Combined Predictive Value of GLIM-Defined Malnutrition and Preoperative Adipose Tissue 18F-FDG Uptake for Recurrence-Free Survival After Radical Gastrectomy in Patients with Gastric Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. 18F-FDG PET/CT Image Acquisition
2.3. Image Analysis and Data Collection
2.4. GLIM Criteria
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Correlation Analysis Between VAT SUVmean/SAT SUVmean and Clinical Data
3.3. Survival Analysis for RFS
3.4. Stratification of RFS by Combining the GLIM Criteria and the VAT SUVmean
3.5. Predictive Value of the GLIM Criteria–VAT SUVmean Model in the Postoperative Prognosis of Patients with Gastric Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VAT | visceral adipose tissue |
SAT | subcutaneous adipose tissue |
SUV | standardized uptake value |
GLIM | Global Leadership Initiative on Malnutrition |
ALB | albumin |
Pre-ALB | prealbumin |
NLR | neutrophil-to-lymphocyte ratio |
PLR | platelet-to-lymphocyte ratio |
CRP | CRP |
BMI | body mass index |
CI | confidence interval |
References
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2022, 20, 167–192. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Song, G.J.; Son, M.W.; Lee, M.S. Global Leadership Initiative on Malnutrition Criteria and Immunonutritional Status Predict Chemoadherence and Survival in Stage II/III Gastric Cancer Treated with XELOX Chemotherapy. Nutrients 2024, 16, 3468. [Google Scholar] [CrossRef]
- Zheng, H.L.; Lin, J.; Shen, L.L.; Yang, H.B.; Xu, B.B.; Xue, Z.; Wu, D.; Huang, J.B.; Lin, G.S.; Zheng, C.H.; et al. The GLIM criteria as an effective tool for survival prediction in gastric cancer patients. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2023, 49, 964–973. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, X.; Yu, J.; Hu, Q.; Zhan, Z.; Zhou, S.; Xu, J.; Li, Q.; Song, C.; Wang, C.; et al. Global Leadership Initiative on Malnutrition criteria: Clinical benefits for patients with gastric cancer. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2025, 40, 239–251. [Google Scholar] [CrossRef]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef]
- Bauer, J.; Capra, S.; Ferguson, M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur. J. Clin. Nutr. 2002, 56, 779–785. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Lee, D.U.; Fan, G.H.; Hastie, D.J.; Addonizio, E.A.; Han, J.; Prakasam, V.N.; Karagozian, R. The clinical impact of malnutrition on the postoperative outcomes of patients undergoing gastrectomy for gastric cancer: Propensity score matched analysis of 2011–2017 hospital database. Clin. Nutr. ESPEN 2021, 46, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Nikniaz, Z.; Somi, M.H.; Naghashi, S. Malnutrition and Weight Loss as Prognostic Factors in the Survival of Patients with Gastric Cancer. Nutr. Cancer 2022, 74, 3140–3145. [Google Scholar] [CrossRef] [PubMed]
- Duong, M.N.; Geneste, A.; Fallone, F.; Li, X.; Dumontet, C.; Muller, C. The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget 2017, 8, 57622–57641. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, A.; Isac, A.M.; Cardenas, H.; Zhao, G.; Zhang, Y.; Huang, H.; Wei, J.J.; Cuello-Fredes, M.; Kato, S.; Gómez-Valenzuela, F.; et al. Complement activation at the interface between adipocytes and cancer cells drives tumor progression. JCI Insight 2025, 10, 184935. [Google Scholar] [CrossRef]
