Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin
Abstract
:1. Introduction
2. Results
2.1. Metformin Treatment, NeP Management, and Sex-Differences
2.2. Effects on Axonal and Myelin Degeneration after Peripheral Nerve Lesion
2.3. Effects on the Regulation of Cell Energy Status
2.4. Regulation of Inflammation
2.5. Macrophages Activation after CCI
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Surgery
4.3. Drugs
4.4. Allodynia Assessment
4.5. Body Temperature
4.6. Glycemia and Triglycerides Measurement
4.7. Enzyme-Linked Immunosorbent Assay (ELISA) for TNFα, VIT B12 and SIRT1
4.8. Inflammatory Antibody Array
4.9. Immunohistochemical Analysis
4.10. Confocal Images and Analysis
4.11. Western Blot Analysis for pAMPK
4.12. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughan, E.M.; Rueda, J.J.; Samson, S.L.; Hyman, D.J. Reducing the Burden of Diabetes Treatment: A Review of Low-cost Oral Hypoglycemic Medications. Curr. Diabetes Rev. 2020, 16, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Flory, J.; Lipska, K. Metformin in 2019. JAMA—J. Am. Med. Assoc. 2019, 321, 1926–1927. [Google Scholar] [CrossRef] [PubMed]
- Coccurello, R.; Moles, A. Potential mechanisms of atypical antipsychotic-induced metabolic derangement: Clues for understanding obesity and novel drug design. Pharmacol. Ther. 2010, 127, 210–251. [Google Scholar] [CrossRef]
- Loi, H.; Boal, F.; Tronchere, H.; Cinato, M.; Kramar, S.; Oleshchuk, O.; Korda, M.; Kunduzova, O. Metformin Protects the Heart Against Hypertrophic and Apoptotic Remodeling After Myocardial Infarction. Front. Pharmacol. 2019, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, H.; Al-Mureish, A.; Wu, N. Research progress of metformin in gestational diabetes mellitus: A narrative review. Ann. Palliat. Med. 2021, 10, 3423–3437. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, B.; Liu, W.-X.; Lu, K.; Pan, H.; Wang, T.; Oh, C.-D.; Yi, D.; Huang, J.; Zhao, L.; et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann. Rheum. Dis. 2020, 79, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Zhong, X.; Gao, P.; Shi, J.; Wu, Z.; Guo, Z.; Wang, Z.; Song, Y. The Potential Effect of Metformin on Cancer: An Umbrella Review. Front. Endocrinol. 2019, 10, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res. 2019, 11, 3295–3313. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.M.; Stephenson, M.D.; de Courten, B.; Chapman, I.; Bellman, S.M.; Aromataris, E. Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2018, 65, 1225–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef]
- Kulkarni, A.S.; Gubbi, S.; Barzilai, N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab. 2020, 32, 15–30. [Google Scholar] [CrossRef]
- Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 2000, 348, 607–614. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Hall, M.N.; Lin, S.-C.; Hardie, D.G. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 2020, 31, 472–492. [Google Scholar] [CrossRef]
- Duan, Z.; Li, J.; Pang, X.; Wang, H.; Su, Z. Blocking Mammalian Target of Rapamycin (mTOR) Alleviates Neuropathic Pain Induced by Chemotherapeutic Bortezomib. Cell. Physiol. Biochem. 2018, 48, 54–62. [Google Scholar] [CrossRef]
