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Abstract: The use of catheter-based irreversible electroporation in clinical cardiac laboratories, termed
pulsed-field ablation (PFA), is gaining international momentum among cardiac electrophysiology
proceduralists for the non-thermal management of both atrial and ventricular tachyrhythmogenic
substrates. One area of potential application for PFA is in the mitigation of ventricular tachycardia
(VT) risk in the setting of ischemia-mediated myocardial fibrosis, as evidenced by recently published
clinical case reports. The efficacy of tissue electroporation has been documented in other branches
of science and medicine; however, ventricular PFA’s potential advantages and pitfalls are less
understood. This comprehensive review will briefly summarize the pathophysiological mechanisms
underlying VT and then summarize the pre-clinical and adult clinical data published to date on
PFA’s effectiveness in treating monomorphic VT. These data will be contrasted with the effectiveness
ascribed to thermal cardiac ablation modalities to treat VT, namely radiofrequency energy and liquid
nitrogen-based cryoablation.
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1. Introduction

Ventricular tachycardia (VT) is a wide-complex tachyrhythm (QRS duration on surface
electrocardiogram > 120 milliseconds) that disrupts normal sinus rhythm and may lead
to hemodynamic instability. This arrhythmia originates from within the ventricles and
can be clinically defined as ≥3 consecutive ventricular beats occurring at ≥100 beats per
minute. VT is categorized by the duration of the episode and the QRS morphology. Based
on duration, VT is divided into non-sustained VT and sustained VT. Non-sustained VT
terminates spontaneously within 30 s, whereas sustained VT lasts longer than 30 s or re-
quires termination due to hemodynamic instability in <30 s [1]. Based on QRS morphology,
VT can be classified as monomorphic (mmVT) or polymorphic. On electrocardiographic
assessment, mmVT consists of a singular, consistent QRS morphology with minimal beat-
to-beat variation (Figure 1), while polymorphic VT depicts varying QRS morphologies
beat-to-beat (Figure 2) [1,2]. The most common cause of mmVT is structural sequelae
from ischemic heart disease, but it may also arise from non-ischemic cardiomyopathies,
iatrogenic etiologies, Purkinje system defects, or idiopathic etiologies [3]. Several causes of
polymorphic VT exist, including R-on-T phenomenon, acute myocardial ischemia, congeni-
tal short QT syndrome, acquired long QT syndrome, catecholaminergic, torsade de pointes,
bidirectional VT [4], and Brugada syndrome.

Pulsed-field ablation (PFA) is a tunable non-thermal ablative technique that, with the
appropriate settings, is capable of inducing irreversible cell death via phospholipid bilayer
electroporation in selective cardiac tissue populations with minimal damage to anatomically
adjacent structures. This technique has recently been adapted to catheter-based technology
to allow for clinical use in cardiac electrophysiology laboratories, though its use for research
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applications such as transmembrane transportation of relatively large macromolecules (ex.:
plasmids) dates back to the early 1980s [5]. Furthermore, its use for clinical applications,
such as selectively destroying malignant cells in oncology patients, dates back to the early
1990s [6]. PFA has demonstrated in pre-clinical [7] and non-randomized clinical [8] studies
an acceptable degree of efficacy with respect to preventing atrial fibrillation recurrence over
a short interval (approximately 1 year) while also maintaining an exceptionally favorable
safety profile through the avoidance of collateral damage typically observed with post-
thermal catheter ablation techniques.
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Figure 1. Isolated limb lead of a single rodent’s surface electrocardiogram depicting one morphologic
classification of sustained ventricular tachycardia (VT), namely monomorphic VT. In Panel (A),
two sinus complexes begin the rhythm strip, followed by an eight (8) S1–S2 programmed electrical
stimulation (PES) drivetrain protocol, executed at twice diastolic-threshold on the epicardial surface
using microelectrodes; the resulting monomorphic VT can be appreciated with P-waves continuing
at the intrinsic sinoatrial node rate. In Panel (B), the spontaneous termination of the monomorphic
VT is depicted, with a sinus pause and resumption of intrinsic conduction system activity at a slower
rate than pre-PES. The rat suffered from heart failure with reduced ejection fraction induced via
permanent left coronary artery ligation. With the onset of the induced monomorphic VT, the rodent’s
invasive blood pressure readings no longer exhibited pulsatility, and the mean arterial pressure
dropped. Abbreviations: msec—milliseconds; µV—microvolts.

