Impact of Robotic-Assisted Partial Nephrectomy with Single Layer versus Double Layer Renorrhaphy on Postoperative Renal Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Surgical Procedure
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Patient before RAPN
3.2. Surgical and Pathological Outcomes after RAPN (Table 2)
Covariates | SILR Group (n = 51) | DLR Group (n = 42) | p-Value |
---|---|---|---|
Approach (number, %) | 0.202 | ||
Retroperitoneal | 23 (45.1) | 13 (31.0) | |
Transperitoneal | 28 (54.9) | 29 (69.0) | |
Console time (min, median, IQR) | 115.0 (90.5–145.5) | 108.5 (95.0–136.3) | 0.889 |
Warm ischemia time (min, median, IQR) | 17.5 (13.0–21.8) | 19.0 (17.0–23.8) | 0.206 |
Opening of renal pelvis (number, %) | 10 (19.6) | 8 (19.0) | >0.999 |
Blood loss (mL, median, IQR) | 20.0 (5.0–50.0) | 5.0 (5.0–30.0) | 0.101 |
Blood transfusion (number, %) | 1 (2.0) | 0 (0.0) | >0.999 |
LOS (days, median, IQR) | 8.0 (7.0–9.5) | 8.0 (7.0–9.0) | 0.361 |
Pathological T stage (number, %) | >0.999 | ||
1a | 42 (91.3) | 33 (91.7) | |
1b | 3 (6.5) | 2 (5.6) | |
3a | 1 (2.2) | 1 (2.8) | |
Pathological diagnosis (number, %) | 0.149 | ||
Clear cell | 40 (78.4) | 30 (71.4) | |
Papillary | 3 (5.9) | 3 (7.1) | |
Chromophobe | 2 (3.9) | 3 (7.1) | |
Angiomyolipoma | 2 (3.9) | 6 (14.3) | |
Others | 4 (7.8) | 0 (0.0) | |
Positive surgical margin (number, %) | 1 (2.1) | 2 (4.9) | 0.593 |
Decrease in eGFR by ≥10% up to 365 days postoperatively (number, %) | 13 (35.1) | 13 (43.3) | 0.615 |
Worsening of CKD stage after 365 days (number, %) | 9 (24.3) | 7 (23.3) | >0.999 |
Worsening to CKD stage ≥4 at 365 days (number, %) | 1 (2.7) | 1 (3.3) | >0.999 |
Trifecta (number, %) | 37 (78.7) | 32 (78.0) | >0.999 |
Pentafecta (number, %) | 18 (52.9) | 12 (44.4) | 0.609 |
3.3. Chronological Changes in Renal Function after Surgery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno Cortés, J.C.; González García, J.; Caño Velasco, J.; Aragón Chamizo, J.; Subirá, R. Reconstruction Techniques after Partial Nephrectomy: Classic vs. Sutureless Approach-A Narrative Review. Curr. Urol. Rep. 2023, 25, 49–54. [Google Scholar] [CrossRef]
- Brassetti, A.; Misuraca, L.; Anceschi, U.; Bove, A.M.; Costantini, M.; Ferriero, M.C.; Guaglianone, S.; Mastroianni, R.; Torregiani, G.; Covotta, M.; et al. Sutureless Purely Off-Clamp Robot-Assisted Partial Nephrectomy: Avoiding Renorrhaphy Does not Jeopardize Surgical and Functional Outcomes. Cancers 2023, 15, 698. [Google Scholar] [CrossRef]
- Ta, K.; Sodhi, B.S.; Raveendran, V. Robotic-assisted partial nephrectomy: Single-layer cortical renorrhaphy is associated with reduced rate of renal artery pseudoaneurysm compared to double-layer renorrhaphy. J. Robot. Surg. 2023, 17, 31–35. [Google Scholar] [CrossRef] [PubMed]
- De Backer, P.; Peraire Lores, M.; Demuynck, M.; Piramide, F.; Simoens, J.; Oosterlinck, T.; Bogaert, W.; Shan, C.V.; Van Regemorter, K.; Wastyn, A.; et al. Surgical Phase Duration in Robot-Assisted Partial Nephrectomy: A Surgical Data Science Exploration for Clinical Relevance. Diagnostics 2023, 13, 3386. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Yamasaki, T.; Murata, S.; Abe, Y.; Tohi, Y.; Mine, Y.; Hagimoto, H.; Kokubun, H.; Suzuki, I.; Tsutsumi, N.; et al. Surgical and functional outcomes of robot-assisted versus laparoscopic partial nephrectomy with cortical renorrhaphy omission. Sci. Rep. 2022, 12, 13000. [Google Scholar] [CrossRef] [PubMed]
