Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia
Abstract
:1. Introduction
2. Pathophysiology of Ventricular Tachycardia
2.1. Etiologies Leading to Ventricular Tachycardia
2.1.1. Myocardial Infarction, Adverse Remodeling, and Re-Entry
2.1.2. Congenital and Acquired Cardiomyopathies
2.1.3. Iatrogenic Causes
2.1.4. Purkinje System Disease
2.1.5. Idiopathic Ventricular Tachycardia
2.2. Molecular Mechanisms of Monomorphic Ventricular Re-Entry
2.2.1. Calcium Handling
2.2.2. Action Potential Prolongation and Repolarization Heterogeneity
2.2.3. Dysregulated Na+ Handling
3. Pulsed-Field Ablation for Arrhythmogenic Substrate Suppression
3.1. Regulatory Status of Clinical Pulsed-Field Ablation
3.2. Foundational Findings Supporting Pulsed-Field Ablation
3.2.1. Mechanism of Action
3.2.2. Preclinical Proof-of-Concept
3.3. Pulsed-Field Ablation for Monomorphic Ventricular Tachycardia
3.3.1. Pre-Clinical Efficacy for Monomorphic Ventricular Tachycardia
3.3.2. Adult Clinical Efficacy for Monomorphic Ventricular Tachycardia
3.3.3. Outcome Comparison with Thermal Cardiac Ablation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2018, 72, e91–e220, Erratum in J. Am. Coll. Cardiol. 2018, 72, 1760. [Google Scholar] [CrossRef] [PubMed]
- Buxton, A.E.; Calkins, H.; Callans, D.J.; DiMarco, J.P.; Fisher, J.D.; Greene, H.L.; Haines, D.E.; Hayes, D.L.; Heidenreich, P.A.; Miller, J.M.; et al. ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). J. Am. Coll. Cardiol. 2006, 48, 2360–2396. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, W.G.; Soejima, K. Catheter ablation for ventricular tachycardia. Circulation 2007, 115, 2750–2760. [Google Scholar] [CrossRef]
- Ransom, J.L.; Wong, K.C.; Kircher, J.; Usry, C.; Larson, C. Bidirectional Ventricular Tachycardia in a Young Female: A Case of Andersen-Tawil Syndrome. Mil. Med. 2023, 188, e412–e416. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982, 1, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Dev, S.B.; Hofmann, G.A. Electrochemotherapy--a novel method of cancer treatment. Cancer Treat. Rev. 1994, 20, 105–115. [Google Scholar] [CrossRef]
- Yavin, H.D.; Higuchi, K.; Younis, A.; Anter, E. Lattice-tip catheter for single-shot pulmonary vein isolation with pulsed field ablation. J. Interv. Card. Electrophysiol. 2023, 66, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Haines, D.E.; Boersma, L.V.; Sood, N.; Natale, A.; Marchlinski, F.E.; Calkins, H.; Sanders, P.; Packer, D.L.; Kuck, K.H.; et al. Pulsed Field Ablation for the Treatment of Atrial Fibrillation: PULSED AF Pivotal Trial. Circulation 2023, 147, 1422–1432. [Google Scholar] [CrossRef]
- Ouss, A.; van Stratum, L.; van der Voort, P.; Dekker, L. First in human pulsed field ablation to treat scar-related ventricular tachycardia in ischemic heart disease: A case report. J. Interv. Card. Electrophysiol. 2022, 66, 509–510. [Google Scholar] [CrossRef]
- Martin, C.A.; Zaw, M.T.; Jackson, N.; Morris, D.; Costanzo, P. First worldwide use of pulsed-field ablation for ventricular tachycardia ablation via a retrograde approach. J. Cardiovasc. Electrophysiol. 2023, 34, 1772–1775. [Google Scholar] [CrossRef]