Recently published case reports have illuminated the potential for PFA utilization for
substrate suppression in the setting of recurrent ventricular tachycardia secondary to multi-
ple underlying etiologies [9–13]. These preliminary reports likely signal the beginning of
an expansion of the clinical electrophysiologists’ armamentarium to include a non-thermal
catheter-based therapy in addition to the well-described catheter-based radiofrequency,
cryoballoon, and laser options. As such, a careful review of the literature published to date
is warranted in order to expedite regulatory approval in the United States of America [14],
maximize the proportion of clinical decisions backed by evidence, and support the even-
tual generation of evidence- and consensus-based clinical guidelines for the use of PFA
for ventricular tachyrhythms. In the present review, we aim to comprehensively review
the pathophysiological mechanisms underlying VT, summarize the pre-clinical and adult
clinical data published to date on PFA’s effectiveness in treating mmVT, and contrast these
data with the effectiveness ascribed to thermal cardiac ablation modalities in the treatment
of mmVT.
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Figure 2. Isolated limb lead of a single rodent’s surface electrocardiogram depicting one morphologic
classification of sustained ventricular tachycardia (VT), namely polymorphic VT. In Panel (A), two
sinus complexes begin the rhythm strip, followed by an eight (8) S1–S2 programmed electrical
stimulation (PES) drivetrain protocol, executed at twice diastolic-threshold on the epicardial surface
using microelectrodes; the resulting polymorphic VT can be appreciated with P-waves continuing at
the intrinsic sinoatrial node rate. In Panel (B), the spontaneous termination of the polymorphic VT
is depicted, with a sinus pause and resumption of intrinsic conduction system activity at a slower
rate than pre-PES. The rat suffered from heart failure with reduced ejection fraction induced via
permanent left coronary artery ligation. With the onset of the induced polymorphic VT, the rodent’s
invasive blood pressure readings no longer exhibited pulsatility, and the mean arterial pressure
dropped. Abbreviations: msec—milliseconds; µV—microvolts.

2. Pathophysiology of Ventricular Tachycardia
2.1. Etiologies Leading to Ventricular Tachycardia
2.1.1. Myocardial Infarction, Adverse Remodeling, and Re-Entry

Sustained mmVT is nearly exclusively found secondary to the adverse ventricular
remodeling associated with acute- or chronic ischemic heart disease. Adverse ventricular re-
modeling is frequently observed months to years post-acute myocardial infarction without
appropriate pharmacologic suppression, where previously healthy contractile myocytes
become irreparably damaged and are eventually replaced by myofibroblast-mediated fi-
brous tissue [15,16]. Within this myocardial scar are bundles of stunned cardiomyocytes
with poor intercellular coupling and subsequently exhibit delayed electrical conduction.

The presence of non-conductive tissue with spatially distributed pockets of conductive
myocardium that have impaired repolarization creates a substrate for re-entry [17–19]. The
criteria for anatomic re-entry are satisfied, namely, a fixed anatomic obstacle mediated
by the focus of scar tissue, a circuit-like excitation wavefront pathway through impaired
bundles, and unidirectional conduction block facilitated by locally prolonged repolarization
in the setting of globally heterogenous repolarization [20] (Figure 3). A myocardial scar pro-
vides a fixed arrhythmogenic substrate and a single ventricular focus that consequentially
favors mmVT pathophysiology [3].
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Figure 3. A stylized diagram illustrating the concept of arrhythmogenic re-entry. A circuit (not
necessarily circular in shape, illustrated as such for simplicity) that contains a continuous path of
conductive tissue, spatially separated in any of the three physical dimensions, that exhibits a het-
erogenous distribution of conduction velocities and/or repolarization rates can facilitate re-entry. A
sufficiently large circuit, enabled either by anatomic (fixed) tissue separation or by functional (slowed
conduction velocity) tissue separation, can allow a unified depolarization wavefront (arrowhead)
to continuously meet excitable tissue and thus the circuit to activate with a certain cycle frequency.
Abbreviations: Na+—sodium.

In the acute phase of myocardial ischemia, transient sub-clinical ischemia and/or
therapeutic reperfusion in acute coronary syndrome (ACS) can cause regional variations in
myocyte membrane voltage stability. This instability can lead to ectopic depolarizations or
increased automaticity described as R-on-T, Ashman phenomenon, or long-short coupling.
These irregular, unregulated focal depolarizations can act as a nidus for triggered activity
and initiate hemodynamically significant ventricular arrhythmias [21]. Although VT from
ACS is predominately polymorphic, early studies have described an increased risk of
mmVT with superimposed acute ischemia on a healed myocardial scar [22,23].