- Géranton, S.M.; Díaz, L.J.; Torsney, C.; Tochiki, K.K.; Stuart, S.A.; Leith, J.L.; Lumb, B.M.; Hunt, S.P. A Rapamycin-Sensitive Signaling Pathway Is Essential for the Full Expression of Persistent Pain States. J. Neurosci. 2009, 29, 15017–15027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obara, I.; Tochiki, K.K.; Géranton, S.M.; Carr, F.B.; Lumb, B.M.; Liu, Q.; Hunt, S.P. Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 2011, 152, 2582–2595. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, S.; Nazio, F.; Tinari, A.; Ciarlo, L.; D’Amelio, M.; Pieroni, L.; Vacca, V.; Urbani, A.; Cecconi, F.; Malorni, W.; et al. Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain 2014, 155, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Melemedjian, O.K.; Asiedu, M.N.; Tillu, D.V.; Sanoja, R.; Yan, J.; Lark, A.; Khoutorsky, A.; Johnson, J.; Peebles, K.A.; Lepow, T.; et al. Targeting Adenosine Monophosphate-Activated Protein Kinase (AMPK) in Preclinical Models Reveals a Potential Mechanism for the Treatment of Neuropathic Pain. Mol. Pain 2011, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Melemedjian, O.K.; Khoutorsky, A.; Sorge, R.E.; Yan, J.; Asiedu, M.N.; Valdez, A.; Ghosh, S.; Dussor, G.; Mogil, J.S.; Sonenberg, N.; et al. mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain 2013, 154, 1080–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King-Himmelreich, T.S.; Möser, C.V.; Wolters, M.C.; Schmetzer, J.; Schreiber, Y.; Ferreirós, N.; Russe, O.Q.; Geisslinger, G.; Niederberger, E. AMPK contributes to aerobic exercise-induced antinociception downstream of endocannabinoids. Neuropharmacology 2017, 124, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Coccurello, R.; Nazio, F.; Rossi, C.; de Angelis, F.; Vacca, V.; Giacovazzo, G.; Procacci, P.; Magnaghi, V.; Ciavardelli, D.; Marinelli, S. Effects of caloric restriction on neuropathic pain, peripheral nerve degeneration and inflammation in normometabolic and autophagy defective prediabetic Ambra1 mice. PLoS ONE 2018, 13, e0208596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagherniya, M.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res. Rev. 2018, 47, 183–197. [Google Scholar] [CrossRef]
- Rabanal-Ruiz, Y.; Otten, E.G.; Korolchuk, V.I. mTORC1 as the main gateway to autophagy. Essays Biochem. 2017, 61, 565–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, G.; Wu, Z.; Shang, J.; Xie, Z.; Chen, C.; Zhang, C. The effects of metformin on autophagy. Biomed. Pharmacother. 2021, 137, 111286. [Google Scholar] [CrossRef]
- Berliocchi, L.; Russo, R.; Maiarù, M.; Levato, A.; Bagetta, G.; Corasaniti, M.T. Autophagy Impairment in a Mouse Model of Neuropathic Pain. Mol. Pain 2011, 7, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.-S.; Jing, P.-B.; Wang, J.-A.; Zhang, R.; Jiang, B.-C.; Gao, Y.-J.; Zhang, Z.-J. Increased autophagic activity in dorsal root ganglion attenuates neuropathic pain following peripheral nerve injury. Neurosci. Lett. 2015, 599, 158–163. [Google Scholar] [CrossRef]
- Bartley, E.J.; Fillingim, R.B. Sex differences in pain: A brief review of clinical and experimental findings. Br. J. Anaesth. 2013, 111, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Gregus, A.M.; Levine, I.S.; Eddinger, K.A.; Yaksh, T.L.; Buczynski, M.W. Sex Differences in Neuroimmune and Glial Mecha-nisms of Pain. Pain 2021, 162, 2186–2200. [Google Scholar]