- Lozano-Granero, C.; Hirokami, J.; Franco, E.; Tohoku, S.; Matía-Francés, R.; Schmidt, B.; Hernández-Madrid, A.; Zamorano Gómez, J.L.; Moreno, J.; Chun, J. Case Series of Ventricular Tachycardia Ablation With Pulsed-Field Ablation: Pushing Technology Further (Into the Ventricle). JACC Clin. Electrophysiol. 2023, 9, 1990–1994. [Google Scholar] [CrossRef] [PubMed]
- Krause, U.; Bergau, L.; Zabel, M.; Müller, M.J.; Paul, T. Flowerpower: Pulsed field ablation of ventricular tachycardia in a patient with Ebstein’s anomaly. Eur. Heart J. Case Rep. 2023, 7, ytad093. [Google Scholar] [CrossRef] [PubMed]
- Adragão, P.; Matos, D.; Carmo, P.; Costa, F.M.; Ramos, S. Pulsed-field ablation vs radiofrequency ablation for ventricular tachycardia: First in-human case of histologic lesion analysis. Heart Rhythm. 2023, 20, 1395–1398. [Google Scholar] [CrossRef] [PubMed]
- Ekanem, E.; Reddy, V.Y.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF). Europace 2022, 24, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Dhanjal, T.S.; Lellouche, N.; von Ruhland, C.J.; Abehsira, G.; Edwards, D.H.; Dubois-Randé, J.L.; Moschonas, K.; Teiger, E.; Williams, A.J.; George, C.H. Massive Accumulation of Myofibroblasts in the Critical Isthmus Is Associated With Ventricular Tachycardia Inducibility in Post-Infarct Swine Heart. JACC Clin. Electrophysiol. 2017, 3, 703–714. [Google Scholar] [CrossRef]
- D’Souza, K.M.; Biwer, L.A.; Madhavpeddi, L.; Ramaiah, P.; Shahid, W.; Hale, T.M. Persistent change in cardiac fibroblast physiology after transient ACE inhibition. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1346–H1353. [Google Scholar] [CrossRef] [PubMed]
- Chinyere, I.R.; Moukabary, T.; Hutchinson, M.D.; Lancaster, J.J.; Juneman, E.; Goldman, S. Progression of infarct-mediated arrhythmogenesis in a rodent model of heart failure. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H108–H116. [Google Scholar] [CrossRef]
- Chinyere, I.R.; Hutchinson, M.; Moukabary, T.; Lancaster, J.; Goldman, S.; Juneman, E. Monophasic action potential amplitude for substrate mapping. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H667–H673. [Google Scholar] [CrossRef]
- Chinyere, I.R.; Hutchinson, M.; Moukabary, T.; Koevary, J.W.; Juneman, E.; Goldman, S.; Lancaster, J.J. Modulating the Infarcted Ventricle’s Refractoriness with an Epicardial Biomaterial. J. Investig. Med. 2021, 69, 364–370. [Google Scholar] [CrossRef]
- Ciaccio, E.J.; Coromilas, J.; Ashikaga, H.; Cervantes, D.O.; Wit, A.L.; Peters, N.S.; McVeigh, E.R.; Garan, H. Reprint of ‘Model of unidirectional block formation leading to reentrant ventricular tachycardia in the infarct border zone of postinfarction canine hearts’. Comput. Biol. Med. 2015, 65, 256–266. [Google Scholar] [CrossRef]
- Morton, M.B.; Morton, J.B.; Mond, H.G. Aberrant Ventricular Conduction: Revisiting an Old Concept. Heart Lung Circ. 2023, 32, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Moroe, K.; Mayrovitz, H.N.; Sampsell, R.; Furukawa, N.; Myerburg, R.J. Arrhythmogenic effects of graded coronary blood flow reductions superimposed on prior myocardial infarction in dogs. Circulation 1991, 84, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Stambler, B.S.; Akosah, K.O.; Mohanty, P.K.; Wood, M.A.; Ellenbogen, K.A. Myocardial ischemia and induction of sustained ventricular tachyarrhythmias: Evaluation using dobutamine stress echocardiography-electrophysiologic testing. J. Cardiovasc. Electrophysiol. 2004, 15, 901–907. [Google Scholar] [CrossRef]