2.1.2. Congenital and Acquired Cardiomyopathies

The incidence of mmVT is certainly higher in ischemic cardiomyopathy relative to
non-ischemic; however, cases have been reported [24]. Akin to scar formation from my-
ocardial infarction, inflammatory and degenerative processes can also lead to fibrotic tissue
replacement of previously healthy myocytes, thus predisposing to the re-entrant form
of VT. Causes of non-ischemic cardiomyopathy are vast and include familial cardiomy-
opathies such as arrhythmogenic right ventricular cardiomyopathy and non-compaction,
autoimmune conditions such as cardiac sarcoidosis and cardiac amyloidosis, or infec-
tious etiologies such as untreated Chagas disease and chronic viral myocarditis. Patients
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with established non-ischemic cardiomyopathies exhibit a surprisingly high incidence of
mmVT via scar-related re-entry mechanisms, as evidenced by the seminal study from
Marchlinski et al. [25].

2.1.3. Iatrogenic Causes

Congenital heart disease (CHD) that is incompatible with life and consequently re-
quires surgical repair increases the risk for life-threatening arrhythmias. The majority of
VT in CHD occurs predominantly by re-entry mechanisms and is quintessentially illus-
trated in early-to-middle-aged adults with repaired tetralogy of Fallot (rTOF). Well-defined
anatomic isthmuses bordered by regions of unexcitable tissue are created by the numerous
suture lines created by the congenital heart surgeons to the anatomical barriers and slowed
conduction necessary for re-entry circuits [26]. The arrhythmogenic substrates in rTOF
include postsurgical scars following right ventricular outflow tract incisions, valve annuli,
and patches [27]. In addition to the expected post-operative surgical scarring, patients with
CHD can also develop VT due to adverse ventricular remodeling from impaired function,
increased workload, or subsequent conduction system destruction.

2.1.4. Purkinje System Disease

Bundle-branch re-entrant VT (BBR-VT) accounts for approximately 8% of sustained
mmVTs [28] and can involve the right/left bundle, their branches, or the His bundle.
Bundle-branch diseases, notably left-bundle branch blocks (LBBBs), facilitate interventricu-
lar conduction delays, which lead to ventricular contraction desynchrony and, if sufficiently
severe, chronic, or hemodynamically significant, can lead to myocardial fibrosis via activa-
tion of the renin–angiotensin–aldosterone axis due to impaired perfusion of the periphery.
The diffuse scar tissue deposition from this systemic process can provide an arrhythmogenic
substrate for the formation of re-entrant circuits. These abnormalities disrupt the intrinsic
cardiac conduction system, further increasing the likelihood of ventricular arrhythmias,
including mmVT.

2.1.5. Idiopathic Ventricular Tachycardia

Idiopathic VT is a small subset of tachyarrhythmias that occurs in patients without
structural heart disease. The VT focus can be located anywhere in the heart but predomi-
nantly arises from the right ventricular outflow tract (RVOT) and, less commonly, from the
left ventricular outflow tract [29]. RVOT-VT is frequently precipitated by high adrenergic
states such as exercise, intense emotions, and illness [30]. Individuals affected by idiopathic
VT are typically female, young, and healthy and thus require a thorough diagnostic workup
for other causes and then for underlying heart disease. Unlike other causes of VT, this type
is relatively benign given its transient nature in otherwise unremarkable cardiac systems
and thus is associated with a low risk of sudden cardiac death [31].

2.2. Molecular Mechanisms of Monomorphic Ventricular Re-Entry
2.2.1. Calcium Handling

Under optimal cardiomyocyte conditions, a sodium influx-mediated membrane action
potential initiates the opening of voltage-gated L-type Ca2+ channels (LTCCs), leading to
Ca2+ release from the sarcoplasmic reticulum (SR), facilitating allosteric manipulation of
thin filament regulatory proteins and actin–myosin cross-bridge cycling. LTCCs play a vital
role in maintaining membrane depolarization throughout the plateau phase of the action
potential. For this reason, the L-type calcium current (ICa,L) is crucial for preserving optimal
action potential duration (APD) and illustrates why any alternations in ICa,L kinetics carry
a high arrhythmogenic potential.