- Masago, T.; Yamaguchi, N.; Iwamoto, H.; Morizane, S.; Hikita, K.; Honda, M.; Sejima, T.; Takenaka, A. The significance of predictable traumatic area by renorrhaphy in the prediction of postoperative ipsilateral renal function. Cent. Eur. J. Urol. 2018, 71, 64–71. [Google Scholar]
- Kawase, K.; Enomoto, T.; Kawase, M.; Takai, M.; Kato, D.; Fujimoto, S.; Iinuma, K.; Nakane, K.; Kato, S.; Hagiwara, N.; et al. The Impact of Postoperative Renal Function Recovery after Laparoscopic and Robot-Assisted Partial Nephrectomy in Patients with Renal Cell Carcinoma. Medicina 2022, 58, 485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Zhang, W.; Yu, S.B.; Zhan, Y.H.; Fan, Y.F.; Zhang, X.P. The efficacy of modified binding technique for renorrhaphy during robotic partial nephrectomy: Surgical and functional outcomes from single-center experience. Surg. Endosc. 2023, 37, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Gettman, M.T.; Blute, M.L.; Chow, G.K.; Neururer, R.; Bartsch, G.; Peschel, R. Robotic-assisted laparoscopic partial nephrectomy: Technique and initial clinical experience with DaVinci robotic system. Urology 2004, 64, 914–918. [Google Scholar] [CrossRef]
- Bahler, C.D.; Cary, K.C.; Garg, S.; DeRoo, E.M.; Tabib, C.H.; Kansal, J.K.; Monn, M.F.; Flack, C.K.; Masterson, T.A.; Sandrasegaran, M.K.; et al. Differentiating reconstructive techniques in partial nephrectomy: A propensity score analysis. Can. J. Urol. 2015, 22, 7788–7796. [Google Scholar]
- Bahler, C.D.; Sundaram, C.P. Effect of Renal Reconstruction on Renal Function after Partial Nephrectomy. J. Endourol. 2016, 30, S37–S41. [Google Scholar] [CrossRef]
- Geldmaker, L.E.; Zganjar, A.J.; Gonzalez Albo, G.A.; Haehn, D.A.; Qosja, N.; Wieczorek, M.A.; Ball, C.T.; Thiel, D.D. Impact of Inner Layer Renorrhaphy Suture on Renal Artery Pseudoaneurysm Formation Following Robotic-assisted Partial Nephrectomy. Urology 2023, 182, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Simone, G.; Papalia, R.; Guaglianone, S.; Gallucci, M. ‘Zero ischaemia’, sutureless laparoscopic partial nephrectomy for renal tumours with a low nephrometry score. BJU Int. 2012, 110, 124–130. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Kutikov, A.; Uzzo, R.G. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef]
- Zargar, H.; Allaf, M.E.; Bhayani, S.; Stifelman, M.; Rogers, C.; Ball, M.W.; Larson, J.; Marshall, S.; Kumar, R.; Kaouk, J.H. Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses: A multi-institutional study. BJU Int. 2015, 116, 407–414. [Google Scholar] [CrossRef]
- Simone, G.; Misuraca, L.; Tuderti, G.; Minisola, F.; Ferriero, M.; Romeo, G.; Costantini, M.; Al-Rawashdah, S.F.; Guaglianone, S.; Gallucci, M. Purely off-clamp robotic partial nephrectomy: Preliminary 3-year oncological and functional outcomes. Int. J. Urol. 2018, 25, 606–614. [Google Scholar] [CrossRef]