- De Potter, T.; Balt, J.C.; Boersma, L.; Sacher, F.; Neuzil, P.; Reddy, V.; Grigorov, I.; Verma, A. First-in-Human Experience With Ultra-Low Temperature Cryoablation for Monomorphic Ventricular Tachycardia. JACC Clin. Electrophysiol. 2023, 9, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Hsia, H.H.; Callans, D.J.; Marchlinski, F.E. Characterization of endocardial electrophysiological substrate in patients with nonischemic cardiomyopathy and monomorphic ventricular tachycardia. Circulation 2003, 108, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Caldaroni, F.; Lo Rito, M.; Chessa, M.; Varrica, A.; Micheletti, A.; Pappone, C.; Giamberti, A. Surgical ablation of ventricular tachycardia in patients with repaired tetralogy of Fallot†. Eur. J. Cardiothorac. Surg. 2019, 55, 845–850. [Google Scholar] [CrossRef]
- Kapel, G.F.; Sacher, F.; Dekkers, O.M.; Watanabe, M.; Blom, N.A.; Thambo, J.B.; Derval, N.; Schalij, M.J.; Jalal, Z.; Wijnmaalen, A.P.; et al. Arrhythmogenic anatomical isthmuses identified by electroanatomical mapping are the substrate for ventricular tachycardia in repaired Tetralogy of Fallot. Eur. Heart J. 2017, 38, 268–276. [Google Scholar] [CrossRef]
- Mizusawa, Y.; Sakurada, H.; Nishizaki, M.; Ueda-Tatsumoto, A.; Fukamizu, S.; Hiraoka, M. Characteristics of bundle branch reentrant ventricular tachycardia with a right bundle branch block configuration: Feasibility of atrial pacing. Europace 2009, 11, 1208–1213. [Google Scholar] [CrossRef]
- Badhwar, N.; Scheinman, M.M. Idiopathic ventricular tachycardia: Diagnosis and management. Curr. Probl. Cardiol. 2007, 32, 7–43. [Google Scholar] [CrossRef]
- Ward, R.C.; van Zyl, M.; DeSimone, C.V. Idiopathic Ventricular Tachycardia. J. Clin. Med. 2023, 12, 930. [Google Scholar] [CrossRef]
- Buxton, A.E.; Waxman, H.L.; Marchlinski, F.E.; Simson, M.B.; Cassidy, D.; Josephson, M.E. Right ventricular tachycardia: Clinical and electrophysiologic characteristics. Circulation 1983, 68, 917–927. [Google Scholar] [CrossRef]
- Chinyere, I.R.; Moukabary, T.; Goldman, S.; Juneman, E. Electrical and mechanical alternans during ventricular tachycardia with moderate chronic heart failure. J. Electrocardiol. 2018, 51, 33–37. [Google Scholar] [CrossRef]
- Liu, X.; Ren, L.; Yu, S.; Li, G.; He, P.; Yang, Q.; Wei, X.; Thai, P.N.; Wu, L.; Huo, Y. Late sodium current in synergism with Ca2+/calmodulin-dependent protein kinase II contributes to β-adrenergic activation-induced atrial fibrillation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220163. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Bordignon, S.; Neven, K.; Reichlin, T.; Blaauw, Y.; Hansen, J.; Adelino, R.; Ouss, A.; Füting, A.; Roten, L.; et al. EUropean real-world outcomes with Pulsed field ablatiOn in patients with symptomatic atRIAl fibrillation: Lessons from the multi-centre EU-PORIA registry. Europace 2023, 25, euad185. [Google Scholar] [CrossRef]
