Impact of Opioid Use on Duration of Therapy and Overall Survival for Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Opioid Treatment and Assessment
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Duration of Therapy and Overall Survival
3.3. Univariate and Multivariate Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Langer, C.J.; Gadgeel, S.M.; Borghaei, H.; Papadimitrakopoulou, V.A.; Patnaik, A.; Powell, S.F.; Gentzler, R.D.; Martins, R.G.; Stevenson, J.P.; Jalal, S.I.; et al. Carboplatin and Pemetrexed with or without Pembrolizumab for Advanced, Non-Squamous Non-Small-Cell Lung Cancer: A Randomised, Phase 2 Cohort of the Open-Label KEYNOTE-021 Study. Lancet Oncol. 2016, 17, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-Line Nivolumab plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (CheckMate 9LA): An International, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes with Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score ≥ 50. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M.; Hui, R.; Hochmair, M.J.; Clingan, P.; Powell, S.F.; et al. Updated Analysis from KEYNOTE-189: Pembrolizumab or Placebo plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients With Metastatic Squamous NSCLC: Protocol- Specified Final Analysis of KEYNOTE-407. J. Thorac. Oncol. 2018, 15, 1657–1669. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef] [PubMed]
- Prasetya, R.A.; Metselaar-Albers, M.; Engels, F. Concomitant Use of Analgesics and Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: A Pharmacodynamics Perspective. Eur. J. Pharmacol. 2021, 906, 174284. [Google Scholar] [CrossRef] [PubMed]
- Boland, J.W.; Pockley, A.G. Influence of Opioids on Immune Function in Patients with Cancer Pain: From Bench to Bedside. Br. J. Pharmacol. 2018, 175, 2726–2736. [Google Scholar] [CrossRef] [PubMed]
- Plein, L.M.; Rittner, H.L. Opioids and the Immune System—Friend or Foe. Br. J. Pharmacol. 2018, 175, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Sindberg, G.; Wang, F.; Meng, J.; Sharma, U.; Zhang, L.; Dauer, P.; Chen, C.; Dalluge, J.; Johnson, T.; et al. Opioid-Induced Gut Microbial Disruption and Bile Dysregulation Leads to Gut Barrier Compromise and Sustained Systemic Inflammation. Mucosal Immunol. 2016, 9, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Pinato, D.J.; Howlett, S.; Ottaviani, D.; Urus, H.; Patel, A.; Mineo, T.; Brock, C.; Power, D.; Hatcher, O.; Falconer, A.; et al. Association of Prior Antibiotic Treatment with Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients with Cancer. JAMA Oncol. 2019, 5, 1774–1778. [Google Scholar] [CrossRef]
- Barengolts, E.; Green, S.J.; Eisenberg, Y.; Akbar, A.; Reddivari, B.; Layden, B.T.; Dugas, L.; Chlipala, G. Gut Microbiota Varies by Opioid Use, Circulating Leptin and Oxytocin in African American Men with Diabetes and High Burden of Chronic Disease. PLoS ONE 2018, 13, e0194171. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Z.; Wang, H.; Shen, Z.; Guo, Y.; Gao, Y.; Chen, X.; Wu, Q.; Li, X.; Wang, K. Bacterial Diversity of Intestinal Microbiota in Patients with Substance Use Disorders Revealed by 16S RRNA Gene Deep Sequencing. Sci. Rep. 2017, 7, 3628. [Google Scholar] [CrossRef]