- Bertolo, R.; Cipriani, C.; Vittori, M.; Campi, R.; Garisto, J.; Di Dio, M.; Annino, F.; Bove, P. Robotic Off-Clamp Simple Enucleation Single-Layer Renorrhaphy Partial Nephrectomy (ROSS): Surgical Insights after an Initial Experience. J. Clin. Med. 2022, 12, 198. [Google Scholar] [CrossRef]
- Bahler, C.D.; Dube, H.T.; Flynn, K.J.; Garg, S.; Monn, M.F.; Gutwein, L.G.; Mellon, M.J.; Foster, R.S.; Cheng, L.; Sandrasegaran, M.K.; et al. Feasibility of omitting cortical renorrhaphy during robot-assisted partial nephrectomy: A matched analysis. J. Endourol. 2015, 29, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Volpe, A.; Blute, M.L.; Ficarra, V.; Gill, I.S.; Kutikov, A.; Porpiglia, F.; Rogers, C.; Touijer, K.A.; Van Poppel, H.; Thompson, R.H. Renal Ischemia and Function after Partial Nephrectomy: A Collaborative Review of the Literature. Eur. Urol. 2015, 68, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, J.; Maurice, M.J.; Mouracade, P.; Kara, O.; Malkoc, E.; Kaouk, J.H. Excisional Precision Matters: Understanding the Influence of Excisional Volume Loss on Renal Function After Partial Nephrectomy. Eur. Urol. 2017, 72, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Muraoka, K.; Uemura, K.; Jikuya, R.; Kondo, T.; Tatenuma, T.; Kawahara, T.; Komeya, M.; Ito, Y.; Hasumi, H.; et al. Impact of chronic kidney disease stages on surgical and functional outcomes in robot-assisted partial nephrectomy for localized renal tumors. J. Robot. Surg. 2024, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.R.; Ou, Y.C.; Huang, L.H.; Lu, C.H.; Weng, W.C.; Yang, C.K.; Hsu, C.Y.; Lin, Y.S.; Chang, Y.K.; Tung, M.C. Robotic partial nephrectomy for renal tumor: The pentafecta outcomes of a single surgeon experience. Asian. J. Surg. 2023, 46, 3587–3592. [Google Scholar] [CrossRef]
- Alrishan Alzouebi, I.; Williams, A.; Thiagarjan, N.R.; Kumar, M. Omitting Cortical Renorrhaphy in Robot-Assisted Partial Nephrectomy: Is it Safe? A Single Center Large Case Series. J. Endourol. 2020, 34, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Shiozaki, K.; Izumi, K.; Sasaki, Y.; Kusuhara, Y.; Fukawa, T.; Yamamoto, Y.; Yamaguchi, K.; Izaki, H.; Takahashi, M.; Kawanishi, Y.; et al. Comparison of robot-assisted partial nephrectomy with soft coagulation and double-layer technique for complex and non-complex tumors. Int. J. Urol. 2023, 30, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, Y.; Shi, B.; Zhang, Q.; Guo, H. The Outcome of Sutureless in Partial Nephrectomy: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2022, 2022, 5260131. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.J.; Song, C.; Kim, C.S.; Ahn, H. Surgical details and renal function change after robot-assisted partial nephrectomy. Int. J. Urol. 2020, 27, 457–462. [Google Scholar] [CrossRef]
- Shatagopam, K.; Bahler, C.D.; Sundaram, C.P. Renorrhaphy techniques and effect on renal function with robotic partial nephrectomy. World. J. Urol. 2020, 38, 1109–1112. [Google Scholar] [CrossRef]