- Lee, J.W.; Son, M.W.; Chung, I.K.; Cho, Y.S.; Lee, M.S.; Lee, S.M. Significance of CT attenuation and F-18 fluorodeoxyglucose uptake of visceral adipose tissue for predicting survival in gastric cancer patients after curative surgical resection. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2020, 23, 273–284. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, S.M.; Chung, Y.A. Prognostic value of CT attenuation and FDG uptake of adipose tissue in patients with pancreatic adenocarcinoma. Clin. Radiol. 2018, 73, 1056.e1–1056.e10. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.; Bae, S.J.; Ahn, S.G.; Jeong, J.; Park, W.C.; Ryu, Y.H.; Jeon, T.J.; Lee, Y.; Cha, Y.J.; et al. 18F-FDG uptake of visceral adipose tissue on preoperative PET/CT as a predictive marker for breast cancer recurrence. Sci. Rep. 2022, 12, 21109. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Zhao, X.; Pang, X.; Dai, M.; Sun, Y.; Wang, M.; Han, J.; Zhao, Y. Subcutaneous adipose tissue [(18)F]FDG uptake and CT-derived body composition variables for predicting survival outcomes in patients with locally advanced gastric cancer. Eur. J. Nucl. Med. Mol. Imaging 2025. [Google Scholar] [CrossRef]
- Van de Wiele, C.; Van Vlaenderen, M.; D’Hulst, L.; Delcourt, A.; Copin, D.; De Spiegeleer, B.; Maes, A. Metabolic and morphological measurements of subcutaneous and visceral fat and their relationship with disease stage and overall survival in newly diagnosed pancreatic adenocarcinoma: Metabolic and morphological fat measurements in pancreatic adenocarcinoma. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 110–116. [Google Scholar] [CrossRef]
- Sun, D.; Yin, H.; Liu, X.; Ding, Z.; Shen, L.; Sah, S.; Han, J.; Wu, G. Elevated 18F-FDG uptake in subcutaneous adipose tissue correlates negatively with nutritional status and prognostic survival in cachexia patients with gastric cancer. Clin. Nutr. 2024, 43, 567–574. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Xu, Y.; Hou, H. The impact of preoperative skeletal muscle mass index-defined sarcopenia on postoperative complications and survival in gastric cancer: An updated meta-analysis. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2025, 51, 109569. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Pisprasert, V.; Blaauw, R.; Braz, D.C.; Carrasco, F.; Cruz Jentoft, A.J.; et al. The GLIM consensus approach to diagnosis of malnutrition: A 5-year update. Clin. Nutr. 2025, 49, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Huo, Z.; Chong, F.; Yin, L.; Li, N.; Liu, J.; Zhang, M.; Guo, J.; Fan, Y.; Zhang, L.; Lin, X.; et al. Comparison of the performance of the GLIM criteria, PG-SGA and mPG-SGA in diagnosing malnutrition and predicting survival among lung cancer patients: A multi-center study. Clin. Nutr. 2023, 42, 1048–1058. [Google Scholar] [CrossRef]