- Kehl, K.L.; Riely, G.J.; Lepisto, E.M.; Lavery, J.A.; Warner, J.L.; Lenoue-Newton, M.L.; Sweeney, S.M.; Rudolph, J.E.; Brown, S.; Yu, C.; et al. Correlation between Surrogate End Points and Overall Survival in a Multi-Institutional Clinicogenomic Cohort of Patients with Non-Small Cell Lung or Colorectal Cancer. JAMA Netw. Open 2021, 4, e2117547. [Google Scholar] [CrossRef]
- Dowell, D.; Ragan, K.; Jones, C.; Baldwin, G.; Chou, R. CDC Clinical Practice Guideline for Prescribing Opioids for Pain—United States, 2022. MMWR Recomm. Rep. 2022, 71, 1–95. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Tamiya, A.; Matsuda, Y.; Adachi, Y.; Enomoto, T.; Azuma, K.; Kouno, S.; Tokoro, A.; Atagi, S. Opioids Impair Nivolumab Outcomes: A Retrospective Propensity Score Analysis in Non-Small-Cell Lung Cancer. BMJ Support. Palliat. Care 2023, 13, e185–e189. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Santamaría, A. Impact of Antibiotic Use and Other Concomitant Medications on the Efficacy of Immune Checkpoint Inhibitors in Patients with Advanced Cancer. Clin. Transl. Oncol. 2020, 22, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Weinfeld, M.; Wang, H.; Liu, L.C.; Pasquinelli, M.; Huber, M.; Eric, L. Association of Opioid Use with Response to Immune Checkpoint Inhibitors. J. Clin. Oncol. 2023, 40, e14595. [Google Scholar] [CrossRef]
- Mao, Z.; Jia, X.; Jiang, P.; Wang, Q.; Zhang, Y.; Li, Y.; Fu, X.; Jiao, M.; Jiang, L.; Liu, Z.; et al. Effect of Concomitant Use of Analgesics on Prognosis in Patients Treated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 861723. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, W.Z.; Mehaffey, J.H.; Desai, R.P.; Beller, J.; Balkrishnan, R.; Walters, D.M.; Martin, L.W. Prolonged Opioid Use Associated With Reduced Survival After Lung Cancer Resection. Ann. Thorac. Surg. 2021, 111, 1791–1798. [Google Scholar] [CrossRef]
- Zylla, D.; Kuskowski, M.A.; Gupta, K.; Gupta, P. Association of Opioid Requirement and Cancer Pain with Survival in Advanced Non-Small Cell Lung Cancer. Br. J. Anaesth. 2014, 113, 109–116. [Google Scholar] [CrossRef]
- Singleton, P.A.; Mirzapoiazova, T.; Hasina, R.; Salgia, R.; Moss, J. Increased μ-Opioid Receptor Expression in Metastatic Lung Cancer. Br. J. Anaesth. 2014, 113, 103–108. [Google Scholar] [CrossRef]
- Fujioka, N.; Nguyen, J.; Chen, C.; Li, Y.; Pasrija, T.; Niehans, G.; Johnson, K.N.; Gupta, V.; Kratzke, R.A.; Gupta, K. Morphine-Induced Epidermal Growth Factor Pathway Activation in Non-Small Cell Lung Cancer. Anesth. Analg. 2011, 113, 1353–1364. [Google Scholar] [CrossRef]
- Lennon, F.E.; Mirzapoiazova, T.; Mambetsariev, B.; Poroyko, V.A.; Salgia, R.; Moss, J.; Singleton, P.A. The Mu Opioid Receptor Promotes Opioid and Growth Factor-Induced Proliferation, Migration and Epithelial Mesenchymal Transition (EMT) in Human Lung Cancer. PLoS ONE 2014, 9, e91577. [Google Scholar] [CrossRef] [PubMed]