- Simone, G.; Capitanio, U.; Tuderti, G.; Presicce, F.; Leonardo, C.; Ferriero, M.; Misuraca, L.; Costantini, M.; Larcher, A.; Minisola, F.G.; et al. On-Clamp versus off-clamp partial nephrectomy: Propensity score-matched comparison of long-term functional outcome. Int. J. Urol. 2019, 26, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Niino, J.; Goto, Y.; Sazuka, T.; Sato, H.; Arai, T.; Ichikawa, T. Off-clamp robot-assisted partial nephrectomy for renal hilar tumors. Jnt. J. Urol. 2023, 30, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
Covariates | SILR Group (n = 51) | DLR Group (n = 42) | p-Value |
---|---|---|---|
Age (year, median, IQR) | 69 (60.5–74.0) | 61 (51.0–70.5) | 0.002 |
Sex (number, %) | 0.377 | ||
Male | 33 (64.7) | 31 (73.8) | |
Female | 18 (35.3) | 11 (26.2) | |
Body mass index (kg/m2, median, IQR) | 23.9 (21.8–26.5) | 23.6 (21.2–27.3) | 0.740 |
ECOG-PS (number, %) | 0.091 | ||
0 | 46 (90.2) | 32 (76.2) | |
1 | 5 (9.8) | 10 (23.8) | |
Smoking history (number, %) | 22 (43.1) | 15 (35.7) | 0.523 |
Comorbidity | |||
Hypertension (number, %) | 29 (56.9) | 21 (50.0) | 0.537 |
Diabetes (number, %) | 13 (25.5) | 11 (26.2) | >0.999 |
Tumor side (number, %) | 0.678 | ||
Right | 26 (51.0) | 19 (45.2) | |
Left | 25 (49.0) | 23 (54.8) | |
Clinical T stage (number, %) | >0.999 | ||
1a | 48 (94.1) | 39 (92.9) | |
1b | 3 (5.9) | 3 (7.1) | |
Tumor size (mm, median, IQR) | 23.0 (15.5–32.5) | 22.5 (18.0–30.8) | 0.917 |
R.E.N.A.L nephrometry score (number, %) | 0.420 | ||
4–6 | 27 (52.9) | 27 (64.3) | |
7–9 | 22 (43.1) | 15 (35.7) | |
10–12 | 2 (3.9) | 0 (0.0) | |
Creatinine (mg/dL, median, IQR) | 0.79 (0.68–0.94) | 0.89 (0.67–1.07) | 0.144 |
eGFR (mL/min/1.73 m2, median, IQR) | 69.8 (60.6–76.0) | 69.9 (54.7–82.0) | 0.832 |
Preoperative CKD stage (number, %) | |||
CKD stage 1 | 4 (7.8) | 4 (9.5) | 0.245 |
CKD stage 2 | 36 (70.6) | 21 (50.0) | |
CKD stage 3a | 8 (15.7) | 12 (28.6) | |
CKD stage 3b | 3 (5.9) | 4 (9.5) | |
CKD stage 4 | 0 (0.0) | 1 (2.4) | |
CKD stage 5 | 0 (0.0) | 0 (0.0) | |
Follow-up period (months, median, IQR) | 18 (12.0–30.0) | 35 (8.3–46.5) | 0.025 |
(a) Univariate and multivariate analysis of creatinine levels on the first postoperative day | ||||||||
Variables | Univariable Analysis | Multivariable Analysis | ||||||
β (95% CI) | SE | t | p-Value | β (95% CI) | SE | t | p-Value | |
Age | 0.0027 (−0.0031–0.0085) | 0.0029 | 0.919 | 0.360 | −0.0022 (−0.0044–0.0001) | 0.0011 | −1.914 | 0.059 |
Preoperative creatinine | 1.0350 (0.952–1.119) | 0.0420 | 24.677 | <0.001 | 1.0152 (0.922–1.101) | 0.0470 | 21.565 | <0.001 |
R.E.N.A.L nephrometry score | 0.0159 (−0.0248–0.0566) | 0.0205 | 0.774 | 0.600 | 0.0057 (−0.0104–0.0217) | 0.0081 | 0.670 | 0.486 |
Tumor size | 0.0071 (0.0010–0.0132) | 0.0031 | 2.316 | 0.345 | −0.0014 (−0.0040–0.0012) | 0.0013 | −1.070 | 0.288 |
Warm ischemic time | 0.0028 (−0.0050–0.0107) | 0.0040 | 0.714 | 0.166 | 0.0013 (−0.0040–0.0012) | 0.0018 | 0.708 | 0.481 |
The method of renorrhaphy | 0.1360 (0.0162–0.2550) | 0.0600 | 2.260 | 0.199 | 0.0169 (−0.0357–0.0695) | 0.0264 | 0.638 | 0.526 |
(b) Univariate and multivariate analysis of creatinine levels at 365 days after surgery | ||||||||
Variables | Univariable Analysis | Multivariable Analysis | ||||||
β (95% CI) | SE | t | p-Value | β (95% CI) | SE | t | p-Value | |