- Tohoku, S.; Schmidt, B.; Bordignon, S.; Chen, S.; Bologna, F.; Urbanek, L.; Pansera, F.; Chun, K.R.J. Pulsed Field Ablation for Persistent Superior Vena Cava: New Solution for an Old Problem. JACC Case Rep. 2022, 4, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Lehmann, J.W.; Gerstenfeld, E.P.; Mugglin, A.S.; Schneider, C.W.; Achyutha, A.B.; Mansour, M. A randomized controlled trial of pulsed field ablation versus standard-of-care ablation for paroxysmal atrial fibrillation: The ADVENT trial rationale and design. Heart Rhythm O2 2023, 4, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Anić, A.; Phlips, T.; Brešković, T.; Koopman, P.; Girouard, S.; Mediratta, V.; Jurišić, Z.; Sikirić, I.; Lisica, L.; Vijgen, J. Pulsed field ablation using focal contact force-sensing catheters for treatment of atrial fibrillation: Acute and 90-day invasive remapping results. Europace 2023, 25, euad147. [Google Scholar] [CrossRef]
- Rossillo, A.; Borio, G.; Vittadello, S.; Spadaro, G.L.; Bonanno, C.; Raviele, A.; Caprioglio, F. Focal atrial tachycardia arising from left superior pulmonary vein in a pediatric patient, safely treated by pulsed-field ablation. J. Cardiovasc. Electrophysiol. 2023, 34, 1764–1767. [Google Scholar] [CrossRef]
- Aycock, K.N.; Campelo, S.N.; Davalos, R.V. A Comparative Modeling Study of Thermal Mitigation Strategies in Irreversible Electroporation Treatments. J. Heat. Transfer. 2022, 144, 031206. [Google Scholar] [CrossRef]
- Kim, M.Y.; Stavrakis, S. For Better or Worse, Pulse Field Ablation Is Kinder to Some Nerves. JACC Clin. Electrophysiol. 2022, 8, 905–907. [Google Scholar] [CrossRef]
- Teng, P.; Wu, Y.; Chen, R.; Hong, L.; Wu, B.; Liu, L.; Ma, L.; Zhao, H.; Wu, S. Pulsed field ablation as a precise approach for cardiac arrhythmia treatment via cardiac microenvironment remodeling. Bioelectrochemistry 2023, 154, 108502. [Google Scholar] [CrossRef] [PubMed]
- Polajžer, T.; Dermol-Černe, J.; Reberšek, M.; O’Connor, R.; Miklavčič, D. Cancellation effect is present in high-frequency reversible and irreversible electroporation. Bioelectrochemistry 2020, 132, 107442. [Google Scholar] [CrossRef] [PubMed]
- Avazzadeh, S.; O’Brien, B.; Coffey, K.; O’Halloran, M.; Keane, D.; Quinlan, L.R. Establishing Irreversible Electroporation Electric Field Potential Threshold in A Suspension In Vitro Model for Cardiac and Neuronal Cells. J. Clin. Med. 2021, 10, 5443. [Google Scholar] [CrossRef]
- Avazzadeh, S.; Dehkordi, M.H.; Owens, P.; Jalali, A.; O’Brien, B.; Coffey, K.; O’Halloran, M.; Fernhead, H.O.; Keane, D.; Quinlan, L.R. Establishing electroporation thresholds for targeted cell specific cardiac ablation in a 2D culture model. J. Cardiovasc. Electrophysiol. 2022, 33, 2050–2061. [Google Scholar] [CrossRef]
- Baena-Montes, J.M.; O’Halloran, T.; Clarke, C.; Donaghey, K.; Dunne, E.; O’Halloran, M.; Quinlan, L.R. Electroporation Parameters for Human Cardiomyocyte Ablation In Vitro. J. Cardiovasc. Dev. Dis. 2022, 9, 240. [Google Scholar] [CrossRef] [PubMed]
- Casciola, M.; Feaster, T.K.; Caiola, M.J.; Keck, D.; Blinova, K. Human in vitro assay for irreversible electroporation cardiac ablation. Front. Physiol. 2023, 13, 1064168. [Google Scholar] [CrossRef]