- Lennon, F.E.; Mirzapoiazova, T.; Mambetsariev, B.; Salgia, R.; Moss, J.; Singleton, P.A. Overexpression of the μ-Opioid Receptor in Human Non-Small Cell Lung Cancer Promotes Akt and MTOR Activation, Tumor Growth, and Metastasis. Anesthesiology 2012, 116, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Santoni, A.; Santoni, M.; Arcuri, E. Chronic Cancer Pain: Opioids within Tumor Microenvironment Affect Neuroinflammation, Tumor and Pain Evolution. Cancers 2022, 14, 2253. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Oguri, T.; Osawa, T.; Sawa, T.; Osaga, S.; Okuyama, T.; Uchida, M.; Maeno, K.; Fukuda, S.; Nishie, H.; et al. Opioid Dose and Survival of Patients with Incurable Nonsmall Cell Lung Cancer: A Prospective Cohort Study. J. Palliat. Med. 2018, 21, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Zylla, D.; Gourley, B.L.; Vang, D.; Jackson, S.; Boatman, S.; Lindgren, B.; Kuskowski, M.A.; Le, C.; Gupta, K.; Gupta, P. Opioid Requirement, Opioid Receptor Expression, and Clinical Outcomes in Patients with Advanced Prostate Cancer. Cancer 2013, 119, 4103–4110. [Google Scholar] [CrossRef] [PubMed]
- Cani, M.; Bironzo, P.; Garetto, F.; Buffoni, L.; Cotogni, P. Immune Checkpoint Inhibitors and Opioids in Patients with Solid Tumours: Is Their Association Safe? A Systematic Literature Review. Healthcare 2023, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, G.W.; Breeden, L.; Carr, D.J.J. Acute Exposure to Morphine Suppresses Cytotoxic T-Lymphocyte Activity. Int. J. Immunopharmacol. 1995, 17, 1001–1006. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Nishikawa, H. Roles of Regulatory T Cells in Cancer Immunity. Int. Immunol. 2016, 28, 401–409. [Google Scholar] [CrossRef]
- Smith, T.J.; Staats, P.S.; Deer, T.; Stearns, L.J.; Rauck, R.L.; Boortz-Marx, R.L.; Buchser, E.; Català, E.; Bryce, D.A.; Coyne, P.J.; et al. Randomized Clinical Trial of an Implantable Drug Delivery System Compared with Comprehensive Medical Management for Refractory Cancer Pain: Impact on Pain, Drug-Related Toxicity, and Survival. J. Clin. Oncol. 2002, 20, 4040–4049. [Google Scholar] [CrossRef]
- Janku, F.; Johnson, L.K.; Karp, D.D.; Atkins, J.T.; Singleton, P.A.; Moss, J. Treatment with Methylnaltrexone Is Associated with Increased Survival in Patients with Advanced Cancer. Ann. Oncol. 2016, 27, 2032–2038. [Google Scholar] [CrossRef]
Conversion Factor | MED (Morphine Equivalent Dose) | |
---|---|---|
Fentanyl | 2.4 | MED = Total dose of opioid prescribed during ICI treatment × conversion factor |
Hydrocodone | 1 | |
Hydromorphone | 4 | |
Methadone | 10 | MEDD (morphine equivalent daily dose) |
Morphine | 1 | MEDD = MED/total # days during ICI treatment |
Oxycodone | 1.5 |
No/Minimal Opioid Use (Average MEDD < 5) | Low Opioid Use (Average MEDD 5–50) | High Opioid Use (Average MEDD > 50.0) | p-Value | |
---|---|---|---|---|
N | 133 | 39 | 37 | |
Median age (range) | 67 (37–92) | 59 (46–82) | 59 (42–76) | 0.001 |
Gender (percentage) | 0.404 | |||
Male | 71 (53.4%) | 20 (51.3%) | 24 (64.9%) | |
Female | 62 (46.6%) | 19 (48.7%) | 13 (35.1%) | |
Histology (percentage) | 0.115 | |||
Adenocarcinoma | 100 (75.2%) | 24 (61.6%) | 21 (56.8%) | |
Squamous | 23 (17.3%) | 10 (25.6%) | 14 (37.8%) | |
