Old Tools in a New Era: The Continued Relevance of Chemotherapy in Pediatric Neuro-Oncology
Simple Summary
Abstract
1. Introduction
2. Use of Chemotherapy in Pediatric Low-Grade Glioma
3. Molecular Characterization and Tailoring Chemotherapy Intensity in Pediatric Medulloblastoma
3.1. De-Escalating Therapy in WNT-Medulloblastoma
3.2. Radiosensitization in Medulloblastoma
4. Intensification of Chemotherapy to Avoid or Delay Radiotherapy in Young Children with Embryonal CNS Tumors
4.1. HDC for Medulloblastomas
4.2. HDC for Atypical Teratoid Rhabdoid Tumors
4.3. HDC for Embryonal Tumor with Multilayered Rosettes
5. Adjuvant Chemotherapy to Reduce Radiation Field and Doses in Central Nervous System Germ Cell Tumors (CNS GCTs)
5.1. Germinoma
5.2. Non-Germinomatous Germ Cell Tumors (NGGCTs)
6. Challenges and Perspectives
6.1. Unknown Role for Conventional Chemotherapy
6.1.1. Ependymoma
6.1.2. Pediatric High-Grade Glioma
6.1.3. Role of Chemotherapy in Other Rare CNS Tumors
6.2. Chemotherapy in Relapsed CNS Disease
6.3. The Ongoing Stumbling Block of Overcoming the Blood–Brain Barrier
6.3.1. Intrathecal and Intraventricular Chemotherapy
6.3.2. Other Strategies
6.4. Limitations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncol. 2019, 21, v1–v100. [Google Scholar] [CrossRef]
- Indelicato, D.J.; Rotondo, R.L.; Uezono, H.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; Bradley, J.A. Outcomes Following Proton Therapy for Pediatric Low-Grade Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 149–156. [Google Scholar] [CrossRef]
- Lassaletta, A.; Zapotocky, M.; Bouffet, E. Chemotherapy in pediatric low-grade gliomas (PLGG). Childs Nerv. Syst. 2024, 40, 3229–3239. [Google Scholar] [CrossRef]
- Packer, R.J.; Ater, J.; Allen, J.; Phillips, P.; Geyer, R.; Nicholson, H.S.; Jakacki, R.; Kurczynski, E.; Needle, M.; Finlay, J.; et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg. 1997, 86, 747–754. [Google Scholar] [CrossRef]
- Packer, R.J.; Lange, B.; Ater, J.; Nicholson, H.S.; Allen, J.; Walker, R.; Prados, M.; Jakacki, R.; Reaman, G.; Needles, M.N.; et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J. Clin. Oncol. 1993, 11, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Ater, J.L.; Zhou, T.; Holmes, E.; Mazewski, C.M.; Booth, T.N.; Freyer, D.R.; Lazarus, K.H.; Packer, R.J.; Prados, M.; Sposto, R.; et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: A report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 2641–2647. [Google Scholar] [CrossRef] [PubMed]
- Gnekow, A.K.; Falkenstein, F.; von Hornstein, S.; Zwiener, I.; Berkefeld, S.; Bison, B.; Warmuth-Metz, M.; Driever, P.H.; Soerensen, N.; Kortmann, R.D.; et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro-Oncol. 2012, 14, 1265–1284. [Google Scholar] [CrossRef] [PubMed]
- Gnekow, A.K.; Walker, D.A.; Kandels, D.; Picton, S.; Giorgio, P.; Grill, J.; Stokland, T.; Sandstrom, P.E.; Warmuth-Metz, M.; Pietsch, T.; et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma—A final report. Eur. J. Cancer 2017, 81, 206–225. [Google Scholar] [CrossRef]
- Gnekow, A.K.; Kortmann, R.D.; Pietsch, T.; Emser, A. Low grade chiasmatic-hypothalamic glioma-carboplatin and vincristin chemotherapy effectively defers radiotherapy within a comprehensive treatment strategy—Report from the multicenter treatment study for children and adolescents with a low grade glioma—HIT-LGG 1996—Of the Society of Pediatric Oncology and Hematology (GPOH). Klin. Padiatr. 2004, 216, 331–342. [Google Scholar] [CrossRef]
- Lafay-Cousin, L.; Holm, S.; Qaddoumi, I.; Nicolin, G.; Bartels, U.; Tabori, U.; Huang, A.; Bouffet, E. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer 2005, 103, 2636–2642. [Google Scholar] [CrossRef]
- Confino-Cohen, R.; Fishman, A.; Altaras, M.; Goldberg, A. Successful carboplatin desensitization in patients with proven carboplatin allergy. Cancer 2005, 104, 640–643. [Google Scholar] [CrossRef]
- Dodgshun, A.J.; Maixner, W.J.; Heath, J.A.; Sullivan, M.J.; Hansford, J.R. Single agent carboplatin for pediatric low-grade glioma: A retrospective analysis shows equivalent efficacy to multiagent chemotherapy. Int. J. Cancer 2016, 138, 481–488. [Google Scholar] [CrossRef]
- Moghrabi, A.; Friedman, H.S.; Ashley, D.M.; Bottom, K.S.; Kerby, T.; Stewart, E.; Bruggers, C.; Provenzale, J.M.; Champagne, M.; Hershon, L.; et al. Phase II study of carboplatin (CBDCA) in progressive low-grade gliomas. Neurosurg. Focus 1998, 4, e3. [Google Scholar] [CrossRef]
- Lassaletta, A.; Scheinemann, K.; Zelcer, S.M.; Hukin, J.; Wilson, B.A.; Jabado, N.; Carret, A.S.; Lafay-Cousin, L.; Larouche, V.; Hawkins, C.E.; et al. Phase II Weekly Vinblastine for Chemotherapy-Naive Children With Progressive Low-Grade Glioma: A Canadian Pediatric Brain Tumor Consortium Study. J. Clin. Oncol. 2016, 34, 3537–3543. [Google Scholar] [CrossRef]
- Bouffet, E.; Jakacki, R.; Goldman, S.; Hargrave, D.; Hawkins, C.; Shroff, M.; Hukin, J.; Bartels, U.; Foreman, N.; Kellie, S.; et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J. Clin. Oncol. 2012, 30, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Cappellano, A.M.; Petrilli, A.S.; da Silva, N.S.; Silva, F.A.; Paiva, P.M.; Cavalheiro, S.; Bouffet, E. Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J. Neuro-Oncol. 2015, 121, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kuttesch, J.F., Jr.; Krailo, M.D.; Madden, T.; Johansen, M.; Bleyer, A.; Children’s Oncology Group. Phase II evaluation of intravenous vinorelbine (Navelbine) in recurrent or refractory pediatric malignancies: A Children’s Oncology Group study. Pediatr. Blood Cancer 2009, 53, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Chintagumpala, M.; Eckel, S.P.; Krailo, M.; Morris, M.; Adesina, A.; Packer, R.; Lau, C.; Gajjar, A. A pilot study using carboplatin, vincristine, and temozolomide in children with progressive/symptomatic low-grade glioma: A Children’s Oncology Group studydagger. Neuro-Oncol. 2015, 17, 1132–1138. [Google Scholar] [CrossRef]