2.2.2. Action Potential Prolongation and Repolarization Heterogeneity

In structural heart disease, a myriad of compensatory and pathophysiologic electro-
physiological alterations ensue, precipitating a persistent proarrhythmic state. Ischemia-
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mediated calcium dysregulation (via sarco-endoplasmic reticulum adenosine triphosphate-
ase expression downregulation and allosteric inhibition in addition to uncontrolled calcium
sparks from failing ryanodine receptor clusters) and impaired potassium efflux [18] can di-
rectly lead to apoptosis via caspase activation or can lead to an impaired resting membrane
potential and subsequent cell death. These two electrolyte abnormalities increase APD and
ultimately exacerbate the repolarization reserve to depletion. Under conditions of acute
metabolic stress, this low reserve state can lead to electrical alternans and, subsequently,
mechanical alternans [32] as well as increase the likelihood of re-entrant arrhythmia via
furthering the global cardiac repolarization heterogeneity.

This dispersion of repolarization can allow early afterdepolarizations, occurring dur-
ing phases two or three of the cardiac action potential near the absolute refractory period,
or the higher risk delayed afterdepolarizations occurring during phase four in the relative
refractory period, to perturb the systems sufficiently to activate a dormant re-entrant system.

2.2.3. Dysregulated Na+ Handling

The rapid upstroke of phase one in the cardiomyocyte action potential is primarily
attributed to the influx of sodium ions (Na+) through the sodium current (INa), making it
predominantly responsible for tissue conduction velocity. In myocytes battered by local
hypoxia and impaired membrane voltage regulation, the properties of the INa fail to com-
pletely inactivate and/or close throughout the action potential, resulting in late INa. This
late depolarizing current has been demonstrated to be induced by the Ca2+/calmodulin-
dependent protein kinase II pathways, which are activated in the presence of structural
heart disease to facilitate salvaging cardiac function via calcium desensitization [33]. The
heightened intracellular Na+ concentration subsequently triggers an additional increase
in cytosolic Ca2+ levels via membrane-bound Na+-Ca2+ exchangers. These mechanisms
collectively contribute to APD dispersion and elevated arrhythmogenic risk [18].

3. Pulsed-Field Ablation for Arrhythmogenic Substrate Suppression
3.1. Regulatory Status of Clinical Pulsed-Field Ablation

PFA achieved regulatory approval for clinical use in the European Medicines Agency
when Farapulse Inc., a subsidiary of Boston Scientific, achieved “Conformité Européene”
in January of 2021 for the treatment of paroxysmal atrial fibrillation in adults [34] and shortly
thereafter in March of 2021, Medtronic attained the same approval for their Affera™ Mapping
and Ablation System. Though the same systems are also being utilized in the United
States of America for various clinical conditions, including persistent left superior vena
cava [35], neither has yet to achieve regulatory approval for clinical use by the Food
and Drug Administration nor the Chinese National Medical Products Administration,
though investigations are pending [36]. A third system, the Galaxy Medical/Galvanize
Therapeutics CENTAURI™ System, attained European regulatory approval in August
of 2022 [37], making it the most recent approval to date. As many as thirteen additional
PFA systems are still in the development pipeline; however, no information regarding
regulatory pursuits for pediatric indications can be found, though clinical case reports are
arising [38].

3.2. Foundational Findings Supporting Pulsed-Field Ablation
3.2.1. Mechanism of Action

Irreversible electroporation is the process of exposing a cell’s phospholipid bilayer
membrane to nanosecond strong “non-thermal” [39] electric fields (voltage) to overwhelm
the membrane’s inherent electrical capacitance threshold and creating sufficiently large
membrane pores that cell death via necrosis or apoptosis. This process is tunable in that the
voltage, pulse duration, pulse frequency, drivetrain, and application site can be adjusted
independently; the optimization of these settings of cardiac catheter-based ablation is re-
ferred to as pulsed-field ablation. Electroporation requires cell membranes and thus creates
specificity for biologically active membranes within the relatively precise electric field, thus
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sparing non-membranous connective tissue and support matrices. In addition, the small
field of action minimizes damage to biologically active tissues outside of the electric field,
such as nervous tissue, though variable non-fatal damage and regeneration have been
described [40]. In addition, the non-thermal mechanism of action does not denature tissue
or activate any damage-sensitive innate receptors for non-specific inflammation [41]. A
minimized inflammatory response yields less fibrosis and off-target tissue damage. This
non-thermal technique was adapted to force-sensing catheter-based systems and ultimately
made uniform with a “single shot” operation, which avoids any theoretical cancellation
effects from rapid serial dosing [42].