- Zhou, C.J.; Lin, Y.; Liu, J.Y.; Wang, Z.L.; Chen, X.Y.; Zheng, C.G. Malnutrition and visceral obesity predicted adverse short-term and long-term outcomes in patients undergoing proctectomy for rectal cancer. BMC Cancer 2023, 23, 576. [Google Scholar] [CrossRef]
- Hoobler, R.; Herrera, M.; Woodruff, K.; Sanchez, A.; Coletta, A.M.; Chaix, A.; Elizondo, J.; Playdon, M.C. Malnutrition Risk Is Associated with All-Cause Mortality and Chemotherapy Complications Among Adults Diagnosed with Diverse Cancer Types: A Retrospective Cohort Study. J. Acad. Nutr. Diet. 2025. [Google Scholar] [CrossRef]
- Neto, L.C.B.S.; Enriquez-Martinez, O.G.; Grippa, W.R.; Marcarini, J.A.C.; Santos, T.B.; Mawandji, N.B.S.; Gomes, K.N.; Schuab, S.I.P.C.; Minarini, E.J.C.D.S.; Nunes, K.Z.; et al. Nutritional Status of Patients with Neoplasms Undergoing Ambulatory Chemotherapy and Associated Factors. Nutrients 2025, 17, 168. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, L.; Su, P.; Yu, T.; Ma, Z.; Kang, W.; Liu, Y.; Jin, Z.; Yu, J. Visceral Adipose Tissue Assessment Enhances the Prognostic Value of GLIM Criteria in Patients with Gastric Cancer Undergoing Radical Gastrectomy after Neoadjuvant Treatment. Nutrients 2022, 14, 5047. [Google Scholar] [CrossRef]
- Lee, J.W.; Ban, M.J.; Park, J.H.; Lee, S.M. Visceral adipose tissue volume and CT-attenuation as prognostic factors in patients with head and neck cancer. Head Neck 2019, 41, 1605–1614. [Google Scholar] [CrossRef]
- Song, G.J.; Ahn, H.; Son, M.W.; Yun, J.H.; Lee, M.S.; Lee, S.M. Adipose Tissue Quantification Improves the Prognostic Value of GLIM Criteria in Advanced Gastric Cancer Patients. Nutrients 2024, 16, 728. [Google Scholar] [CrossRef]
- Cypess, A.M. Reassessing Human Adipose Tissue. N. Engl. J. Med. 2022, 386, 768–779. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Y.; Jiang, Y.; Weng, L.; Cai, Z.; He, B. The Different Shades of Thermogenic Adipose Tissue. Curr. Obes. Rep. 2024, 13, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Bouche, C.; Quail, D.F. Fueling the Tumor Microenvironment with Cancer-Associated Adipocytes. Cancer Res. 2023, 83, 1170–1172. [Google Scholar] [CrossRef] [PubMed]
- Hamabe-Horiike, T.; Harada, S.I.; Yoshida, K.; Kinoshita, J.; Yamaguchi, T.; Fushida, S. Adipocytes contribute to tumor progression and invasion of peritoneal metastasis by interacting with gastric cancer cells as cancer associated fibroblasts. Cancer Rep. 2023, 6, e1647. [Google Scholar] [CrossRef] [PubMed]
- Karaçelik, T.; Kaya, B.; Korkmaz, M.; Karaağaç, M.; Araz, M.; Eryılmaz, M.K.; Bozcuk, H.Ş.; Artaç, M. Prognostic Significance of Adipose Tissue Distribution and Metabolic Activity in PET/CT in Patients with Metastatic Colorectal Cancer. J. Gastroin-Testinal Cancer 2023, 54, 456–466. [Google Scholar] [CrossRef]
- Kwon, H.W.; Lee, S.M.; Lee, J.W.; Oh, J.E.; Lee, S.W.; Kim, S.Y. Association between volume and glucose metabolism of abdominal adipose tissue in healthy population. Obes. Res. Clin. Pract. 2017, 11 (Suppl. S1), 133–143. [Google Scholar] [CrossRef]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef]