- Massimino, M.; Spreafico, F.; Cefalo, G.; Riccardi, R.; Tesoro-Tess, J.D.; Gandola, L.; Riva, D.; Ruggiero, A.; Valentini, L.; Mazza, E.; et al. High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J. Clin. Oncol. 2002, 20, 4209–4216. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Price, M.; Ryan, K.; Edelson, J.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncol. 2022, 24, iii1–iii38. [Google Scholar] [CrossRef]
- Hovestadt, V.; Ayrault, O.; Swartling, F.J.; Robinson, G.W.; Pfister, S.M.; Northcott, P.A. Medulloblastomics revisited: Biological and clinical insights from thousands of patients. Nat. Rev. Cancer 2020, 20, 42–56. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Northcott, P.A.; Buchhalter, I.; Morrissy, A.S.; Hovestadt, V.; Weischenfeldt, J.; Ehrenberger, T.; Grobner, S.; Segura-Wang, M.; Zichner, T.; Rudneva, V.A.; et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017, 547, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Northcott, P.A.; Jones, D.T.; Kool, M.; Robinson, G.W.; Gilbertson, R.J.; Cho, Y.J.; Pomeroy, S.L.; Korshunov, A.; Lichter, P.; Taylor, M.D.; et al. Medulloblastomics: The end of the beginning. Nat. Rev. Cancer 2012, 12, 818–834. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.J.; Northcott, P.A.; Remke, M.; Korshunov, A.; Ramaswamy, V.; Kool, M.; Luu, B.; Yao, Y.; Wang, X.; Dubuc, A.M.; et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 2014, 32, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; et al. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol. 2012, 123, 465–472. [Google Scholar] [CrossRef]
- Gajjar, A.; Robinson, G.W.; Smith, K.S.; Lin, T.; Merchant, T.E.; Chintagumpala, M.; Mahajan, A.; Su, J.; Bouffet, E.; Bartels, U.; et al. Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03). J. Clin. Oncol. 2021, 39, 822–835. [Google Scholar] [CrossRef]
- Leary, S.E.S.; Packer, R.J.; Li, Y.; Billups, C.A.; Smith, K.S.; Jaju, A.; Heier, L.; Burger, P.; Walsh, K.; Han, Y.; et al. Efficacy of Carboplatin and Isotretinoin in Children With High-risk Medulloblastoma: A Randomized Clinical Trial From the Children’s Oncology Group. JAMA Oncol. 2021, 7, 1313–1321. [Google Scholar] [CrossRef]
- Michalski, J.M.; Janss, A.J.; Vezina, L.G.; Smith, K.S.; Billups, C.A.; Burger, P.C.; Embry, L.M.; Cullen, P.L.; Hardy, K.K.; Pomeroy, S.L.; et al. Children’s Oncology Group Phase III Trial of Reduced-Dose and Reduced-Volume Radiotherapy With Chemotherapy for Newly Diagnosed Average-Risk Medulloblastoma. J. Clin. Oncol. 2021, 39, 2685–2697. [Google Scholar] [CrossRef]
- von Bueren, A.O.; Kortmann, R.D.; von Hoff, K.; Friedrich, C.; Mynarek, M.; Muller, K.; Goschzik, T.; Zur Muhlen, A.; Gerber, N.; Warmuth-Metz, M.; et al. Treatment of Children and Adolescents With Metastatic Medulloblastoma and Prognostic Relevance of Clinical and Biologic Parameters. J. Clin. Oncol. 2016, 34, 4151–4160. [Google Scholar] [CrossRef]
- Choi, J.Y. Medulloblastoma: Current Perspectives and Recent Advances. Brain Tumor Res. Treat. 2023, 11, 28–38. [Google Scholar] [CrossRef]
- Robinson, G.W.; Merchant, T.E.; Orr, B.A.; Bass, J.K.; Conklin, H.M.; Bag, A.; Dhanda, S.K.; Pinto, S.; Delaney, A.; Mikkelsen, M.; et al. MDB-92. Effect of reduced-dose craniospinal irradiation and reduce-dose adjuvant chemotherapy on children and adolescents with WNT medulloblastoma without residual or metastatic disease: Results from the SJMB12 clinical trial. Neuro-Oncol. 2024, 26, iv157. [Google Scholar] [CrossRef]
- Clifford, S.C.; Lannering, B.; Schwalbe, E.C.; Hicks, D.; O’Toole, K.; Nicholson, S.L.; Goschzik, T.; Zur Muhlen, A.; Figarella-Branger, D.; Doz, F.; et al. Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: Results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget 2015, 6, 38827–38839. [Google Scholar] [CrossRef]
- Lannering, B.; Rutkowski, S.; Doz, F.; Pizer, B.; Gustafsson, G.; Navajas, A.; Massimino, M.; Reddingius, R.; Benesch, M.; Carrie, C.; et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: Results from the randomized multicenter HIT-SIOP PNET 4 trial. J. Clin. Oncol. 2012, 30, 3187–3193. [Google Scholar] [CrossRef] [PubMed]
- Dietzsch, S.; Placzek, F.; Pietschmann, K.; von Bueren, A.O.; Matuschek, C.; Gluck, A.; Guckenberger, M.; Budach, V.; Welzel, J.; Pottgen, C.; et al. Evaluation of Prognostic Factors and Role of Participation in a Randomized Trial or a Prospective Registry in Pediatric and Adolescent Nonmetastatic Medulloblastoma—A Report From the HIT 2000 Trial. Adv. Radiat. Oncol. 2020, 5, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- Mynarek, M.; von Hoff, K.; Pietsch, T.; Ottensmeier, H.; Warmuth-Metz, M.; Bison, B.; Pfister, S.; Korshunov, A.; Sharma, T.; Jaeger, N.; et al. Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. J. Clin. Oncol. 2020, 38, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Douple, E.B.; O’Hara, J.A.; Crabtree, R.A.; Eastman, A. Enhanced radiation-induced cell killing by carboplatin in cells of repair-proficient and repair-deficient cell lines. Radiat. Res. 1995, 144, 230–236. [Google Scholar] [CrossRef]
- Jakacki, R.I.; Burger, P.C.; Zhou, T.; Holmes, E.J.; Kocak, M.; Onar, A.; Goldwein, J.; Mehta, M.; Packer, R.J.; Tarbell, N.; et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: A Children’s Oncology Group Phase I/II study. J. Clin. Oncol. 2012, 30, 2648–2653. [Google Scholar] [CrossRef]
- Karajannis, M.A.; Mauguen, A.; Kramer, K. Carboplatin During Craniospinal Radiotherapy for Children With Group 3 Medulloblastoma-A New Standard of Care? JAMA Oncol. 2022, 8, 301–302. [Google Scholar] [CrossRef]
- Duffner, P.K.; Horowitz, M.E.; Krischer, J.P.; Friedman, H.S.; Burger, P.C.; Cohen, M.E.; Sanford, R.A.; Mulhern, R.K.; James, H.E.; Freeman, C.R.; et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N. Engl. J. Med. 1993, 328, 1725–1731. [Google Scholar] [CrossRef]
- Duffner, P.K.; Horowitz, M.E.; Krischer, J.P.; Burger, P.C.; Cohen, M.E.; Sanford, R.A.; Friedman, H.S.; Kun, L.E. The treatment of malignant brain tumors in infants and very young children: An update of the Pediatric Oncology Group experience. Neuro-Oncol. 1999, 1, 152–161. [Google Scholar] [CrossRef]