- Kuhn, J.A.; Vainchtein, I.D.; Braz, J.; Hamel, K.; Bernstein, M.; Craik, V.; Dahlgren, M.W.; Ortiz-Carpena, J.; Molofsky, A.B.; Molofsky, A.V.; et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. eLife 2021, 10, e69056. [Google Scholar] [CrossRef] [PubMed]
- Vacca, V.; Marinelli, S.; Pieroni, L.; Urbani, A.; Luvisetto, S.; Pavone, F. 17beta-estradiol counteracts neuropathic pain: A behavioural, immunohistochemical and proteomic investigation on sex-related differences in mice. Sci. Rep. 2016, 6, srep18980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacca, V.; Marinelli, S.; Pieroni, L.; Urbani, A.; Luvisetto, S.; Pavone, F. Higher pain perception and lack of recovery from neuropathic pain in females: A behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Pain 2014, 155, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Vacca, V.; Marinelli, S.; de Angelis, D.F.; Angelini, D.; Piras, E.; Battistini, L.; Pavone, F.; Coccurello, R. Sexually Dimorphic Immune and Neuroimmune Changes Following Peripheral Nerve Injury in Mice: Novel Insights for Gender Medicine. Int. J. Mol. Sci. 2021, 22, 4397. [Google Scholar] [CrossRef] [PubMed]
- Rotshenker, S. Wallerian degeneration: The innate-immune response to traumatic nerve injury. J. Neuroinflamm. 2011, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- FDA. cder GLUCOPHAGE ® (Metformin Hydrochloride) Tablets GLUCOPHAGE ® XR (Metformin Hydrochloride) Extend-ed-Release Tablets DESCRIPTION; FDA: Silver Spring, MD, USA, 2017. [Google Scholar]
- Inman, C.F.; Rees, L.E.N.; Barker, E.N.; Haverson, K.; Stokes, C.R.; Bailey, M. Validation of computer-assisted, pixel-based analysis of multiple-colour immunofluorescence histology. J. Immunol. Methods 2005, 302, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Tricaud, N.; Park, H.T. Wallerian demyelination: Chronicle of a cellular cataclysm. Cell. Mol. Life Sci. 2017, 74, 4049–4057. [Google Scholar] [CrossRef] [Green Version]
- Filippi-Chiela, E.C.; Villodre, E.S.; Zamin, L.L.; Lenz, G. Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells. PLoS ONE 2011, 6, e20849. [Google Scholar] [CrossRef] [PubMed]
- Ruderman, N.B.; Xu, X.J.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A Long-Standing Part-nership? Am. J. Physiol.-Endocrinol. Metab. 2010, 298, E751–E760. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, H.S.; McBurney, M.; Robbins, P.D. SIRT1 Negatively Regulates the Mammalian Target of Rapamycin. PLoS ONE 2010, 5, e9199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Piao, X.; Bonaldo, P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015, 130, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, P.; Franchi, S.; Trovato, A.E.; Valsecchi, A.E.; Panerai, A.E.; Colleoni, M. Transient early expression of TNF-α in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci. Lett. 2008, 436, 210–213. [Google Scholar] [CrossRef]
- Inyang, K.E.; Szabo-Pardi, T.; Wentworth, E.; McDougal, T.A.; Dussor, G.; Burton, M.D.; Price, T.J. The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacol. Res. 2019, 139, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.; Pant, H.C. Neurofilament protein synthesis and phosphorylation. J. Neurocytol. 2000, 29, 843–872. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments at a glance. J. Cell Sci. 2012, 125, 3257–3263. [Google Scholar] [CrossRef] [Green Version]