- Masuyama, K.; Ajijola, O.A. Irreversible electroporation for cardiac ablation: Optimizing cell type-specific effects. J. Cardiovasc. Electrophysiol. 2022, 33, 2062–2063. [Google Scholar] [CrossRef]
- Casciola, M.; Keck, D.; Feaster, T.K.; Blinova, K. Human cardiomyocytes are more susceptible to irreversible electroporation by pulsed electric field than human esophageal cells. Physiol. Rep. 2022, 10, e15493. [Google Scholar] [CrossRef]
- Chaigne, S.; Sigg, D.C.; Stewart, M.T.; Hocini, M.; Batista Napotnik, T.; Miklavčič, D.; Bernus, O.; Benoist, D. Reversible and Irreversible Effects of Electroporation on Contractility and Calcium Homeostasis in Isolated Cardiac Ventricular Myocytes. Circ. Arrhythm. Electrophysiol. 2022, 15, e011131. [Google Scholar] [CrossRef]
- Scuderi, M.; Dermol-Černe, J.; Batista Napotnik, T.; Chaigne, S.; Bernus, O.; Benoist, D.; Sigg, D.C.; Rems, L.; Miklavčič, D. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model. Biomolecules 2023, 13, 727. [Google Scholar] [CrossRef]
- Xie, F.; Zemlin, C.W. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields. PLoS ONE 2016, 11, e0152262. [Google Scholar] [CrossRef] [PubMed]
- Varghese, F.; Philpott, J.M.; Neuber, J.U.; Hargrave, B.; Zemlin, C.W. Surgical Ablation of Cardiac Tissue with Nanosecond Pulsed Electric Fields in Swine. Cardiovasc. Eng. Technol. 2023, 14, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Im, S.I.; Higuchi, S.; Lee, A.; Stillson, C.; Buck, E.; Morrow, B.; Schenider, K.; Speltz, M.; Gerstenfeld, E.P. Pulsed Field Ablation of Left Ventricular Myocardium in a Swine Infarct Model. JACC Clin. Electrophysiol. 2022, 8, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Zilberman, I.; Krywanczyk, A.; Higuchi, K.; Yavin, H.D.; Sroubek, J.; Anter, E. Effect of Pulsed-Field and Radiofrequency Ablation on Heterogeneous Ventricular Scar in a Swine Model of Healed Myocardial Infarction. Circ. Arrhythm. Electrophysiol. 2022, 15, e011209. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, I.; Reddy, V.Y.; Wang, B.J.; Dukkipati, S.R.; Chaudhry, H.W.; Santos-Gallego, C.G.; Koruth, J.S. Pulsed Field Ablation of the Porcine Ventricle Using a Focal Lattice-Tip Catheter. Circ. Arrhythm. Electrophysiol. 2022, 15, e011120. [Google Scholar] [CrossRef]
- Sandhu, U.; Alkukhun, L.; Kheiri, B.; Hodovan, J.; Chiang, K.; Splanger, T.; Castellvi, Q.; Zhao, Y.; Nazer, B. In vivo pulsed-field ablation in healthy vs. chronically infarcted ventricular myocardium: Biophysical and histologic characterization. Europace 2023, 25, 1503–1509. [Google Scholar] [CrossRef]
- Kawamura, I.; Reddy, V.Y.; Santos-Gallego, C.G.; Wang, B.J.; Chaudhry, H.W.; Buck, E.D.; Mavroudis, G.; Jerrell, S.; Schneider, C.W.; Speltz, M.; et al. Electrophysiology, Pathology, and Imaging of Pulsed Field Ablation of Scarred and Healthy Ventricles in Swine. Circ. Arrhythm. Electrophysiol. 2023, 16, e011369. [Google Scholar] [CrossRef]
- Fan, S.; Jia, F.; Cui, Y.; Wu, D.; He, L.; Zhang, F.; Xue, Z.; Xu, X.; Lu, F.; Ma, W.; et al. Study on the process of cardiomyocyte apoptosis after pulsed field ablation. Front. Cardiovasc. Med. 2023, 10, 1112131. [Google Scholar] [CrossRef]