- El-Ayadi, M.; Ansari, M.; Sturm, D.; Gielen, G.H.; Warmuth-Metz, M.; Kramm, C.M.; von Bueren, A.O. High-grade glioma in very young children: A rare and particular patient population. Oncotarget 2017, 8, 64564–64578. [Google Scholar] [CrossRef]
- Geyer, J.R.; Sposto, R.; Jennings, M.; Boyett, J.M.; Axtell, R.A.; Breiger, D.; Broxson, E.; Donahue, B.; Finlay, J.L.; Goldwein, J.W.; et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: A report from the Children’s Cancer Group. J. Clin. Oncol. 2005, 23, 7621–7631. [Google Scholar] [CrossRef]
- Strother, D.R.; Lafay-Cousin, L.; Boyett, J.M.; Burger, P.; Aronin, P.; Constine, L.; Duffner, P.; Kocak, M.; Kun, L.E.; Horowitz, M.E.; et al. Benefit from prolonged dose-intensive chemotherapy for infants with malignant brain tumors is restricted to patients with ependymoma: A report of the Pediatric Oncology Group randomized controlled trial 9233/34. Neuro-Oncol. 2014, 16, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Grill, J.; Sainte-Rose, C.; Jouvet, A.; Gentet, J.C.; Lejars, O.; Frappaz, D.; Doz, F.; Rialland, X.; Pichon, F.; Bertozzi, A.I.; et al. Treatment of medulloblastoma with postoperative chemotherapy alone: An SFOP prospective trial in young children. Lancet Oncol. 2005, 6, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S.; Gerber, N.U.; von Hoff, K.; Gnekow, A.; Bode, U.; Graf, N.; Berthold, F.; Henze, G.; Wolff, J.E.; Warmuth-Metz, M.; et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro-Oncol. 2009, 11, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S.; Bode, U.; Deinlein, F.; Ottensmeier, H.; Warmuth-Metz, M.; Soerensen, N.; Graf, N.; Emser, A.; Pietsch, T.; Wolff, J.E.; et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 2005, 352, 978–986. [Google Scholar] [CrossRef]
- Cohen, B.H.; Geyer, J.R.; Miller, D.C.; Curran, J.G.; Zhou, T.; Holmes, E.; Ingles, S.A.; Dunkel, I.J.; Hilden, J.; Packer, R.J.; et al. Pilot Study of Intensive Chemotherapy With Peripheral Hematopoietic Cell Support for Children Less Than 3 Years of Age With Malignant Brain Tumors, the CCG-99703 Phase I/II Study. A Report From the Children’s Oncology Group. Pediatr. Neurol. 2015, 53, 31–46. [Google Scholar] [CrossRef]
- Dhall, G.; Grodman, H.; Ji, L.; Sands, S.; Gardner, S.; Dunkel, I.J.; McCowage, G.B.; Diez, B.; Allen, J.C.; Gopalan, A.; et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr. Blood Cancer 2008, 50, 1169–1175. [Google Scholar] [CrossRef]
- Chi, S.N.; Gardner, S.L.; Levy, A.S.; Knopp, E.A.; Miller, D.C.; Wisoff, J.H.; Weiner, H.L.; Finlay, J.L. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J. Clin. Oncol. 2004, 22, 4881–4887. [Google Scholar] [CrossRef]
- Fangusaro, J.; Finlay, J.; Sposto, R.; Ji, L.; Saly, M.; Zacharoulis, S.; Asgharzadeh, S.; Abromowitch, M.; Olshefski, R.; Halpern, S.; et al. Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): Report of the Head Start I and II experience. Pediatr. Blood Cancer 2008, 50, 312–318. [Google Scholar] [CrossRef]
- Mazewski, C.; Kang, G.; Kellie, S.; Hayes, L.; Reddy, A.; Shaw, D.; Burger, P.; Judkins, A.; Geyer, J.R.; Gajjar, A.; et al. ACNS 0334: Treatment of Young Children, with Supratentorial PNET(SPNET) and High Risk Medulloblastoma (HRMB) without or with High Dose Methotrexate (HDMTX). A Report from Children’s Oncology Group. Pediatr. Blood Cancer 2017, 14, e26772. [Google Scholar]
- Mazewski, C.; Leary, S.E.S.; Kang, G.; Li, B.K.; Kellie, S.; Hayes, L.; Shaw, D.; Ho, B.; Reddy, A.; Gossett, J.; et al. Phase 3 randomized trial of high-dose methotrexate for young children with high-risk embryonal brain tumors: A report from the Children’s Oncology Group. Neuro-Oncol. 2025, noaf132. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.T.; Strother, D.R.; Judkins, A.R.; Burger, P.C.; Pollack, I.F.; Krailo, M.D.; Buxton, A.B.; Williams-Hughes, C.; Fouladi, M.; Mahajan, A.; et al. Efficacy of High-Dose Chemotherapy and Three-Dimensional Conformal Radiation for Atypical Teratoid/Rhabdoid Tumor: A Report From the Children’s Oncology Group Trial ACNS0333. J. Clin. Oncol. 2020, 38, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Dufour, C.; Masliah-Planchon, J.; Delisle, M.-B.; Geoffray, A.; Abbas, R.; Bourdeaut, F.; Bertozzi, A.-I.; Faure-Conter, C.; Chappe, C.; De Carli, E.; et al. Phase I/II study of sequential high-dose chemotherapy with stem cell support in children younger than 5 years of age with high-risk medulloblastoma. Neuro-Oncol. 2020, 22, iii394–iii395. [Google Scholar] [CrossRef]
- Zeltzer, P.M.; Boyett, J.M.; Finlay, J.L.; Albright, A.L.; Rorke, L.B.; Milstein, J.M.; Allen, J.C.; Stevens, K.R.; Stanley, P.; Li, H.; et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children’s Cancer Group 921 randomized phase III study. J. Clin. Oncol. 1999, 17, 832–845. [Google Scholar] [CrossRef]
- Leary, S.E.; Zhou, T.; Holmes, E.; Geyer, J.R.; Miller, D.C. Histology predicts a favorable outcome in young children with desmoplastic medulloblastoma: A report from the children’s oncology group. Cancer 2011, 117, 3262–3267. [Google Scholar] [CrossRef]
- von Bueren, A.O.; von Hoff, K.; Pietsch, T.; Gerber, N.U.; Warmuth-Metz, M.; Deinlein, F.; Zwiener, I.; Faldum, A.; Fleischhack, G.; Benesch, M.; et al. Treatment of young children with localized medulloblastoma by chemotherapy alone: Results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro-Oncol. 2011, 13, 669–679. [Google Scholar] [CrossRef]
- Lafay-Cousin, L.; Dufour, C. High-Dose Chemotherapy in Children with Newly Diagnosed Medulloblastoma. Cancers 2022, 14, 837. [Google Scholar] [CrossRef]
- Dhall, G.; O’Neil, S.H.; Ji, L.; Haley, K.; Whitaker, A.M.; Nelson, M.D.; Gilles, F.; Gardner, S.L.; Allen, J.C.; Cornelius, A.S.; et al. Excellent outcome of young children with nodular desmoplastic medulloblastoma treated on “Head Start” III: A multi-institutional, prospective clinical trial. Neuro-Oncol. 2020, 22, 1862–1872. [Google Scholar] [CrossRef]