- Berta, T.; Qadri, Y.; Tan, P.-H.; Ji, R.-R. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin. Ther. Targets 2017, 21, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, S.N.; Waddell, P.J. Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J. Physiol. 1991, 435, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Nixon, R.A. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front. Neurosci. 2021, 15, 689938. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Lu, J.-H. Autophagy and Macrophage Functions: Inflammatory Response and Phagocytosis. Cells 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trefts, E.; Shaw, R.J. AMPK: Restoring metabolic homeostasis over space and time. Mol. Cell 2021, 81, 3677–3690. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Chern, Y. Contribution of Energy Dysfunction to Impaired Protein Translation in Neurodegenerative Diseases. Front. Cell. Neurosci. 2021, 15, 668500. [Google Scholar] [CrossRef]
- Weng, W.; Yao, C.; Poonit, K.; Zhou, X.; Sun, C.; Zhang, F.; Yan, H. Metformin relieves neuropathic pain after spinal nerve ligation via autophagy flux stimulation. J. Cell. Mol. Med. 2019, 23, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- DeFrancesco-Lisowitz, A.; Lindborg, J.; Niemi, J.; Zigmond, R. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015, 302, 174–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, L.I.; Popovich, P.G. Inflammation and axon regeneration. Curr. Opin. Neurol. 2011, 24, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Martini, R.; Fischer, S.; López-Vales, R.; David, S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008, 56, 1566–1577. [Google Scholar] [CrossRef]
- Beirowski, B. The LKB1-AMPK and mTORC1 Metabolic Signaling Networks in Schwann Cells Control Axon Integrity and Myelination. BioEssays 2018, 41, e1800075. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Ma, T.; Shen, X.-N.; Xia, X.-F.; Xu, G.-D.; Bai, X.-L.; Liang, T.-B. Macrophage-Induced Tumor Angiogenesis Is Regulated by the TSC2–mTOR Pathway. Cancer Res. 2012, 72, 1363–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qing, L.; Fu, J.; Wu, P.; Zhou, Z.; Yu, F.; Tang, J. Metformin Induces the M2 Macrophage Polarization to Accelerate the Wound Healing via Regulating Ampk/ Mtor/Nlrp3 Inflammasome Singling Pathway. Am. J. Transl. Res. 2019, 11, 655–668. [Google Scholar] [PubMed]
- Feng, X.; Chen, W.; Ni, X.; Little, P.J.; Xu, S.; Tang, L.; Weng, J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front. Immunol. 2021, 12, 682853. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Zhang, L.; Cheng, J.-K.; Ji, R.-R. Cytokine Mechanisms of Central Sensitization: Distinct and Overlapping Role of Interleukin-1β, Interleukin-6, and Tumor Necrosis Factor-α in Regulating Synaptic and Neuronal Activity in the Superficial Spinal Cord. J. Neurosci. 2008, 28, 5189–5194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfers, M.; Lee, D.H.; Brors, D.; Yaksh, T.L.; Sorkin, L.S. Increased Sensitivity of Injured and Adjacent Uninjured Rat Primary Sensory Neurons to Exogenous Tumor Necrosis Factor-α after Spinal Nerve Ligation. J. Neurosci. 