Age | 0.0054 (−0.0015–0.0124) | 0.0035 | 1.560 | 0.124 | 0.0005 (−0.0025–0.0035) | 0.0015 | 0.342 | 0.733 |
Preoperative creatinine | 1.1420 (1.0222–1.2610) | 0.0598 | 19.086 | <0.001 | 1.1550 (1.0155–1.294) | 0.0695 | 16.613 | <0.001 |
R.E.N.A.L nephrometry score | 0.0361 (−0.0155–0.0879) | 0.0258 | 1.397 | 0.167 | 0.0095 (−0.0133–0.0322) | 0.0114 | 0.832 | 0.409 |
Tumor size | 0.0102 (0.00223–0.0181) | 0.0040 | 2.559 | 0.013 | −0.0029 (−0.0071–0.0013) | 0.0021 | −1.366 | 0.177 |
Warm ischemic time | 0.0058 (−0.00416–0.0156) | 0.0050 | 1.157 | 0.251 | 0.0031 (−0.0017–0.0080) | 0.0024 | 1.307 | 0.196 |
The method of renorrhaphy | 0.1460 (−0.0123–0.3040) | 0.0791 | 1.841 | 0.070 | 0.0105 (−0.0604–0.0814) | 0.0354 | 0.297 | 0.768 |
(c) Univariate and multivariate analysis of estimated glomerular filtration rate on postoperative day 1 | ||||||||
Variables | Univariable Analysis | Multivariable Analysis | ||||||
β (95% CI) | SE | t | p-Value | β (95% CI) | SE | t | p-Value | |
Age | −0.282 (−0.595–0.031) | 0.157 | −1.792 | 0.076 | 0.209 (−0.002–0.420) | 0.106 | 1.974 | 0.052 |
Preoperative eGFR | 0.880 (0.748–1.012) | 0.0664 | 13.258 | <0.001 | 0.909 (0.762–1.055) | 0.0738 | 12.312 | <0.001 |
R.E.N.A.L nephrometry score | −1.240 (−3.461–0.981) | 1.112 | −1.109 | 0.270 | −0.093 (−1.457–1.272) | 0.686 | −0.135 | 0.893 |
Tumor size | −0.452 (−0.781–−0.123) | 0.166 | −2.730 | 0.0076 | −0.142 (−0.364–0.080) | 0.111 | −1.274 | 0.206 |
Warm ischemic time | −0.244 (−0.698–0.211) | 0.229 | −1.064 | 0.290 | 0.039 (−0.266–0.344) | 0.153 | 0.253 | 0.801 |
The method of renorrhaphy | −0.836 (−15.264–−1.452) | 3.477 | −2.404 | 0.018 | −5.368 (−9.790–−0.947) | 2.223 | −2.414 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, H.; Nakane, K.; Hagiwara, N.; Kawase, M.; Kato, D.; Iinuma, K.; Ishida, K.; Enomoto, T.; Nezasa, M.; Tobisawa, Y.; et al. Impact of Robotic-Assisted Partial Nephrectomy with Single Layer versus Double Layer Renorrhaphy on Postoperative Renal Function. Curr. Oncol. 2024, 31, 2758-2768. https://doi.org/10.3390/curroncol31050209
Ito H, Nakane K, Hagiwara N, Kawase M, Kato D, Iinuma K, Ishida K, Enomoto T, Nezasa M, Tobisawa Y, et al. Impact of Robotic-Assisted Partial Nephrectomy with Single Layer versus Double Layer Renorrhaphy on Postoperative Renal Function. Current Oncology. 2024; 31(5):2758-2768. https://doi.org/10.3390/curroncol31050209
Chicago/Turabian StyleIto, Hiroyuki, Keita Nakane, Noriyasu Hagiwara, Makoto Kawase, Daiki Kato, Koji Iinuma, Kenichiro Ishida, Torai Enomoto, Minori Nezasa, Yuki Tobisawa, and et al. 2024. "Impact of Robotic-Assisted Partial Nephrectomy with Single Layer versus Double Layer Renorrhaphy on Postoperative Renal Function" Current Oncology 31, no. 5: 2758-2768. https://doi.org/10.3390/curroncol31050209
APA StyleIto, H., Nakane, K., Hagiwara, N., Kawase, M., Kato, D., Iinuma, K., Ishida, K., Enomoto, T., Nezasa, M., Tobisawa, Y., Ito, T., & Koie, T. (2024). Impact of Robotic-Assisted Partial Nephrectomy with Single Layer versus Double Layer Renorrhaphy on Postoperative Renal Function. Current Oncology, 31(5), 2758-2768. https://doi.org/10.3390/curroncol31050209