- Dunkel, I.J.; Gardner, S.L.; Garvin, J.H., Jr.; Goldman, S.; Shi, W.; Finlay, J.L. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro-Oncol. 2010, 12, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Lafay-Cousin, L.; Smith, A.; Chi, S.N.; Wells, E.; Madden, J.; Margol, A.; Ramaswamy, V.; Finlay, J.; Taylor, M.D.; Dhall, G.; et al. Clinical, Pathological, and Molecular Characterization of Infant Medulloblastomas Treated with Sequential High-Dose Chemotherapy. Pediatr. Blood Cancer 2016, 63, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Mazewski, C.; Kang, G.; Kellie, S.; Gossett, J.; Leary, S.; Li, B.; Aridgides, P.; Hayes, L.; Reddy, A.; Shaw, D.; et al. MBCL-34. Efficacy of methotrexate (MTX) according to molecular sub-type in young children with medulloblastoma (MB): A report from Children’s Oncology Group Phase III trial ACNS0334. Neuro-Oncol. 2020, 22, iii396. [Google Scholar] [CrossRef]
- Dhall, G.; Stanek, J.; Blue, M.; Patel, P.; Thomas, D.; Pierson, C.; Tamrazi, B.; Mahadeo, K.; Fleming, J.; Bell, E.; et al. Outcomes of infants and young children with newly diagnosed SHH medulloblastoma treated on the NEXT Consortium “Head Start” 4 Protocol. Neuro-Oncol. 2024, 26, i192. [Google Scholar] [CrossRef]
- Lafay-Cousin, L.; Bouffet, E.; Strother, D.; Rudneva, V.; Hawkins, C.; Eberhart, C.; Horbinski, C.; Heier, L.; Souweidane, M.; Williams-Hughes, C.; et al. Phase II Study of Nonmetastatic Desmoplastic Medulloblastoma in Children Younger Than 4 Years of Age: A Report of the Children’s Oncology Group (ACNS1221). J. Clin. Oncol. 2020, 38, 223–231. [Google Scholar] [CrossRef]
- Robinson, G.W.; Rudneva, V.A.; Buchhalter, I.; Billups, C.A.; Waszak, S.M.; Smith, K.S.; Bowers, D.C.; Bendel, A.; Fisher, P.G.; Partap, S.; et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): Therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 2018, 19, 768–784. [Google Scholar] [CrossRef]
- Cansanay, R.D.; Erker, C.; Ratterman, E.; Schlosser, M.P.; Ronsley, R.; Cacciotti, C.; Hukin, J.; Cheng, S.; Pillay-Smiley, N.; Magimairajan, V.; et al. MDB-09. WNTand Group 4 medulloblastoms of early childhood treated with high dose chemotherapy and craniospinal irradiation sparing approach. Neuro-Oncol. 2024, 26. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncol. 2023, 25, iv1–iv99. [Google Scholar] [CrossRef]
- Rorke, L.B.; Packer, R.J.; Biegel, J.A. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: Definition of an entity. J. Neurosurg. 1996, 85, 56–65. [Google Scholar] [CrossRef]
- Ho, B.; Johann, P.D.; Grabovska, Y.; De Dieu Andrianteranagna, M.J.; Yao, F.; Fruhwald, M.; Hasselblatt, M.; Bourdeaut, F.; Williamson, D.; Huang, A.; et al. Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus. Neuro-Oncol. 2020, 22, 613–624. [Google Scholar] [CrossRef]
- Athale, U.H.; Duckworth, J.; Odame, I.; Barr, R. Childhood atypical teratoid rhabdoid tumor of the central nervous system: A meta-analysis of observational studies. J. Pediatr. Hematol. Oncol. 2009, 31, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Hilden, J.M.; Meerbaum, S.; Burger, P.; Finlay, J.; Janss, A.; Scheithauer, B.W.; Walter, A.W.; Rorke, L.B.; Biegel, J.A. Central nervous system atypical teratoid/rhabdoid tumor: Results of therapy in children enrolled in a registry. J. Clin. Oncol. 2004, 22, 2877–2884. [Google Scholar] [CrossRef]
- Lafay-Cousin, L.; Hawkins, C.; Carret, A.S.; Johnston, D.; Zelcer, S.; Wilson, B.; Jabado, N.; Scheinemann, K.; Eisenstat, D.; Fryer, C.; et al. Central nervous system atypical teratoid rhabdoid tumours: The Canadian Paediatric Brain Tumour Consortium experience. Eur. J. Cancer 2012, 48, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.M.; Richardson, E.A.; Ho, B.; Margol, A.; Reddy, A.; Lafay-Cousin, L.; Chi, S.; Slavc, I.; Judkins, A.; Hasselblatt, M.; et al. Advancing biology-based therapeutic approaches for atypical teratoid rhabdoid tumors. Neuro-Oncol. 2020, 22, 944–954. [Google Scholar] [CrossRef]
- Eberhart, C.G.; Brat, D.J.; Cohen, K.J.; Burger, P.C. Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr. Dev. Pathol. 2000, 3, 346–352. [Google Scholar] [CrossRef]
- Korshunov, A.; Sturm, D.; Ryzhova, M.; Hovestadt, V.; Gessi, M.; Jones, D.T.; Remke, M.; Northcott, P.; Perry, A.; Picard, D.; et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol. 2014, 128, 279–289. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Khan, S.; Solano-Paez, P.; Suwal, T.; Lu, M.; Al-Karmi, S.; Ho, B.; Mumal, I.; Shago, M.; Hoffman, L.M.; Dodgshun, A.; et al. Clinical phenotypes and prognostic features of embryonal tumours with multi-layered rosettes: A Rare Brain Tumor Registry study. Lancet Child. Adolesc. Health 2021, 5, 800–813. [Google Scholar] [CrossRef]
- Juhnke, B.O.; Gessi, M.; Gerber, N.U.; Friedrich, C.; Mynarek, M.; von Bueren, A.O.; Haberler, C.; Schuller, U.; Kortmann, R.D.; Timmermann, B.; et al. Treatment of embryonal tumors with multilayered rosettes with carboplatin/etoposide induction and high-dose chemotherapy within the prospective P-HIT trial. Neuro-Oncol. 2022, 24, 127–137. [Google Scholar] [CrossRef]
- Horwitz, M.; Dufour, C.; Leblond, P.; Bourdeaut, F.; Faure-Conter, C.; Bertozzi, A.I.; Delisle, M.B.; Palenzuela, G.; Jouvet, A.; Scavarda, D.; et al. Embryonal tumors with multilayered rosettes in children: The SFCE experience. Childs Nerv. Syst. 2016, 32, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Mayr, L.; Gojo, J.; Peyrl, A.; Azizi, A.A.; Stepien, N.M.; Pletschko, T.; Czech, T.; Dorfer, C.; Lambo, S.; Dieckmann, K.; et al. Potential Importance of Early Focal Radiotherapy Following Gross Total Resection for Long-Term Survival in Children With Embryonal Tumors With Multilayered Rosettes. Front. Oncol. 2020, 10, 584681. [Google Scholar] [CrossRef] [PubMed]
- Bartels, U.; Onar-Thomas, A.; Patel, S.K.; Shaw, D.; Fangusaro, J.; Dhall, G.; Souweidane, M.; Bhatia, A.; Embry, L.; Trask, C.L.; et al. Phase II trial of response-based radiation therapy for patients with localized germinoma: A Children’s Oncology Group study. Neuro-Oncol. 2022, 24, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Borg, M. Germ cell tumours of the central nervous system in children-controversies in radiotherapy. Med. Pediatr. Oncol. 2003, 40, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Calaminus, G.; Kortmann, R.; Worch, J.; Nicholson, J.C.; Alapetite, C.; Garre, M.L.; Patte, C.; Ricardi, U.; Saran, F.; Frappaz, D. SIOP CNS GCT 96: Final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neuro-Oncol. 2013, 15, 788–796. [Google Scholar] [CrossRef]