2003, 23, 3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An Endotoxin-Induced Serum Factor That Causes Necrosis of Tumors (Activated Macrophage). Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, A.; Schmidt, C.; Weishaupt, A.; Toyka, K.V.; Sommer, C. Serial Determination of Tumor Necrosis Factor-Alpha Content in Rat Sciatic Nerve after Chronic Constriction Injury. Exp. Neurol. 1999, 160, 124–132. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Buehl, A.; Sommer, C. Wallerian degeneration after crush injury of rat sciatic nerve increases endo- and epineurial tumor necrosis factor-alpha protein. Neurosci. Lett. 2004, 372, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Gough, P.; Myles, I.A. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Front. Immunol. 2020, 11, 585880. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Schmidt, C.; George, A. Hyperalgesia in Experimental Neuropathy Is Dependent on the TNF Receptor 1. Exp. Neurol. 1998, 151, 138–142. [Google Scholar] [CrossRef]
- Vogel, C.; Stallforth, S.; Sommer, C. Altered pain behavior and regeneration after nerve injury in TNF receptor deficient mice. J. Peripher. Nerv. Syst. 2006, 11, 294–303. [Google Scholar] [CrossRef]
- George, A.; Buehl, A.; Sommer, C. Tumor necrosis factor receptor 1 and 2 proteins are differentially regulated during Wallerian degeneration of mouse sciatic nerve. Exp. Neurol. 2005, 192, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Guenzi, E.; Stroissnig, H.; Vierboom, M.; Herrmann, A. FRI0231 Atrosab, a humanized antibody directed against tnf-receptor 1, hold great promises for the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, A451. [Google Scholar] [CrossRef]
- Gerald, M.J.; Bracchi-Ricard, V.; Ricard, J.; Fischer, R.; Nandakumar, B.; Blumenthal, G.H.; Williams, R.; Kontermann, R.E.; Pfizenmaier, K.; Moxon, K.A.; et al. Continuous infusion of an agonist of the tumor necrosis factor receptor 2 in the spinal cord improves recovery after traumatic contusive injury. CNS Neurosci. Ther. 2019, 25, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Del Rivero, T.; Fischer, R.; Yang, F.; Swanson, K.A.; Bethea, J.R. Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in females. Pain 2019, 160, 922–931. [Google Scholar] [CrossRef]
- Fischer, R.; Sendetski, M.; del Rivero, T.; Martinez, G.F.; Bracchi-Ricard, V.; Swanson, K.A.; Pruzinsky, E.K.; Delguercio, N.; Rosalino, M.J.; Padutsch, T.; et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc. Natl. Acad. Sci. USA 2019, 116, 17045–17050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, A.R.; Morrison, V.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.; Balfour, D.J.; Savinko, T.; Wong, A.K.; et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ. Res. 2016, 119, 652–665. [Google Scholar] [CrossRef] [Green Version]