- Aryana, A.; Ji, S.Y.; Hata, C.; de la Rama, A.; Nguyen, K.; Panescu, D. Preclinical evaluation of a novel single-shot pulsed field ablation system for pulmonary vein and atrial ablation. J. Cardiovasc. Electrophysiol. 2023, 34, 2203–2212. [Google Scholar] [CrossRef]
- Xie, F.; Varghese, F.; Pakhomov, A.G.; Semenov, I.; Xiao, S.; Philpott, J.; Zemlin, C. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields. PLoS ONE 2015, 10, e0144833. [Google Scholar] [CrossRef]
- Koruth, J.S.; Kuroki, K.; Iwasawa, J.; Viswanathan, R.; Brose, R.; Buck, E.D.; Donskoy, E.; Dukkipati, S.R.; Reddy, V.Y. Endocardial ventricular pulsed field ablation: A proof-of-concept preclinical evaluation. Europace 2020, 22, 434–439. [Google Scholar] [CrossRef]
- Alkukhun, L.; Sandhu, U.; Hodovan, J.; Zhao, Y.; Chiang, K.; Castellvi, Q.; Stenzel, P.; Woltjer, R.; Li, X.; Barajas, R.F.; et al. Multi-modality imaging assessment of microbubbles and cerebral emboli in left ventricular pulsed field ablation. J. Interv. Card. Electrophysiol. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Weyand, S.; Löbig, S.; Seizer, P. First in human focal pulsed field ablation to treat an epicardial VT focus with an endocardial approach in non-ischemic cardiomyopathy. J. Interv. Card. Electrophysiol. 2023, 66, 1057–1058. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Chen, S.; Tohoku, S.; Bordignon, S.; Bologna, F.; Chun, K.R.J. Single shot electroporation of premature ventricular contractions from the right ventricular outflow tract. Europace 2022, 24, 597. [Google Scholar] [CrossRef]
- Ladejobi, A.; Christopoulos, G.; Tan, N.; Ladas, T.P.; Tri, J.; van Zyl, M.; Yasin, O.; Sugrue, A.; Khabsa, M.; Uecker, D.R.; et al. Effects of Pulsed Electric Fields on the Coronary Arteries in Swine. Circ. Arrhythm. Electrophysiol. 2022, 15, e010668. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, S.; Im, S.I.; Stillson, C.; Buck, E.D.; Jerrell, S.; Schneider, C.W.; Speltz, M.; Gerstenfeld, E.P. Effect of Epicardial Pulsed Field Ablation Directly on Coronary Arteries. JACC Clin. Electrophysiol. 2022, 8, 1486–1496. [Google Scholar] [CrossRef]
- Pansera, F.; Bordignon, S.; Bologna, F.; Tohoku, S.; Chen, S.; Urbanek, L.; Schmidt, B.; Chun, K.J. Catheter ablation induced phrenic nerve palsy by pulsed field ablation-completely impossible? A case series. Eur. Heart J. Case Rep. 2022, 6, ytac361. [Google Scholar] [CrossRef] [PubMed]
- Marchlinski, F.E.; Haffajee, C.I.; Beshai, J.F.; Dickfeld, T.L.; Gonzalez, M.D.; Hsia, H.H.; Schuger, C.D.; Beckman, K.J.; Bogun, F.M.; Pollak, S.J.; et al. Long-Term Success of Irrigated Radiofrequency Catheter Ablation of Sustained Ventricular Tachycardia: Post-Approval THERMOCOOL VT Trial. J. Am. Coll. Cardiol. 2016, 67, 674–683. [Google Scholar] [CrossRef]
- Krist, D.; Linz, D.; Schotten, U.; Zeemering, S.; Leenen, D. A Novel Laser Energy Ablation Catheter for Endocardial Cavo-Tricuspid Isthmus Ablation and Epicardial Ventricular Lesion Formation: An in vivo Proof-of-Concept Study. Front. Med. Technol. 2022, 4, 834856. [Google Scholar] [CrossRef]
- Cook, C.; Welter-Frost, A.; Wilson, D.R.; Herweg, B. Cryoballoon ablation for refractory ventricular tachycardia. HeartRhythm Case Rep. 2022, 9, 203–207. [Google Scholar] [CrossRef]