- Rogers, S.J.; Mosleh-Shirazi, M.A.; Saran, F.H. Radiotherapy of localised intracranial germinoma: Time to sever historical ties? Lancet Oncol. 2005, 6, 509–519. [Google Scholar] [CrossRef]
- Bamberg, M.; Kortmann, R.D.; Calaminus, G.; Becker, G.; Meisner, C.; Harms, D.; Gobel, U. Radiation therapy for intracranial germinoma: Results of the German cooperative prospective trials MAKEI 83/86/89. J. Clin. Oncol. 1999, 17, 2585–2592. [Google Scholar] [CrossRef]
- Huh, S.J.; Shin, K.H.; Kim, I.H.; Ahn, Y.C.; Ha, S.W.; Park, C.I. Radiotherapy of intracranial germinomas. Radiother. Oncol. 1996, 38, 19–23. [Google Scholar] [CrossRef]
- Maity, A.; Shu, H.K.; Janss, A.; Belasco, J.B.; Rorke, L.; Phillips, P.C.; Sutton, L.N.; Goldwein, J.W. Craniospinal radiation in the treatment of biopsy-proven intracranial germinomas: Twenty-five years’ experience in a single center. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1165–1170. [Google Scholar] [CrossRef]
- Baranzelli, M.C.; Patte, C.; Bouffet, E.; Couanet, D.; Habrand, J.L.; Portas, M.; Lejars, O.; Lutz, P.; Le Gall, E.; Kalifa, C. Nonmetastatic intracranial germinoma: The experience of the French Society of Pediatric Oncology. Cancer 1997, 80, 1792–1797. [Google Scholar] [CrossRef]
- Fouladi, M.; Grant, R.; Baruchel, S.; Chan, H.; Malkin, D.; Weitzman, S.; Greenberg, M.L. Comparison of survival outcomes in patients with intracranial germinomas treated with radiation alone versus reduced-dose radiation and chemotherapy. Childs Nerv. Syst. 1998, 14, 596–601. [Google Scholar] [CrossRef]
- Chen, Y.W.; Huang, P.I.; Ho, D.M.; Hu, Y.W.; Chang, K.P.; Chiou, S.H.; Guo, W.Y.; Chang, F.C.; Liang, M.L.; Lee, Y.Y.; et al. Change in treatment strategy for intracranial germinoma: Long-term follow-up experience at a single institute. Cancer 2012, 118, 2752–2762. [Google Scholar] [CrossRef]
- Cheng, S.; Kilday, J.P.; Laperriere, N.; Janzen, L.; Drake, J.; Bouffet, E.; Bartels, U. Outcomes of children with central nervous system germinoma treated with multi-agent chemotherapy followed by reduced radiation. J. Neuro-Oncol. 2016, 127, 173–180. [Google Scholar] [CrossRef]
- Yen, S.H.; Chen, Y.W.; Huang, P.I.; Wong, T.T.; Ho, D.M.; Chang, K.P.; Liang, M.L.; Chiou, S.H.; Lee, Y.Y.; Chen, H.H. Optimal treatment for intracranial germinoma: Can we lower radiation dose without chemotherapy? Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 980–987. [Google Scholar] [CrossRef]
- Balmaceda, C.; Heller, G.; Rosenblum, M.; Diez, B.; Villablanca, J.G.; Kellie, S.; Maher, P.; Vlamis, V.; Walker, R.W.; Leibel, S.; et al. Chemotherapy without irradiation--a novel approach for newly diagnosed CNS germ cell tumors: Results of an international cooperative trial. The First International Central Nervous System Germ Cell Tumor Study. J. Clin. Oncol. 1996, 14, 2908–2915. [Google Scholar] [CrossRef]
- da Silva, N.S.; Cappellano, A.M.; Diez, B.; Cavalheiro, S.; Gardner, S.; Wisoff, J.; Kellie, S.; Parker, R.; Garvin, J.; Finlay, J. Primary chemotherapy for intracranial germ cell tumors: Results of the third international CNS germ cell tumor study. Pediatr. Blood Cancer 2010, 54, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Kellie, S.J.; Boyce, H.; Dunkel, I.J.; Diez, B.; Rosenblum, M.; Brualdi, L.; Finlay, J.L. Intensive cisplatin and cyclophosphamide-based chemotherapy without radiotherapy for intracranial germinomas: Failure of a primary chemotherapy approach. Pediatr. Blood Cancer 2004, 43, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.C.; DaRosso, R.C.; Donahue, B.; Nirenberg, A. A phase II trial of preirradiation carboplatin in newly diagnosed germinoma of the central nervous system. Cancer 1994, 74, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.C.; Kim, J.H.; Packer, R.J. Neoadjuvant chemotherapy for newly diagnosed germ-cell tumors of the central nervous system. J. Neurosurg. 1987, 67, 65–70. [Google Scholar] [CrossRef]
- Afzal, S.; Wherrett, D.; Bartels, U.; Tabori, U.; Huang, A.; Stephens, D.; Bouffet, E. Challenges in management of patients with intracranial germ cell tumor and diabetes insipidus treated with cisplatin and/or ifosfamide based chemotherapy. J. Neuro-Oncol. 2010, 97, 393–399. [Google Scholar] [CrossRef]
- Kretschmar, C.; Kleinberg, L.; Greenberg, M.; Burger, P.; Holmes, E.; Wharam, M. Pre-radiation chemotherapy with response-based radiation therapy in children with central nervous system germ cell tumors: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2007, 48, 285–291. [Google Scholar] [CrossRef]
- Jackson, C.; Jallo, G.; Lim, M. Clinical outcomes after treatment of germ cell tumors. Neurosurg. Clin. N. Am. 2011, 22, 385–394. [Google Scholar] [CrossRef]
- Calaminus, G.; Frappaz, D.; Kortmann, R.D.; Krefeld, B.; Saran, F.; Pietsch, T.; Vasiljevic, A.; Garre, M.L.; Ricardi, U.; Mann, J.R.; et al. Outcome of patients with intracranial non-germinomatous germ cell tumors-lessons from the SIOP-CNS-GCT-96 trial. Neuro-Oncol. 2017, 19, 1661–1672. [Google Scholar] [CrossRef]
- Goldman, S.; Bouffet, E.; Fisher, P.G.; Allen, J.C.; Robertson, P.L.; Chuba, P.J.; Donahue, B.; Kretschmar, C.S.; Zhou, T.; Buxton, A.B.; et al. Phase II Trial Assessing the Ability of Neoadjuvant Chemotherapy With or Without Second-Look Surgery to Eliminate Measurable Disease for Nongerminomatous Germ Cell Tumors: A Children’s Oncology Group Study. J. Clin. Oncol. 2015, 33, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Patel, S.; Schlosser, M.P.; Arifin, A.J.; Oliveira, C.; Charpentier, A.M.; Tsang, D.S. Pediatric CNS Radiation Oncology: Recent Developments and Novel Techniques. Curr. Oncol. 2025, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Fangusaro, J.; Wu, S.; MacDonald, S.; Murphy, E.; Shaw, D.; Bartels, U.; Khatua, S.; Souweidane, M.; Lu, H.M.; Morris, D.; et al. Phase II Trial of Response-Based Radiation Therapy for Patients With Localized CNS Nongerminomatous Germ Cell Tumors: A Children’s Oncology Group Study. J. Clin. Oncol. 2019, 37, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Grill, J.; Pascal, C.; Chantal, K. Childhood ependymoma: A systematic review of treatment options and strategies. Paediatr. Drugs 2003, 5, 533–543. [Google Scholar] [CrossRef]