- Kiguchi, N.; Kobayashi, Y.; Kishioka, S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr. Opin. Pharmacol. 2012, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, S.; Ma, Y.; Lim, G.; Kim, H.; Mao, J. Leptin enhances NMDA-induced spinal excitation in rats: A functional link between adipocytokine and neuropathic pain. Pain 2011, 152, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Lim, G.; Wang, S.; Zhang, Y.; Tian, Y.; Mao, J. Spinal leptin contributes to the pathogenesis of neuropathic pain in rodents. J. Clin. Investig. 2009, 119, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-T.; Lin, Y.-L.; Lin, C.-T.; Hong, C.-J.; Tsai, M.-J.; Huang, W.-C.; Shih, Y.-H.; Lee, Y.-Y.; Cheng, H.; Huang, M.-C. Leptin is essential for microglial activation and neuropathic pain after preganglionic cervical root avulsion. Life Sci. 2017, 187, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Kiguchi, N.; Kobayashi, Y.; Ikuta, T.; Ozaki, M.; Kishioka, S. Leptin derived from adipocytes in injured peripheral nerves facilitates development of neuropathic pain via macrophage stimulation. Proc. Natl. Acad. Sci. USA 2009, 106, 13076–13081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Pérez, A.; Sánchez-Jiménez, F.; Vilariño-García, T.; Sánchez-Margalet, V. Role of Leptin in Inflammation and Vice Versa. Int. J. Mol. Sci. 2020, 21, 5887. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Bennett, G.J.; Xie, Y.-K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
FI VALUES | FI VALUES | ||||||
---|---|---|---|---|---|---|---|
MEDIATOR | NAME and FUNCTION | NAIVE M | SAL CCI D7 M | MTF CCI D7 M | NAIVE F | SAL CCI D7 F | MTF CCI D7 F |
BLC | B lymphocyte chemoattractant CXCL13 | 3441.48 ± 4.05 | 3098.05 ± 55.51 | 3146.89 ± 92.62 | 30.11 ± 5.13 | 21.29 ± 1.52 | 18.78 ± * 0.70 |
CD30L | tumor necrosis factor ligand superfamily member 8 | 3239.11 ± 145.84 | 3202.57 ± 178.68 | 2888.45 ± 99.60 | 8.16 ± 0.67 | 50.85 ± ** 1.16 | 49.84 ± ** 3.70 |
Eotaxin-1 | C-C motif chemokine 11; eosinophil chemotactic protein | 44,572.06 ± 558.62 | 86,503.33 ± ** 1113.81 | 69,609.32 ± * ° 244.64 | 1136.88 ± 91.29 | 8543.73 ± ** 203.06 | 7010.47 ± ** 254.25 |
Eotaxin-2 | CC chemokine selective for the chemokine receptor CCR3 | 65,439.39 ± 707.19 | 62,086.92 ± 1392.43 | 35,915.51 ± ° 1376.24 | 368.33 ± 22.90 | 920.55 ± ** 6.64 | 1462.87 ± ** ° 33.42 |
FAS ligand | type-II transmembrane protein tumor necrosis factor (TNF) family; apoptosis | 2678.89 ± 419.10 | 2188.06 ± 19.53 | 2033.72 ± 78.96 | 5.58 ± 0.24 | 17.40 ± ** 1.02 | 17.86 ± ** 0.11 |
Fractalkine | chemoattractant activity for T cells and monocytes | 2800.60 ± 450.10 | 2187.31 ± 114.32 | 2132.81 ± 29.68 | 28.50 ± 0.58 | 30.97 ± 4.12 | 33.73 ± 1.73 |
G-CSF | Granulocyte colony-stimulating factor | 4717.01 ± 622.37 | 9196.65 ± ** 4132.10 | 2200.45 ± * ° 45.01 | 19.01 ± 2.01 | 152.38 ± ** 5.10 | 125.27 ± ** 10.62 |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor | 3334.68 ± 9.71 | 2918.11 ± 6.60 | 3036.82 ± 81.25 | 48.21 ± 3.63 | 62.51 ± 2.81 | 106.72 ± ** ° 21.33 |
IFN-gamma | Interferon gamma (IFN-γ) innate and adaptive immunity, primary activator of macrophages, | 3371.72 ± 6.77 | 3506.79 ± 139.52 | 2975.81 ± 20.65 | 79.93 ± 6.10 | 83.36 ± 2.35 | 93.88 ± 3.77 |
IL1-alpha | interleukine, inflammtory cytokine | 2764.76 ± 29.02 | 3433.61 ± 397.70 | 3396.78 ± 114.17 | 18.42 ± 4.66 | 23.38 ± 0.36 | 32.55 ± * ° 1.61 |
IL1-beta | interleukine, inflammtory cytokine | 2545.66 ± 203.90 | 4826.89 ± ** 877.03 | 3726.47 ± * 551.78 | 11.98 ± 1.15 | 19.40 ± 0.77 | 25.92 ± * 0.60 |