3.2.2. Preclinical Proof-of-Concept

Published data evaluating the molecular effects of PFA on cell cultures have revealed
a differential response and toxicity threshold from both murine and human cardiomy-
ocytes, neurons, and cardiac adipocytes based on electric field strengths [43–47]. Human
esophageal smooth muscle cells have also been assessed and exhibited a greater resistance
to FPA [48]. Dose-response assessments have been generated for isolated rodent ventri-
cles [49]. In addition to differences in population thresholds, in silico models are optimized
to maximize myocytes’ toxicity based on cell orientation relative to the electric field [50]
and tissue fiber orientations [51].

Langendorff and whole-animal studies have been completed in swine [52–57], ca-
nine [58], ovine [59], and even rabbit [60] models using various PFA catheter types and
methodologies. Consensus findings include the creation of transmural lesions via concen-
trated apoptosis with no evidence of thermal-based tissue damage. Though most articles do
not document any adverse effects from PFA, coronary artery spasms and chronic stenosis
via neointimal hyperplasia have been appreciated.

3.3. Pulsed-Field Ablation for Monomorphic Ventricular Tachycardia
3.3.1. Pre-Clinical Efficacy for Monomorphic Ventricular Tachycardia

Unfortunately, no pre-clinical data assessing the safety, efficacy, or reproducibility of
PFA for VT exist in animal models of human cardiac disease. However, pre-clinical reports
on the efficacy of ventricular PFA [53,56,57,61], as well as the safety of ventricular PFA [62],
are increasing. All five studies were conducted in swine [53,56,57,61,62] and had short-term
endpoints (ranging from 2 to 7 days [57] to 6 to 8 weeks [53]). Sample sizes were small
(ranging from 4 to 10 swine), though appropriate for preliminary de novo safety study
designs. Translational studies in models that closely recapitulate the pathophysiological
processes encountered in the clinical cardiac electrophysiology lab (namely rodent [17] and
swine models of ischemic cardiomyopathy assessed with clinically relevant programmed
electrical stimulation techniques) are needed to carefully detail the immediate-, short-, and
long-term efficacy of PFA for mmVT.

3.3.2. Adult Clinical Efficacy for Monomorphic Ventricular Tachycardia

Clinical data for the management of patients suffering from VT are presently limited
to the case report and case series stage of development [9–13]. Though the etiologies varied
from scar-mediated [9–11,13] to ventricular aneurysm [11], and arrhythmogenic cardiomy-
opathy [11], atrioventricular malformations [12], non-ischemic cardiomyopathy [13,63],
and even ectopy [11,64], no adverse events were reported in any of these observational
studies (Table 1). Of note, the longest time period that a patient was monitored for potential
arrhythmia recurrence post-PFA was 6 months [9]. Though concerns for coronary artery
vasospasm and/or stenosis [65,66] secondary to neointimal hyperplasia, as well as nerve
damage [67], have been raised, the volume-adjusted incidence suggests a lower risk of these
neurovascular complications compared to the thermal catheter-based ablation modalities
used for comparable substrates.
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Table 1. A table highlighting the pertinent qualities of the clinical case reports on the use of pulsed-field ablation for ventricular tachycardia. Case reports/series are
listed in order of reference number and include the PFA technology parameters, if available. Abbreviations: Ref—reference, M—male, F—female, PFA—pulsed-field
ablation, MI—myocardial infarction, ICD—implantable cardioverter defibrillator, defibs—defibrillations, VT—ventricular tachycardia, mmVT—monomorphic
ventricular tachycardia, ATP—anti-tachycardia pacing, mm—millimeters, kV—kiloVolts, HFrEF—heart failure with reduced ejection fraction, LVEF—left ven-
tricular ejection fraction, RFA—radiofrequency ablation, CRT-D—cardiac resynchronization therapy-defibrillator, aRV—atrialized right ventricle, RV—right
ventricle, LAD—left anterior descending coronary artery, W—watts, C—Celsius, RVOT—right ventricular outflow tract, PVCs—premature ventricular contractions,
sec—seconds, LV—left ventricle.

