye tracking scanpath analysis techniques on web pages: A survey, evaluation and comparison. Journal of Eye Movement Research 9, 1: 1–19. [Google Scholar] [CrossRef]
- Goldberg, J. H., and J. I. Helfman. 2010. Visual scanpath representation. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 203–210. [Google Scholar] [CrossRef]
- Goldberg, J. H., and J. I. Helfman. 2010. Scanpath clustering and aggregation. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 227–234. [Google Scholar] [CrossRef]
- Holmqvist, K., M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de Weijer. 2011. Eye tracking: A comprehensive guide to methods and measures. OUP Oxford: ISBN 978-0198738596. [Google Scholar]
- Hurter, C. 2015. Image-Based Visualization: Interactive Multidimensional Data Exploration. Synthesis Lectures on Visualization 3, 2: 1–127. [Google Scholar] [CrossRef]
- Hurter, C., O. Ersoy, and A. Telea. 2012. Graph bundling by kernel density estimation. Computer Graphics Forum 31, 3: 865–874. [Google Scholar] [CrossRef]
- Hurter, C., O. Ersoy, S. I. Fabrikant, T. R. Klein, and A. C. Telea. 2014. Bundled visualization of dynamicgraph and trail data. IEEE Transactions on Visualization and Computer Graphics 20, 8: 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R. J., and K. S. Karn. 2003. Edited by R. Radach, J. Hyona and H. Deubel. Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. In The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research. Elsevier. [Google Scholar]
- Jarodzka, H., K. Holmqvist, and M. Nyström. 2010. A vector-based, multidimensional scanpath similarity measure. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 211–218. [Google Scholar] [CrossRef]
- Laramee, R. S., H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf. 2004. The State of the Art in Flow Visualization: Dense and Texture-Based Techniques. Computer Graphics Forum 23, 2: 203–221. [Google Scholar] [CrossRef]
- Lhuillier, A., C. Hurter, and A. Telea. 2017. State of the Art in Edge and Trail Bundling Techniques. Computer Graphics Forum 36, 3: 619–645. [Google Scholar] [CrossRef]
- Lhuillier, A., C. Hurter, and A. Telea. 2017. FFTEB: Edge Bundling of Huge Graphs by the Fast Fourier Transform. In IEEE Pacific Visualization Symposium (PacificVis). pp. 190–199. [Google Scholar] [CrossRef]
- Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics—Doklady 10, 8: 707–710. [Google Scholar]
- Le Meur, O., and T. Baccino. 2013. Methods for comparing scanpaths and saliency maps: Strengths and weaknesses. Behavior Research Methods 45, 1: 251–266. [Google Scholar] [CrossRef] [PubMed]
- Matin, E. 1974. Saccadic suppression: A review and an analysis. Psychological Bulletin 81, 12: 899–917. [Google Scholar] [CrossRef] [PubMed]
- Moreland, K. 2009. Diverging color maps for scientific visualization. Advances in Visual Computing 5876: 92–103. [Google Scholar] [CrossRef]
- Netzel, R., M. Burch, and D. Weiskopf. 2016. Interactive scanpath-oriented annotation of fixations. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 183–187. [Google Scholar] [CrossRef]
- Nyström, M., and K. Holmqvist. 2010. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behavior Research Methods 42, 1: 188–204. [Google Scholar] [CrossRef] [PubMed]
- Peysakhovich, V., C. Hurter, and A. Telea. 2015. Attribute-driven edge bundling for general graphs with applications in trail analysis. In IEEE Pacific Visualization Symposium (PacificVis). pp. 39–46. [Google Scholar] [CrossRef]
- Post, F. H., B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. 2002. Feature extraction and visualization of flow fields. In Proceedings of Eurographics Conference on Visualization (EuroVis). pp. 69–100. [Google Scholar]
- Raschke, M., D. Herr, T. Blascheck, T. Ertl, M. Burch, S. Willmann, and M. Schrauf. 2014. A visual approach for scan path comparison. In Proceedings of the Symposium on Eye Tracking Research and Applications. pp. 135–142. [Google Scholar] [CrossRef]
- Salvucci, D. D., and J. H. Goldberg. 2000. Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 71–78. [Google Scholar] [CrossRef]
- Santella, A., and D. DeCarlo. 2004. Robust clustering of eye movement recordings for quantification of visual interest. In Proceedings of the Symposium on Eye Tracking Research & Applications. pp. 27–34. [Google Scholar] [CrossRef]
- Špakov, O., and D. Miniotas. 2007. Visualization of eye gaze data using heat maps. Elektronika ir elektrotechnika 2, 74: 55–58. [Google Scholar]
- Wegenkittl, R., E. Groller, and W. Purgathofer. 1997. Animating flow fields: Rendering of oriented line integral convolution. In Computer Animation. pp. 15–21. [Google Scholar]
- van der Zwan, M., V. Codreanu, and A. Telea. 2016. CUBu: Universal real-time bundling for large graphs. IEEE Transactions on Visualization and Computer Graphics 22, 12: 2550–2563. [Google Scholar] [CrossRef] [PubMed]
Copyright © 2018. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Peysakhovich, V.; Hurter, C. Scanpath Visualization and Comparison Using Visual Aggregation Techniques. J. Eye Mov. Res. 2017, 10, 1-14. https://doi.org/10.16910/jemr.10.5.9
Peysakhovich V, Hurter C. Scanpath Visualization and Comparison Using Visual Aggregation Techniques. Journal of Eye Movement Research. 2017; 10(5):1-14. https://doi.org/10.16910/jemr.10.5.9
Chicago/Turabian StylePeysakhovich, Vsevolod, and Christophe Hurter. 2017. "Scanpath Visualization and Comparison Using Visual Aggregation Techniques" Journal of Eye Movement Research 10, no. 5: 1-14. https://doi.org/10.16910/jemr.10.5.9
APA StylePeysakhovich, V., & Hurter, C. (2017). Scanpath Visualization and Comparison Using Visual Aggregation Techniques. Journal of Eye Movement Research, 10(5), 1-14. https://doi.org/10.16910/jemr.10.5.9