IL2 | interleukine activateing cytotoxic T cells and NK cells | 3680.88 ± 28.07 | 5848.85 ± * 758.01 | 5081.43 ± * 349.40 | 65.87 ± 6.45 | 82.10 ± 7.06 | 94.64 ± * 8.43 |
IL3 | interleukine, multicolony-stimulating factor | 3956.59 ± 12.65 | 5625.25 ± * 673.60 | 4897.04 ± 501.71 | 67.37 ± 0.65 | 104.35 ± * 4.68 | 107.91 ± * 4.26 |
IL4 | interleukine, prototypic immunoregulatory cytokine. | 4695.06 ± 21.11 | 5408.58 ± 400.68 | 4864.79 ± 358.95 | 75.66 ± 4.43 | 111.38 ± * 4.51 | 110.39 ± * 2.03 |
IL6 | pro-inflammatory cytokine and an anti-inflammatory myokine | 3126.88 ± 57.67 | 6946.52 ** ± 302.31 | 4110.4 ± 154.86 | 73.17 ± 6.16 | 98.85 ± * 5.46 | 90.50 ± * 0.71 |
IL9 | interleukine, T cell growth factor | 4778.08 ± 25.16 | 4012.32 ± 61.27 | 4494.81 ± 85.48 | 88.53 ± 7.48 | 124.79 ± * 1.26 | 130.53 ± * 1.27 |
IL10 | interleukine, cytokine synthesis inhibitory factor (CSIF), anti-inflammatory cytokine | 3486.74 ± 285.06 | 2664.39 ± * 81.40 | 2807.9 ± 37.64 | 47.91 ± 4.95 | 74.77 ± * 1.71 | 76.21 ± * 0.51 |
IL12-p40/p70 | produced mainly by macrophages, induction of NK cells, elaboration of IFN-γ, | 3365.14 ± 469.47 | 2461.49 ± 68.61 | 2718.25 ± 115.26 | 8.13 ± 0.21 | 44.193 ± ** 1.27 | 40.79 ± ** 1.81 |
IL12-p70 | produced mainly by macrophages, induction of NK cells, elaboration of IFN-γ, | 5636.57 ± 282.94 | 4482.43 ± 103.21 | 4495.88 ± 51.06 | 116.27 ± 9.97 | 124.30 ± 6.33 | 138.67 ± 3.14 |
IL13 | immunoregulatory cytokine, regulating function of human B cells and monocytes (but only macrophages in the mouse). | 2310.25 ± 35.07 | 2216.17 ± 19.33 | 2086.64 ± 46.34 | 1.52 ± 0.15 | 17.17 ± ** 1.45 | 23.66 ± ** 3.52 |
IL17 | interleukin, links T cell activation to neutrophil mobilization and activation | 4972.98 ± 588.04 | 3400.63 ± * 34.76 | 3315.95 ± * 78.54 | 116.98 ± 8.67 | 106.50 ± 7.33 | 124.79 ± 4.90 |
I-TAC | CXCL11, interferon-inducible T cell alpha chemoattractant | 3499.39 ± 193.76 | 2975.77 ± * 122.78 | 2868.62 ± * 151.32 | 7.45 ± 2.57 | 11.06 ± 0.10 | 5.91 ± 0.88 |
KC | keratinocytes-derived chemokine | 2307.15 ± 84.95 | 2361.44 ± 32.06 | 2595.65 ± 109.03 | 10.47 ± 1.43 | 12.05 ± 0.37 | 16.91 ± 0.10 |
Leptin | Hormone, increasing the cytotoxicity of natural killer (NK) cells, activation of granulocytes, macrophages | 2236.96 ± 76.20 | 2199.3 ± 25.46 | 2545.42 ± 141.55 | 7.39 ± 0.81 | 17.55 ± ** 0.86 | 14.77 ± ** 0.21 |
LIX | Chemokine (C-X-C motif) ligand 5 (CXCL5), induced IL-1beta and TNF-alpha promoter activity | 3121.82 ± 80.72 | 3295.84 ± 102.97 | 4746.27 ± 696.05 | 21.53 ± 5.79 | 57.20 ± ** 2.28 | 54.71 ± ** 4.50 |
Lymphotactin | chemokine, recruiting T and NK cells, produced by activated CD8+ T-, NK -cells. | 2834.72 ± 104.63 | 2801.68 ± 162.04 | 5827.55 ± ** °° 214.64 | 75.90 ± 4.67 | 113.59 ± 3.54 | 113.92 ± 2.69 |
MCP-1 | chemokine, Monocyte Chemoattractant Protein-1 | 4260.97 ± 261.81 | 5354.87 ± 198.88 | 6100.70 ± * 1179.72 | 117.17 ± 6.16 | 102.50 ± 3.05 | 98.42 ± 2.06 |
M-CSF | Macrophage colony-stimulating factor, regulating monocytes proliferation, differentiation, activation | 3853.74 ± 51.24 | 3836.77 ± 61.51 | 4299.38 ± 81.61 | 5.60 ± 0.35 | 24.59 ± ** 1.03 | 30.92 ± ** 0.67 |
MIG | Chemokine (C-X-C motif) ligand 9 (CXCL9) recruitment of activated T-cells to sites of infection | 2170.33 ± 74.10 | 2392.14 ± 40.75 | 3180.47 ± 161.89 | 14.21 ± 1.03 | 32.54 ± * 2.93 | 31.94 ± * 1.00 |