- Wang, T.; Sharma, A.K.; Wolfrum, C. Novel insights into adipose tissue heterogeneity. Rev. Endocr. Metab. Disord. 2022, 23, 5–12. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, M.; Zhao, Y.; Dai, J.; Yang, Q.; Tang, X.; Li, X.; Cui, Y.; Zhang, J.; Sun, J.; et al. A [18F]FDG PET based nomogram to predict cancer-associated cachexia and survival outcome: A multi-center study. Nutrition 2025, 129, 112593. [Google Scholar] [CrossRef]
Characteristics | Total (n = 105) | Recurrence (n = 34) | No Recurrence (n = 71) | p-Value |
---|---|---|---|---|
Age (years) | 63 (23–88) | 63 (34–88) | 64 (23–81) | 0.696 |
BMI (kg/m2) | 22.1 (15.55–28.89) | 20.9 (15.55–28.54) | 22.8 (17.12–28.89) | 0.01 * |
Sex | 0.434 | |||
Men | 82 (78.1%) | 25 (73.5%) | 57 (80.3%) | |
Women | 23 (21.9%) | 9 (26.5%) | 14 (19.7%) | |
T stage | <0.001 * | |||
T1–2 stage | 37 (35.2%) | 2 (6%) | 35 (49.3%) | |
T3–4 stage | 68 (64.8%) | 32 (94%) | 36 (50.7%) | |
N stage | <0.001 * | |||
N0 stage | 39 (37.1%) | 5 (14.7%) | 34 (47.9%) | |
N1–3 stage | 66 (62.9%) | 29 (85.3%) | 37 (52.1%) | |
AJCC stage | <0.001 * | |||
I-II | 52 (49.5%) | 8 (23.5%) | 44 (62.0%) | |
III | 53 (50.5%) | 26 (76.5%) | 27 (38.0%) | |
Adjuvant chemotherapy | 0.018 * | |||
Yes | 70 (66.7%) | 28 (82.4%) | 42 (59.2%) | |
No | 35 (33.3%) | 6 (17.6%) | 29 (40.8%) | |
Type of resection | 0.045 * | |||
Partial gastrectomy | 58 (55.2%) | 14 (41.2%) | 44 (62.0%) | |
Total gastrectomy | 47 (44.8%) | 20 (58.8%) | 27 (38.0%) | |
Examined lymph nodes | 34 (11–71) | 35 (16–66) | 34 (11–71) | 0.813 |
Differentiation | 0.496 | |||
Well differentiated | 19 (18.1%) | 4 (11.8%) | 15 (21.1%) | |
Moderately differentiated | 36 (34.3%) | 13 (38.2%) | 23 (32.4%) | |
Poorly differentiated | 50 (47.6%) | 17 (50.0%) | 33 (46.5%) | |
Postoperative complications | 0.902 | |||
Yes | 27 (25.7%) | 9 (26.5%) | 18 (25.4%) | |
No | 78 (74.3%) | 25 (73.5%) | 53 (74.6%) | |
VAT SUVmean | <0.001 * | |||
<0.41 | 52 (49.5%) | 5 (14.7%) | 47 (66.2%) | |
≥0.41 | 53 (50.5%) | 29 (85.3%) | 24 (33.8%) | |
SAT SUVmean | 0.044 * | |||
<0.33 | 52 (49.5%) | 12 (35.3%) | 40 (56.3%) | |
≥0.33 | 53 (50.5%) | 22 (64.7%) | 31 (43.7%) | |
GLIM criteria | <0.001 * | |||
Malnutrition | 41 (39.0%) | 27 (79.4%) | 14 (19.7%) | |
No malnutrition | 64 (61.0%) | 7 (20.6%) | 57 (80.3%) | |
ALB (g/L) | 43.1 (30.0–53.2) | 41.9 (30.0–48.1) | 43.8 (33.3–53.2) | <0.001 * |
Pre-ALB (mg/L) | 229 (64–422) | 218 (64–383) | 248 (144–422) | 0.002 * |
NLR | 2.9 (1.1–13.0) | 3.44 (1.7–13.0) | 2.6 (1.1–12.3) | 0.004 * |
PLR | 163.5 (61.0–443.8) | 196.8 (103.6–419.1) | 142.54 (61.0–443.8) | <0.001 * |
CRP (mg/L) | 2.0 (0.1–58.9) | 2.73 (0.3–58.9) | 1.78 (0.12–52.64) | 0.009 * |
VAT SUVmean | SAT SUVmean | |
---|---|---|
BMI | ||
r | −0.373 | −0.165 |
p | <0.001 | 0.093 |
NLR | ||
r | 0.306 | 0.06 |
p | 0.001 | 0.541 |
PLR | ||
r | 0.292 | 0.111 |
p | 0.003 | 0.262 |
CRP | ||
r | 0.061 | 0.114 |
p | 0.536 | 0.246 |
ALB | ||
r | −0.331 | −0.208 |
p | <0.001 | 0.034 |
Pre-ALB | ||
r | −0.360 | −0.241 |
p | <0.001 | 0.013 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Variables | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
Age | 1.017 (0.990–1.046) | 0.216 | ||
BMI | 0.862 (0.758–0.980) | 0.023 * | 1.070 (0.923–1.240) | 0.369 |
Sex | 0.507 | |||
Women | 1 | |||
Men | 0.773 (0.360–1.657) | |||
AJCC stage | <0.001 * | 0.423 | ||
