Ways of Improving the Precision of Eye Tracking Data: Controlling the Influence of Dirt and Dust on Pupil Detection
Abstract
:Introduction
Related work
Pupil Detection Algorithms
Algorithm ExCuSe
Algorithm ElSe
Algorithm Set
Algorithm by Świrski et al.
Image Synthesis in Eye-Tracking Algorithm Development
Methods
Observations on Real Recordings
Dirt Particle Image Synthesis
Dataset
Results
Discussion
Acknowledgments
References
- Fuhl, W., D. Geisler, T. Santini, W. Rosenstiel, and E. Kas-neci. 2016. Evaluation of state-of-the-art pupil detection algorithms on remote eye images. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM: pp. 1716–1725. [Google Scholar] [CrossRef]
- Fuhl, W., T. Kübler, K. Sippel, W. Rosenstiel, and E. Kas-neci. 2015. Edited by G. Azzopardi and N. Petkov. ExCuSe: Robust Pupil Detec-tion in Real-World Scenarios. In Computer Analysis of Images and Patterns: 16th International Conference, CAIP 2015, Valletta, Malta, September 2-4, 2015 Proceedings, Part I. Springer International Publish-ing: pp. 39–51. [Google Scholar] [CrossRef]
- Fuhl, W., T. Santini, G. Kasneci, and E. Kasneci. 2016. PupilNet: Convolutional Neural Networks for Robust Pupil Detection. arXiv arXiv:1601.04902. [Google Scholar]
- Fuhl, W., T. C. Santini, T. Kübler, and E. Kasneci. 2016. Else: Ellipse selection for robust pupil detection in real-world environments. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications. New York, NY, USA, ACM: pp. 123–130. [Google Scholar] [CrossRef]
- Fuhl, W., M. Tonsen, A. Bulling, and E. Kasneci. 2016. Pupil detection for head-mounted eye track-ing in the wild: an evaluation of the state of the art. Machine Vision and Applications 27, 8: 1275–1288. [Google Scholar] [CrossRef]
- Holmqvist, K., M. Nyström, and F. Mulvey. 2012. Eye tracker data quality: What it is and how to measure it. In Proceedings of the Symposium on Eye Tracking Re-search and Applications. ACM: pp. 45–52. [Google Scholar] [CrossRef]
- Javadi, A.-H., Z. Hakimi, M. Barati, V. Walsh, and L. Tcheang. 2015. Set: a pupil detection method using sinusoidal approximation. Fron-tiers in Neuroengineering 8: 4. [Google Scholar] [CrossRef]
- Kasneci, E., K. Sippel, K. Aehling, M. Heister, W. Rosenstiel, U. Schiefer, and et al. 2014. Driving with binocular visual field loss? A study on a supervised on-road par-cours with simultaneous eye and head tracking. PloS one 9, 2: e87470. [Google Scholar]
- Kübler, T. C., T. Rittig, E. Kasneci, J. Ungewiss, and C. Krauss. 2016. Rendering refraction and reflection of eyeglasses for synthetic eye tracker images. In Pro-ceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications. ACM: pp. 143–146. [Google Scholar] [CrossRef]
- Mohammed, G. J., B.-R. Hong, and A. A. Jarjes. 2010. Accurate pupil features extraction based on new pro-jection function. Computing and Informatics 29, 4: 663–680. [Google Scholar]
- Schnipke, S. K., and M. W. Todd. 2000. Trials and tribu-lations of using an eye-tracking system. In CHI ’00 Extended Abstracts on Human Factors in Comput-ing Systems. ACM: pp. 273–274. [Google Scholar] [CrossRef]
- Swirski, L., A. Bulling, and N. Dodgson. 2012. Robust real-time pupil tracking in highly off-axis images. In Proceedings of the Symposium on Eye Tracking Re-search and Applications. ACM: pp. 173–176. [Google Scholar] [CrossRef]
- Swirski, L., and N. Dodgson. 2014. Rendering synthetic ground truth images for eye tracker evaluation. In Proceedings of the Symposium on Eye Tracking Re-search and Applications ACM; pp. 219–222. [Google Scholar] [CrossRef]
- Tonsen, M., X. Zhang, Y. Sugano, and A. Bulling. 2016. Labelled pupils in the wild: A dataset for studying pupil detection in unconstrained environments. In Pro-ceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications. ACM: pp. 139–142. [Google Scholar] [CrossRef]
- Wass, S. V., L. Forssman, and J. Leppänen. 2014. Ro-bustness and precision: How data quality may in-fluence key dependent variables in infant eye-tracker analyses. Infancy 19, 5: 427–460. [Google Scholar] [CrossRef]
- Willson, R., M. Maimone, A. Johnson, and L. Scherr. 2005. An optical model for image artifacts produced by dust particles on lenses. In ’i-SAIRAS 2005’-The 8th International Symposium on Artificial Intel-ligence, Robotics and Automation in Space, p. 103.1, Vol. 603. (Provided by the 101 SAO/NASA Astrophysics Data System). Available online: http://adsabs.harvard.edu/abs/2005ESASP.603E.103W.
- Wood, E., T. Baltrušaitis, L.-P. Morency, P. Robinson, and A. Bulling. 2016. Learning an appearance-based gaze estimator from one million synthesised images. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Ap-plications. ACM: pp. 131–138. [Google Scholar] [CrossRef]
- Zhang, X., Y. Sugano, M. Fritz, and A. Bulling. 2016. It’s written all over your face: Full-face appearance-based gaze estimation. CoRR, abs/1611.08860. Available online: http://arxiv.org/abs/1611.08860.
Copyright © 2017 2017 International Association of Orofacial Myology
Share and Cite
Fuhl, W.; Kübler, T.C.; Hospach, D.; Bringmann, O.; Rosenstiel, W.; Kasneci, E. Ways of Improving the Precision of Eye Tracking Data: Controlling the Influence of Dirt and Dust on Pupil Detection. J. Eye Mov. Res. 2017, 10, 1-9. https://doi.org/10.16910/jemr.10.3.1
Fuhl W, Kübler TC, Hospach D, Bringmann O, Rosenstiel W, Kasneci E. Ways of Improving the Precision of Eye Tracking Data: Controlling the Influence of Dirt and Dust on Pupil Detection. Journal of Eye Movement Research. 2017; 10(3):1-9. https://doi.org/10.16910/jemr.10.3.1
Chicago/Turabian StyleFuhl, Wolfgang, Thomas C. Kübler, Dennis Hospach, Oliver Bringmann, Wolfgang Rosenstiel, and Enkelejda Kasneci. 2017. "Ways of Improving the Precision of Eye Tracking Data: Controlling the Influence of Dirt and Dust on Pupil Detection" Journal of Eye Movement Research 10, no. 3: 1-9. https://doi.org/10.16910/jemr.10.3.1
APA StyleFuhl, W., Kübler, T. C., Hospach, D., Bringmann, O., Rosenstiel, W., & Kasneci, E. (2017). Ways of Improving the Precision of Eye Tracking Data: Controlling the Influence of Dirt and Dust on Pupil Detection. Journal of Eye Movement Research, 10(3), 1-9. https://doi.org/10.16910/jemr.10.3.1