- Smith, A.; Onar-Thomas, A.; Ellison, E.; Owens-Pickle, E.; Wu, S.; Leary, S.E.S.; Fouladi, M.; Merchant, T.; Gajjar, A.; Foreman, N. Phase III randomized trial of post-radiation chemotherapy in patients with newly diagnosed ependymoma. Neuro-Oncol. 2020, 22, iii318–iii319. [Google Scholar] [CrossRef]
- Leary, S.E.S.; Onar-Thomas, A.; Fangusaro, J.; Gottardo, N.G.; Cohen, K.; Smith, A.; Huang, A.; Haas-Kogan, D.; Fouladi, M.; COG Central Nervous System Committee. Children’s Oncology Grou’s 2023 blueprint for research: Central nervous system tumors. Pediatr. Blood Cancer 2023, 70 (Suppl. S6), e30600. [Google Scholar] [CrossRef]
- Merchant, T.E.; Bendel, A.E.; Sabin, N.D.; Burger, P.C.; Shaw, D.W.; Chang, E.; Wu, S.; Zhou, T.; Eisenstat, D.D.; Foreman, N.K.; et al. Conformal Radiation Therapy for Pediatric Ependymoma, Chemotherapy for Incompletely Resected Ependymoma, and Observation for Completely Resected, Supratentorial Ependymoma. J. Clin. Oncol. 2019, 37, 974–983. [Google Scholar] [CrossRef]
- Grundy, R.G.; Wilne, S.A.; Weston, C.L.; Robinson, K.; Lashford, L.S.; Ironside, J.; Cox, T.; Chong, W.K.; Campbell, R.H.; Bailey, C.C.; et al. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: The UKCCSG/SIOP prospective study. Lancet Oncol. 2007, 8, 696–705. [Google Scholar] [CrossRef]
- Venkatramani, R.; Ji, L.; Lasky, J.; Haley, K.; Judkins, A.; Zhou, S.; Sposto, R.; Olshefski, R.; Garvin, J.; Tekautz, T.; et al. Outcome of infants and young children with newly diagnosed ependymoma treated on the “Head Start” III prospective clinical trial. J. Neuro-Oncol. 2013, 113, 285–291. [Google Scholar] [CrossRef]
- Broniscer, A.; Gajjar, A. Supratentorial high-grade astrocytoma and diffuse brainstem glioma: Two challenges for the pediatric oncologist. Oncologist 2004, 9, 197–206. [Google Scholar] [CrossRef]
- Chatwin, H.V.; Cruz Cruz, J.; Green, A.L. Pediatric high-grade glioma: Moving toward subtype-specific multimodal therapy. FEBS J. 2021, 288, 6127–6141. [Google Scholar] [CrossRef]
- Sposto, R.; Ertel, I.J.; Jenkin, R.D.; Boesel, C.P.; Venes, J.L.; Ortega, J.A.; Evans, A.E.; Wara, W.; Hammond, D. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: Results of a randomized trial. A report from the Childrens Cancer Study Group. J. Neuro-Oncol. 1989, 7, 165–177. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Cohen, K.J.; Pollack, I.F.; Zhou, T.; Buxton, A.; Holmes, E.J.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Hamilton, R.L.; Lavey, R.S.; et al. Temozolomide in the treatment of high-grade gliomas in children: A report from the Children’s Oncology Group. Neuro-Oncol. 2011, 13, 317–323. [Google Scholar] [CrossRef]
- Jakacki, R.I.; Cohen, K.J.; Buxton, A.; Krailo, M.D.; Burger, P.C.; Rosenblum, M.K.; Brat, D.J.; Hamilton, R.L.; Eckel, S.P.; Zhou, T.; et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: A report of the Children’s Oncology Group ACNS0423 study. Neuro-Oncol. 2016, 18, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro Stucklin, A.S.; Ryall, S.; Fukuoka, K.; Zapotocky, M.; Lassaletta, A.; Li, C.; Bridge, T.; Kim, B.; Arnoldo, A.; Kowalski, P.E.; et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 2019, 10, 4343. [Google Scholar] [CrossRef] [PubMed]
- Lafay-Cousin, L.; Mabbott, D.J.; Halliday, W.; Taylor, M.D.; Tabori, U.; Kamaly-Asl, I.D.; Kulkarni, A.V.; Bartels, U.; Greenberg, M.; Bouffet, E. Use of ifosfamide, carboplatin, and etoposide chemotherapy in choroid plexus carcinoma. J. Neurosurg. Pediatr. 2010, 5, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Zaky, W.; Dhall, G.; Khatua, S.; Brown, R.J.; Ginn, K.F.; Gardner, S.L.; Yildiz, V.O.; Yankelevich, M.; Finlay, J.L. Choroid plexus carcinoma in children: The Head Start experience. Pediatr. Blood Cancer 2015, 62, 784–789. [Google Scholar] [CrossRef]
- Liu, A.P.Y.; Wu, G.; Orr, B.A.; Lin, T.; Ashford, J.M.; Bass, J.K.; Bowers, D.C.; Hassall, T.; Fisher, P.G.; Indelicato, D.J.; et al. Outcome and molecular analysis of young children with choroid plexus carcinoma treated with non-myeloablative therapy: Results from the SJYC07 trial. Neuro-Oncol. Adv. 2021, 3, vdaa168. [Google Scholar] [CrossRef]
- Yankelevich, M.; Zaky, W.; Lafay-Cousin, L.; Osorio, D.; Adamski, J.; Kordes, U.; Finlay, J.L.; Prados, M.; Mueller, S. Marrow-ablative consolidation chemotherapy and molecular targeted therapy delivered in a risk-adapted manner for newly diagnosed children with choroid plexus carcinoma: A work in progress. Neuro-Oncol. Adv. 2024, 6, vdae109. [Google Scholar] [CrossRef]
- Kalapurakal, J.A.; Goldman, S.; Hsieh, Y.C.; Tomita, T.; Marymont, M.H. Clinical outcome in children with craniopharyngioma treated with primary surgery and radiotherapy deferred until relapse. Med. Pediatr. Oncol. 2003, 40, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.L. Childhood craniopharyngioma: Current controversies on management in diagnostics, treatment and follow-up. Expert. Rev. Neurother. 2010, 10, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Ogle, G.D.; Garnett, S.P.; Briody, J.N.; Lee, J.W.; Cowell, C.T. Features of the metabolic syndrome after childhood craniopharyngioma. J. Clin. Endocrinol. Metab. 2004, 89, 81–86. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Classification of Tumours of the Central Nervous System, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Clark, A.J.; Cage, T.A.; Aranda, D.; Parsa, A.T.; Auguste, K.I.; Gupta, N. Treatment-related morbidity and the management of pediatric craniopharyngioma: A systematic review. J. Neurosurg. Pediatr. 2012, 10, 293–301. [Google Scholar] [CrossRef]
- Jakacki, R.I.; Cohen, B.H.; Jamison, C.; Mathews, V.P.; Arenson, E.; Longee, D.C.; Hilden, J.; Cornelius, A.; Needle, M.; Heilman, D.; et al. Phase II evaluation of interferon-alpha-2a for progressive or recurrent craniopharyngiomas. J. Neurosurg. 2000, 92, 255–260. [Google Scholar] [CrossRef]