I-II | 1 | 1 | ||
III | 4.446 (2.005–9.858) | 1.588 (0.513–4.914) | ||
Adjuvant chemotherapy | 0.018 * | 0.170 | ||
No | 1 | 1 | ||
Yes | 2.914 (1.205–7.049) | 2.103 (0.727–6.087) | ||
Type of resection | 0.031 * | 0.482 | ||
Partial gastrectomy | 1 | 1 | ||
Total gastrectomy | 2.123 (1.070–4.213) | 2.103(0.727–6.087) | ||
Examined lymph nodes | 1.013 (0.981–1.045) | 0.436 | ||
Differentiation | 0.416 | |||
Poorly differentiated | 1 | |||
Well differentiated Moderately differentiated | 0.827 (0.523–1.308) | |||
Postoperative complications | 0.633 | |||
No | 1 | |||
Yes | 1.205 (0.561–2.591) | |||
VAT SUVmean | <0.001 * | 0.042 * | ||
<0.41 | 1 | 1 | ||
≥0.41 | 8.905 (3.404–23.300) | 3.377(1.043–10.933) | ||
SAT SUVmean | 0.034 * | 0.434 | ||
<0.33 | 1 | 1 | ||
≥0.33 | 2.142 (1.058–4.334) | 1.383(0.614–3.115) | ||
GLIM criteria | <0.001 * | 0.020 * | ||
No malnutrition | 1 | 1 | ||
Malnutrition | 9.259 (4.003–21.419) | 4.731 (1.281–17.473) | ||
ALB | 0.889 (0.828–0.954) | 0.001 * | 0.994 (0.895–1.104) | 0.911 |
Pre-ALB | 0.988 (0.982–0.995) | <0.001 * | 0.998 (0.990–1.006) | 0.656 |
NLR | 1.163 (1.029–1.316) | 0.016 * | 1.125 (0.913–1.386) | 0.269 |
PLR | 1.004 (1.001–1.008) | 0.006 * | 1.000 (0.995–1.005) | 0.988 |
CRP | 1.017 (0.989–1.046) | 0.229 |
Patient Subgroup | Recurrence (%) | p-Value | Hazard Ratio (95% CI) |
---|---|---|---|
No malnutrition and VAT SUVmean < 0.41 (n = 42) | 3 (8.8) | - | 1.00 |
Malnutrition or VAT SUVmean ≥ 0.41 (n = 32) | 6 (17.6) | <0.001 | 5.243 (2.581–10.65) |
Malnutrition and VAT SUVmean ≥ 0.41 (n = 31) | 25 (73.6%) | <0.001 | 18.41 (8.276–40.96) |
Model | LRT | AIC | C-Index | |
---|---|---|---|---|
χ2 | p | |||
VAT SUVmean | 29.67 | <0.001 | 257.91 | 0.706 |
GLIM criteria | 36.15 | <0.001 | 251.43 | 0.766 |
VAT SUVmean and GLIM criteria | 46.84 | <0.001 | 242.74 | 0.802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yin, K.; Hong, H.; Yi, H.; Li, L. Combined Predictive Value of GLIM-Defined Malnutrition and Preoperative Adipose Tissue 18F-FDG Uptake for Recurrence-Free Survival After Radical Gastrectomy in Patients with Gastric Cancer. Curr. Oncol. 2025, 32, 363. https://doi.org/10.3390/curroncol32060363
Zhou X, Yin K, Hong H, Yi H, Li L. Combined Predictive Value of GLIM-Defined Malnutrition and Preoperative Adipose Tissue 18F-FDG Uptake for Recurrence-Free Survival After Radical Gastrectomy in Patients with Gastric Cancer. Current Oncology. 2025; 32(6):363. https://doi.org/10.3390/curroncol32060363
Chicago/Turabian StyleZhou, Xuan, Kailai Yin, Huanhuan Hong, Heqing Yi, and Linfa Li. 2025. "Combined Predictive Value of GLIM-Defined Malnutrition and Preoperative Adipose Tissue 18F-FDG Uptake for Recurrence-Free Survival After Radical Gastrectomy in Patients with Gastric Cancer" Current Oncology 32, no. 6: 363. https://doi.org/10.3390/curroncol32060363
APA StyleZhou, X., Yin, K., Hong, H., Yi, H., & Li, L. (2025). Combined Predictive Value of GLIM-Defined Malnutrition and Preoperative Adipose Tissue 18F-FDG Uptake for Recurrence-Free Survival After Radical Gastrectomy in Patients with Gastric Cancer. Current Oncology, 32(6), 363. https://doi.org/10.3390/curroncol32060363