Research Group
[Ref. #]

Patient
Age, Gender

Cardiovascular
Comorbidities

Arrhythmogenic
Nidus Prior Procedures PFA Indication PFA Catheter Type PFA Parameters

Ouss et al. [9] 69, M Remote Anterior MI Distal anteroseptum 2 RFA attempts; ICD Recurrent VT requiring
ATP

Farawave™
Pentaspline (31 mm)

2.0 kV via biphasic
waveform

(7 overlapping applications)

Martin et al. [10] 68, M
HFrEF (LVEF 30%)

Ischemic
cardiomyopathy

Posterior, sub-aortic
valve intramural

circuit

Peri-aortic
endocardial and
epicardial RFA

attempts; CRT-D

Treatment-resistant
mmVT requiring ATP

Farawave™
Pentaspline (31 mm)

2.0 kV via 5 biphasic/bipolar
pulses (56 applications)

Lozano-Granero
et al. [11]

83, M
Non-obstructive

coronary
artery disease

Mid-apical lateral
LV wall None Sustained mmVT Farawave™

Pentaspline (31 mm)

2.0 kV via 4 biphasic/bipolar
microsecond pulses

(9 applications)

83, F LV aneurysm LV aneurysm 2 RFA attempts; ICD
Treatment-resistant

electrical storm requiring
ATP and defibs

Farawave™
Pentaspline (31 mm)

2.0 kV bipolar pulses
(18 applications)

69, M

Arrhythmogenic
cardiomyopathy

with biventricular
involvement

Basal inferolateral
free LV wall ICD Treatment-resistant RV

VT requiring defibs

Farawave™
Pentaspline (31 mm)

+
RFA: Thermocool

Smarttouch®

2.0 kV bipolar pulses
(12 applications)

+
RFA: Single 40.0 W

application

Krause et al. [12] 33, M Ebstein’s anomaly Anterior junction
between aRV and RV 1 RFA attempt; ICD Recurrent mmVT

requiring defibs
Farawave™

Pentaspline (31 mm)
Parameters not specified

(35 applications)

Adragão et al.
[13] 60, M Remote LAD MI

HFrEF (LVEF <20%)
Extensive anterior
wall/septum scar

3 endocardial RFA
attempts; CRT-D

Treatment-resistant
electrical storm with

multiple VTs

Farawave™
Pentaspline (31 mm)

+
QDOT Micro™

2.0 kV at 6 septal sites
(18 applications)

+
RFA: 50 W; 50 ◦C; Index 600

Weyand et al. [63] 61, M Non-ischemic dilated
cardiomyopathy

LV basal anterolateral
endocardial scarring

1 endocardial RFA
attempt; ICD

Electrical storm with
mmVT

Thermocool
Smarttouch®

Biphasic/unipolar
(“Several” applications)

Schmidt et al.
[64] 48, F No structural

heart disease RVOT None Medication-refractory
symptomatic PVCs

Farawave™
Pentaspline (31 mm)

2.5 sec pulses at 1.8 kV
(8 applications)
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3.3.3. Outcome Comparison with Thermal Cardiac Ablation

Due to the preliminary stage of PFA for mmVT management and likely also due to the
publication bias for positive-result studies, all (6/6, 100%) case reports and case studies pub-
lished to date describe success with regard to the primary outcome of arrhythmia cessation
and/or failed VT induction. The success rate for managing mmVT secondary to coronary
disease over a six-month time interval has been approximated to 62% [68]. Laser energy
continues to be investigated at the pre-clinical level for ventricular rhythm applications [69];
nonetheless, its use remains focused on lead extractions due to operator familiarity with
radiofrequency energy. Similarly, cryoballoons have been utilized for ventricular substrates
at the case series level [70] but are rarely used for monomorphic ventricular tachycardia,
and thus, no success rates nor complication rates can be confidently assessed.

4. Conclusions

Chronic compensatory changes post-ischemic insult produce ischemia-mediated cal-
cium dysregulation, impaired potassium efflux, global action potential duration dispersion,
and increased arrhythmogenic risk. These electrophysiologic changes paired with structural
scar tissue can propagate the initiation of ventricular tachyrhthms, including monomor-
phic ventricular tachycardia (mmVT). Though current management of pharmacologically
resistant mmVT includes catheter ablation with a thermal mechanism of action, recur-
rence occurs, and anatomical challenges and safety risks must be carefully considered.
Irreversible electroporation provides a non-thermal option for the invasive cardiac electro-
physiologist and may increase the overall efficacy of catheter ablation for difficult-to-treat
or anatomically limiting cardiac tachyrhythms. At the present time, pre-clinical data sup-
porting pulsed-field ablation (PFA) for mmVT are lackluster; however, clinical case reports
are mounting. Additional work regarding the safety, efficacy, and long-term durability of
PFA for mmVT is needed.
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