- Goldman, S.; Pollack, I.F.; Jakacki, R.I.; Billups, C.A.; Poussaint, T.Y.; Adesina, A.M.; Panigrahy, A.; Parsons, D.W.; Broniscer, A.; Robinson, G.W.; et al. Phase II study of peginterferon alpha-2b for patients with unresectable or recurrent craniopharyngiomas: A Pediatric Brain Tumor Consortium report. Neuro-Oncol. 2020, 22, 1696–1704. [Google Scholar] [CrossRef]
- Hukin, J.; Steinbok, P.; Lafay-Cousin, L.; Hendson, G.; Strother, D.; Mercier, C.; Samson, Y.; Howes, W.; Bouffet, E. Intracystic bleomycin therapy for craniopharyngioma in children: The Canadian experience. Cancer 2007, 109, 2124–2131. [Google Scholar] [CrossRef]
- Lafay-Cousin, L.; Bartels, U.; Raybaud, C.; Kulkarni, A.V.; Guger, S.; Huang, A.; Bouffet, E. Neuroradiological findings of bleomycin leakage in cystic craniopharyngioma. Report of three cases. J. Neurosurg. 2007, 107, 318–323. [Google Scholar] [CrossRef]
- Kilday, J.P.; Caldarelli, M.; Massimi, L.; Chen, R.H.; Lee, Y.Y.; Liang, M.L.; Parkes, J.; Naiker, T.; van Veelen, M.L.; Michiels, E.; et al. Intracystic interferon-alpha in pediatric craniopharyngioma patients: An international multicenter assessment on behalf of SIOPE and ISPN. Neuro-Oncol. 2017, 19, 1398–1407. [Google Scholar] [CrossRef]
- Wetmore, C.; Herington, D.; Lin, T.; Onar-Thomas, A.; Gajjar, A.; Merchant, T.E. Reirradiation of recurrent medulloblastoma: Does clinical benefit outweigh risk for toxicity? Cancer 2014, 120, 3731–3737. [Google Scholar] [CrossRef] [PubMed]
- Padovani, L.; Andre, N.; Gentet, J.C.; Figarella Branger, D.; Scavarda, D.; Verschuur, A.; Chinot, O.; Cowen, D.; Muracciole, X. Reirradiation and concomitant metronomic temozolomide: An efficient combination for local control in medulloblastoma disease? J. Pediatr. Hematol. Oncol. 2011, 33, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Peyrl, A.; Chocholous, M.; Sabel, M.; Lassaletta, A.; Sterba, J.; Leblond, P.; Nysom, K.; Torsvik, I.; Chi, S.N.; Perwein, T.; et al. Sustained Survival Benefit in Recurrent Medulloblastoma by a Metronomic Antiangiogenic Regimen: A Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.S.; Krailo, M.; Chi, S.; Villaluna, D.; Springer, L.; Williams-Hughes, C.; Fouladi, M.; Gajjar, A. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr. Blood Cancer 2021, 68, e29031. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood-brain barrier: Structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Triarico, S.; Maurizi, P.; Mastrangelo, S.; Attina, G.; Capozza, M.A.; Ruggiero, A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers 2019, 11, 824. [Google Scholar] [CrossRef]
- Pullen, J.; Boyett, J.; Shuster, J.; Crist, W.; Land, V.; Frankel, L.; Iyer, R.; Backstrom, L.; van Eys, J.; Harris, M.; et al. Extended triple intrathecal chemotherapy trial for prevention of CNS relapse in good-risk and poor-risk patients with B-progenitor acute lymphoblastic leukemia: A Pediatric Oncology Group study. J. Clin. Oncol. 1993, 11, 839–849. [Google Scholar] [CrossRef]
- Bleyer, W.A.; Poplack, D.G.; Simon, R.M. “Concentration x time” methotrexate via a subcutaneous reservoir: A less toxic regimen for intraventricular chemotherapy of central nervous system neoplasms. Blood 1978, 51, 835–842. [Google Scholar] [CrossRef]
- Bartelheim, K.; Nemes, K.; Seeringer, A.; Kerl, K.; Buechner, J.; Boos, J.; Graf, N.; Durken, M.; Gerss, J.; Hasselblatt, M.; et al. Improved 6-year overall survival in AT/RT—Results of the registry study Rhabdoid 2007. Cancer Med. 2016, 5, 1765–1775. [Google Scholar] [CrossRef]
- Slavc, I.; Mayr, L.; Stepien, N.; Gojo, J.; Aliotti Lippolis, M.; Azizi, A.A.; Chocholous, M.; Baumgartner, A.; Hedrich, C.S.; Holm, S.; et al. Improved Long-Term Survival of Patients with Recurrent Medulloblastoma Treated with a “MEMMAT-like” Metronomic Antiangiogenic Approach. Cancers 2022, 14, 5128. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, C.D.; Askoxylakis, V.; Guo, Y.; Datta, M.; Kloepper, J.; Ferraro, G.B.; Bernabeu, M.O.; Fukumura, D.; McDannold, N.; Jain, R.K. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc. Natl. Acad. Sci. USA 2018, 115, E8717–E8726. [Google Scholar] [CrossRef] [PubMed]
- Burgess, A.; Shah, K.; Hough, O.; Hynynen, K. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert. Rev. Neurother. 2015, 15, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Chesney, K.M.; Keating, G.F.; Patel, N.; Kilburn, L.; Fonseca, A.; Wu, C.C.; Nazarian, J.; Packer, R.J.; Donoho, D.A.; Oluigbo, C.; et al. The role of focused ultrasound for pediatric brain tumors: Current insights and future implications on treatment strategies. Childs Nerv. Syst. 2024, 40, 2333–2344. [Google Scholar] [CrossRef]
- Etame, A.B.; Diaz, R.J.; Smith, C.A.; Mainprize, T.G.; Hynynen, K.; Rutka, J.T. Focused ultrasound disruption of the blood-brain barrier: A new frontier for therapeutic delivery in molecular neurooncology. Neurosurg. Focus 2012, 32, E3. [Google Scholar] [CrossRef]
- Liu, H.L.; Hua, M.Y.; Chen, P.Y.; Chu, P.C.; Pan, C.H.; Yang, H.W.; Huang, C.Y.; Wang, J.J.; Yen, T.C.; Wei, K.C. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 2010, 255, 415–425. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, Y.; Mei, J.; Song, Y.; Yang, Y.Q.; Liu, Y.; Wang, Z. Focused ultrasound microbubble destruction-mediated changes in blood-brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging. J. Ultrasound Med. 2009, 28, 1501–1509. [Google Scholar] [CrossRef]
- Anderson, R.C.; Kennedy, B.; Yanes, C.L.; Garvin, J.; Needle, M.; Canoll, P.; Feldstein, N.A.; Bruce, J.N. Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J. Neurosurg. Pediatr. 2013, 11, 289–295. [Google Scholar] [CrossRef]
- Heiss, J.D.; Jamshidi, A.; Shah, S.; Martin, S.; Wolters, P.L.; Argersinger, D.P.; Warren, K.E.; Lonser, R.R. Phase I trial of convection-enhanced delivery of IL13-Pseudomonas toxin in children with diffuse intrinsic pontine glioma. J. Neurosurg. Pediatr. 2019, 23, 333–342. [Google Scholar] [CrossRef]
- Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: A single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018, 19, 1040–1050. [Google Scholar] [CrossRef]