MIP-1-alpha | Macrophage inflammatory protein-1 alpha | 2182.03 ± 109.71 | 2135.78 ± 96.75 | 2197.23 ± 62.74 | 7.52 ± 3.45 | 10.28 ± 0.55 | 8.90 ± 2.18 |
MIP-1-gamma | Macrophage inflammatory protein-1 gamma | 325,343.87 ± 1176.85 | 479,722.61 ± 29450.37 | 473,402.46 ± 9598.91 | 3762.50 ± 91.22 | 12,080.64 ** 679.14 | 10,802.93 ± ** ° 43.48 |
RANTES | Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted (CCL5) | 3256.60 ± 230.71 | 2755.26 ± 51.61 | 2867.5 ± 50.26 | 4.36 ± 1.36 | 13.62 ± ** 0.81 | 17.44 ± ** 1.48 |
SDF-1 | stromal cell-derived factor 1 (SDF-1), C-X-C motif chemokine 12 (CXCL12), | 2400.66 ± 21.12 | 2277.58 ± 15.98 | 2228.74 ± 57.48 | 21.53 ± 3.12 | 30.40 ± 0.49 | 31.21 ± 0.57 |
TCA-3 | Activated T lymphocytes (CCL1) orchestrating cellular infiltration during a cell-mediated immune reaction | 3364.82 ± 6.25 | 4225.5 ± 473.93 | 3496.03 ± 184.16 | 86.04 ± 5.75 | 108.40 ± 4.54 | 112.25 ± 3.10 |
TECK | Thymus-Expressed Chemokine (CCL25) | 4015.28 ± 156.62 | 3477.89 ± 17.08 | 5766.24 ± * °° 224.75 | 79.31 ± 1.26 | 174.88 ± * 7.61 | 249.76 ± ** 16.96 |
TIMP-1 | Tissue inhibitors of metalloproteinases | 3027.73 ± 59.31 | 14,256.16 ± ** 41.94 | 11,964.84 ± ** 714.31 | 7.38 ± 0.22 | 478.07 ± ** 24.07 | 460.23 ±** 11.25 |
TIMP-2 | Tissue inhibitors of metalloproteinases | 2788.91 ± 114.53 | 2700.57 ± 39.73 | 3188.69 ± 263.63 | 33.98 ± 5.18 | 73.65 ± * 5.42 | 44.98 ± 0.33 |
TNF-alpha | Tumour Necrosis Factor alpha (TNF alpha), inflammatory cytokine produced by macrophages/monocytes during acute inflammation | 3480.15 ± 110.36 | 2820.75 ± 34.92 | 3132.01 ± 110.97 | 114.98 ± 18.18 | 82.34 ± 2.66 | 84.18 ± 3.24 |
sTNF RI | Soluble Tumor Necrosis Factor Receptor I | 40,114.16 ± 729.10 | 104,619.27 ± * 4737.74 | 125,010.95 ± ** 489.83 | 618.50 ± 16.74 | 1462.48 ± ** 90.02 | 1233.84 ± * ° 29.50 |
sTNF RII | Soluble Tumor Necrosis Factor Receptor II | 8069.29 ± 156.29 | 11,281.71 ± * 1115.63 | 5956.14 ± * ° 275.76 | 139.88 ± 0.22 | 165.51 ± 13.87 | 120.15 ± ° 9.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Angelis, F.; Vacca, V.; Tofanicchio, J.; Strimpakos, G.; Giacovazzo, G.; Pavone, F.; Coccurello, R.; Marinelli, S. Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin. Int. J. Mol. Sci. 2022, 23, 14503. https://doi.org/10.3390/ijms232314503
De Angelis F, Vacca V, Tofanicchio J, Strimpakos G, Giacovazzo G, Pavone F, Coccurello R, Marinelli S. Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin. International Journal of Molecular Sciences. 2022; 23(23):14503. https://doi.org/10.3390/ijms232314503
Chicago/Turabian StyleDe Angelis, Federica, Valentina Vacca, Jessica Tofanicchio, Georgios Strimpakos, Giacomo Giacovazzo, Flaminia Pavone, Roberto Coccurello, and Sara Marinelli. 2022. "Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin" International Journal of Molecular Sciences 23, no. 23: 14503. https://doi.org/10.3390/ijms232314503
APA StyleDe Angelis, F., Vacca, V., Tofanicchio, J., Strimpakos, G., Giacovazzo, G., Pavone, F., Coccurello, R., & Marinelli, S. (2022). Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin. International Journal of Molecular Sciences, 23(23), 14503. https://doi.org/10.3390/ijms232314503