Research Group [Ref. #] | Patient Age, Gender | Cardiovascular Comorbidities | Arrhythmogenic Nidus | Prior Procedures | PFA Indication | PFA Catheter Type | PFA Parameters |
---|---|---|---|---|---|---|---|
Ouss et al. [9] | 69, M | Remote Anterior MI | Distal anteroseptum | 2 RFA attempts; ICD | Recurrent VT requiring ATP | Farawave™ Pentaspline (31 mm) | 2.0 kV via biphasic waveform (7 overlapping applications) |
Martin et al. [10] | 68, M | HFrEF (LVEF 30%) Ischemic cardiomyopathy | Posterior, sub-aortic valve intramural circuit | Peri-aortic endocardial and epicardial RFA attempts; CRT-D | Treatment-resistant mmVT requiring ATP | Farawave™ Pentaspline (31 mm) | 2.0 kV via 5 biphasic/bipolar pulses (56 applications) |
Lozano-Granero et al. [11] | 83, M | Non-obstructive coronary artery disease | Mid-apical lateral LV wall | None | Sustained mmVT | Farawave™ Pentaspline (31 mm) | 2.0 kV via 4 biphasic/bipolar microsecond pulses (9 applications) |
83, F | LV aneurysm | LV aneurysm | 2 RFA attempts; ICD | Treatment-resistant electrical storm requiring ATP and defibs | Farawave™ Pentaspline (31 mm) | 2.0 kV bipolar pulses (18 applications) | |
69, M | Arrhythmogenic cardiomyopathy with biventricular involvement | Basal inferolateral free LV wall | ICD | Treatment-resistant RV VT requiring defibs | Farawave™ Pentaspline (31 mm) + RFA: Thermocool Smarttouch® | 2.0 kV bipolar pulses (12 applications) + RFA: Single 40.0 W application | |
Krause et al. [12] | 33, M | Ebstein’s anomaly | Anterior junction between aRV and RV | 1 RFA attempt; ICD | Recurrent mmVT requiring defibs | Farawave™ Pentaspline (31 mm) | Parameters not specified (35 applications) |
Adragão et al. [13] | 60, M | Remote LAD MI HFrEF (LVEF <20%) | Extensive anterior wall/septum scar | 3 endocardial RFA attempts; CRT-D | Treatment-resistant electrical storm with multiple VTs | Farawave™ Pentaspline (31 mm) + QDOT Micro™ | 2.0 kV at 6 septal sites (18 applications) + RFA: 50 W; 50 °C; Index 600 |
Weyand et al. [63] | 61, M | Non-ischemic dilated cardiomyopathy | LV basal anterolateral endocardial scarring | 1 endocardial RFA attempt; ICD | Electrical storm with mmVT | Thermocool Smarttouch® | Biphasic/unipolar (“Several” applications) |
Schmidt et al. [64] | 48, F | No structural heart disease | RVOT | None | Medication-refractory symptomatic PVCs | Farawave™ Pentaspline (31 mm) | 2.5 sec pulses at 1.8 kV (8 applications) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repp, M.L.; Chinyere, I.R. Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia. Pathophysiology 2024, 31, 32-43. https://doi.org/10.3390/pathophysiology31010003
Repp ML, Chinyere IR. Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia. Pathophysiology. 2024; 31(1):32-43. https://doi.org/10.3390/pathophysiology31010003
Chicago/Turabian StyleRepp, Matthew Leonard, and Ikeotunye Royal Chinyere. 2024. "Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia" Pathophysiology 31, no. 1: 32-43. https://doi.org/10.3390/pathophysiology31010003
APA StyleRepp, M. L., & Chinyere, I. R. (2024). Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia. Pathophysiology, 31(1), 32-43. https://doi.org/10.3390/pathophysiology31010003