- Szychot, E.; Walker, D.; Collins, P.; Hyare, H.; Shankar, A.; Bienemann, A.; Hollingworth, M.; Gill, S. Clinical experience of convection-enhanced delivery (CED) of carboplatin and sodium valproate into the pons for the treatment of diffuse intrinsic pontine glioma (DIPG) in children and young adults after radiotherapy. Int. J. Clin. Oncol. 2021, 26, 647–658. [Google Scholar] [CrossRef]
M, R | Radiation Dose and Field | Chemotherapy Reduction (Cumulative Doses) | Preliminary Outcomes | Reference | |
---|---|---|---|---|---|
HIT-2000 | M+ | Hyperfractionated CSI 4000 cGy, +800 cGy tumor boost, +2000 cGy PF boost, +1000 cGy spinal metastases boost, +2800 cGy supratentorial metastases boost Total: 6800 cGy | Pre-RT: 2 cycles: MTX intraventricular 48 mg CPM 4800 mg/m2 MTX IV 15 mg/m2 CBP 1200 mg/m2 VCR 9 mg/m2 ETOP 900 mg/m2 Maintenance 4 cycles: CDDP 280 mg/m2 CCNU 300 mg/m2 VCR 18 mg/m2 | 5-yr EFS 62% WNT: 5-yr EFS 100% | [30] |
COG ACNS 0331 Standard dosing | M0, R0 | PFRT vs. IFRT boost 5400 cGy 2340 cGy CSI vs. 1800 cGy CSI for patients aged 3–7 years | Concurrent VCR 9 cycles: (AABAABAAB) VCR 45 mg/m2 CDDP 450 mg/m2 CCNU 450 mg/m2 CPM 6 g/m2 | 5-yr PFS 81.4% WNT 5-yr PFS 93.3% | [29] |
COG ACNS 0332 Standard dosing | M+, R+ | 3600 cGy CSI 5580 cGy PF boost | Concurrent randomized Regimen A: VCR 9 mg/m2 Regimen B: VCR 9 mg/m2 CBP 1050 mg/m2 Regimens A and B, 6 cycles: VCR 18 mg/m2 CDDP 450 mg/m2 CPM 12 g/m2 | 5-yr PFS 62.9% CBP 66.4% vs. No CBP 59.2% (p = 0.11) WNT: 5-yr PFS 92.9% Group 3: 5-yr PFS CBP 73.2% vs. No CBP 53.7% (p = 0.047) | [28] |
COG ACNS 1422 Reduction | M0, R0 | 1800 cGy CSI 5400 cGy PF boost | 7 cycles (ABABABA) VCR 27 mg/m2 CDDP 300 mg/m2 CCNU 300 mg/m2 CPM 6 g/m2 | Active, not recruiting | NCT02724579 |
SJMB03 Standard dosing | AR: M0, R0 HR: M+, R+ | AR: 2340 cGy CSI 5580 cGy PF boost HR: 3600 cGy (M0/M1), 3960 cGy (M2/M3) CSI 5580–5940 cGy PF boost | 4 cycles VCR 8 mg/m2 CDDP 300 mg/m2 CPM 16 g/m2 | AR 5-yr PFS 83.2% HR 5-yr PFS 56.7% WNT: AR 5-yr PFS 100% HR 5-yr PFS 100% | [27] |
SJMB12 Reduction | W1: M0, R0 | 1500 cGy CSI 5100 cGy PF boost | 4 cycles VCR 8 mg/m2 CDDP 300 mg/m2 CPM 12 mg/m2 | W1 stratum: 5-yr PFS 90.4% | [32] |
HIT/SIOP PNET-4 | M0, R0/R+ | Randomized: STRT 2340 cGy CSI 5400 cGy PF HFRT 3600 cGy CSI 6000 cGy PF boost | Concurrent VCR 8 cycles VCR 48 mg/m2 CDDP 560 mg/m2 CCNU 600 mg/m2 | 5-yr PFS was 77% (STRT) vs. 78% (HFRT) WNT 5-yr PFS 91% | [33,34,35] |
SIOP PNET-5 | LR: M0, R0 WNT HR: M+, R+ | LR 1800 cGy CSI 5400 cGy boost WNT HR: 2340 cGy CSI 5400 cGy boost | LR and WNT-HR <16 yrs 6 cycles (BABABA) VCR 18 mg/m2 CDDP 210 mg/m2 CCNU 225 mg/m2 CPM 6 mg/m2 WNT-HR3 16 yrs 8 cycles (BABABABA) VCR 24 mg/m2 CDDP 280 mg/m2 CCNU 300 mg/m2 CPM 8 mg/m2 | Active, not recruiting | [36] |
Trial | N | 5-y PFS | 5 y OS | Reference | |
---|---|---|---|---|---|
M0R0 | |||||
Baby POG | Medulloblastoma | 13 | 69% | [40,41] | |
sPNET | 4 | 3 y PFS 100% | [41] | ||
HGG (all stages) | 18 | 3 y PFS 43% | 3 y OS 50% | [42] | |
CCG 9921 | Medulloblastoma | 38 | 41% | 54% | [43] |
HGG (all stages) <2 y | 32 | 35.3% | 58.8% | [42] | |
POG 9233 | sPNET | 10 | 40% | 50% | [44] |
SFOP | Medulloblastoma | 47 | 29% | 73% | [45] |
HGG | |||||
HIT-SKK 87 | Medulloblastoma | 17 | 10 y PFS 53% | 10 y OS 59% | [46] |
HIT-SKK 92 | Medulloblastoma | 17 | 82% | 93% | [47] |
HGG | |||||
CCG99703 | Medulloblastoma | 20 | 63.2% | 68.4% | [48] |
sPNET | 6 | 29% | |||
Pineal PNET | 4 | 29% | |||
ATRT | 5 | 37.5% | |||
Head Start I, II | Medulloblastoma Age <3 y | 14 | 64% | 86% | [49] |
HGG HS I Age <6 y | 18 | 2 y PFS 11% | 2 y OS 22% | [42] | |
M0R1 | |||||
Baby POG | sPNET | 9 | 3 y PFS 11% | [41] | |
CCG 9921 | Medulloblastoma | 23 | 26% | 40% | [43] |
POG 9233 | sPNET | 19 | 15% | 25% | [44] |
SFOP | Medulloblastoma | 17 | 6% | 41% | [45] |
HIT-SKK 87 | Medulloblastoma | 9 | 10 y PFS 56% | 10 y OS 67% | |
HIT-SKK 92 | Medulloblastoma | 14 | 50% | 56% | [47] |
CCG99703 | Medulloblastoma | 16 | 46.2% | 61.5% | |
ATRT | 3 | 37.5% | |||
Head Start I, II (Age < 3 y) | Medulloblastoma | 7 | 29% | 57% | [49] |
Metastatic (M+) | |||||
CCG 9921 | Medulloblastoma | 31 | 25% | 31% | [43] |
POG 9233 | sPNET | 9 | 10% | 20% | [44] |
SFOP | Medulloblastoma | 15 | 13% | 31% | [45] |
HIT-SKK 87 | Medulloblastoma | 3 | 0% | 0% | [46] |
HIT-SKK 92 | Medulloblastoma | 12 | 33% | 38% | [47] |
CCG99703 | Medulloblastoma | 10 | 30% | 50.5% | [48] |
sPNET | 3 | ||||
Pineal PNET | 4 | ||||
ATRT | 0 | ||||
Head Start II (age <6 y) | Medulloblastoma | 21 | 3 y PFS 49% | 3 y OS 60% | [50] |
M/R status unspecified | |||||
Head Start I, II | HGG HS I Age <6 y | 18 | 2 y PFS 11% | 2 y OS 22% | [42] |
sPNET | 43 | 39% | 49% | [51] | |
ACNS0334 | HR, MB, and sPNET | 59 | 5 y EFS 68.2% for HR MB 5 y EFS 29.2% for sPNET | - | [52,53] |
ACNS0333 | ATRT | 65 | 4 y EFS 37% | 4 y OS 43% | [54] |
HR MB-5 | Medulloblastoma | 28 | 3 y EFS 42.3% | 3 y OS 71.3% | [55] |
Subtypes | Molecular Alterations |
---|---|
H3-mutant | H3K27M, H3G34R/V, ACVR1 |
IDH-mutant | IDH1/2 |
WT-A | BRAF V600E, NF1, or RTK fusions |
WT-B | EGFR, CDK6, or MYCN amplifications |
WT-C | PDGFRA and MET amplifications |
Radiation-induced glioma/Therapy- induced HGG | TP53 mutations, PDGFRA/MET/BRAF amplifications, CDKN2A deletion |
Infant-type | ALK, ROS1, NTRK, MET fusions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felton, K.; Lafay-Cousin, L.; Cheng, S. Old Tools in a New Era: The Continued Relevance of Chemotherapy in Pediatric Neuro-Oncology. Curr. Oncol. 2025, 32, 410. https://doi.org/10.3390/curroncol32070410
Felton K, Lafay-Cousin L, Cheng S. Old Tools in a New Era: The Continued Relevance of Chemotherapy in Pediatric Neuro-Oncology. Current Oncology. 2025; 32(7):410. https://doi.org/10.3390/curroncol32070410
Chicago/Turabian StyleFelton, Kathleen, Lucie Lafay-Cousin, and Sylvia Cheng. 2025. "Old Tools in a New Era: The Continued Relevance of Chemotherapy in Pediatric Neuro-Oncology" Current Oncology 32, no. 7: 410. https://doi.org/10.3390/curroncol32070410
APA StyleFelton, K., Lafay-Cousin, L., & Cheng, S. (2025). Old Tools in a New Era: The Continued Relevance of Chemotherapy in Pediatric Neuro-Oncology. Current Oncology, 32(7), 410. https://doi.org/10.3390/curroncol32070410