Other/unknown | 10 (7.5%) | 5 (12.8%) | 2 (5.4%) | |
Performance status (ECOG) | 0.001 | |||
0–1 | 108 (81.2%) | 25 (64.1%) | 19 (51.4%) | |
2+ | 25 (18.8%) | 14 (35.9%) | 18 (48.6%) | |
Tumor burden | 0.894 | |||
≤2 Sites of metastases | 88 (66.2%) | 25 (64.1%) | 23 (62.2%) | |
>2 Sites of metastases | 45 (33.8%) | 14 (35.9%) | 14 (37.8%) | |
BMI | 0.016 | |||
<30 | 96 (72.2%) | 29 (74.4%) | 35 (94.6%) | |
≥30 | 37 (27.8%) | 10 (25.6%) | 2 (5.4%) | |
PD-L1 | 0.225 | |||
≥50% | 44 (33.1%) | 15 (38.4%) | 6 (16.2%) | |
1–49% | 22 (16.5%) | 7 (18.0%) | 6 (16.2%) | |
0% | 26 (19.6%) | 10 (25.6%) | 9 (24.3%) | |
Unknown | 41 (30.8%) | 7 (18.0%) | 16 (43.3%) | |
Treatment | 0.181 | |||
ICI alone (frontline) | 36 (27.1%) | 10 (25.6%) | 4 (10.8%) | |
ICI (2nd line or further) | 50 (37.6%) | 18 (46.2%) | 21 (56.8%) | |
Chemo + ICI | 47 (35.3%) | 11 (28.2%) | 12 (32.4%) | |
Smoking history | 0.832 | |||
Never/<10 pack years | 32 (24.1%) | 4 (10.3%) | 7 (18.9%) | |
10–50 pack years | 22 (16.5%) | 25 (64.1%) | 20 (54.1%) | |
>50 pack years | 79 (59.4%) | 10 (25.6%) | 10 (27.0%) | |
Genomics 1 | NC 2 | |||
EGFR | 0 (0%) | 1 (2.6%) | 0 (0%) | |
ROS | 0 (0%) | 1 (2.6%) | 0 (0%) | |
BRAF | 2 (1.5%) | 1 (2.6%) | 0 (0%) | |
KRAS | 13 (9.8%) | 1 (2.6%) | 2 (5.4%) |
(A) Duration of Therapy | ||||
---|---|---|---|---|
Univariate HR | p-Value | Multivariate HR | p-Value | |
Age (continuous) | 1.01 (0.99–1.03) | 0.616 | 1.01 (0.99–1.04) | 0.288 |
Gender (female vs. male) | 0.62 (0.42–0.90) | 0.012 | 0.61 (0.41–0.90) | 0.013 |
Histology (non-squamous vs. squamous) | 0.49 (0.33–0.73) | 0.0001 | 0.64 (0.42–0.99) | 0.043 |
ECOG (2+ vs. 0–2) | 2.37 (1.64–3.44) | 0.0001 | 2.07 (1.38–3.08) | 0.0001 |
PDL1 (50% or higher vs. <50%) | 0.70 (0.48–1.01) | 0.057 | 0.85 (0.56–1.28) | 0.437 |
Line of therapy (second vs. first line) | 1.85 (1.14–2.99) | 0.013 | 1.67 (0.99–2.80) | 0.051 |
Smoking (≥10 pack-year vs. <10) | 0.99 (0.59–1.66) | 0.970 | 1.00 (0.58–1.72) | 0.989 |
Opioid use (MEDD ≥ 50 vs. <50) | 3.87 (2.52–5.95) | 0.0001 | 2.98 (1.80–4.94) | 0.0001 |
BMI (30 or above vs. <30) | 0.75 (0.49–1.15) | 0.186 | 1.00 (0.62–1.61) | 0.989 |
Bone metastasis (no vs. yes) | 1.08 (0.69–1.70) | 0.738 | 0.69 (0.39–1.21) | 0.193 |
Tumor burden (≥2 sites of disease vs. <2) | 1.15 (0.78–1.70) | 0.484 | 1.57 (0.99–2.49) | 0.053 |
(B) Overall Survival | ||||
Univariate HR | p-Value | Multivariate HR | p-Value | |
Age (continuous) | 1.01 (0.99–1.03) | 0.504 | 1.02 (1.00–1.05) | 0.050 |
Gender (female vs. male) | 0.54 (0.37–0.79) | 0.001 | 0.57 (0.38–0.84) | 0.005 |
Histology (non-squamous vs. squamous) | 0.51 (0.34–0.74) | 0.001 | 0.57 (0.32–0.72) | 0.001 |
ECOG (2+ vs. 0–2) | 2.76 (1.90–4.02) | 0.0001 | 2.22 (1.49–3.31) | 0.0001 |
PDL1 (50% or higher vs. <50%) | 0.76 (0.52–1.10) | 0.143 | 0.89 (0.60–1.31) | 0.597 |
Line of therapy (second vs. first line) | 1.53 (0.94–2.48) | 0.085 | 1.70 (0.92–3.13) | 0.091 |
Smoking (≥10 pack-year vs. <10) | 0.92 (0.55–1.54) | 0.749 | 0.89 (0.51–1.56) | 0.686 |
Opioid use (MEDD ≥ 50 vs. <50) | 3.84 (2.51–5.87) | 0.0001 | 3.43 (2.08–5.66) | 0.0001 |
BMI (≥30 vs. <30) | 0.69 (0.45–1.05) | 0.083 | 0.86 (0.54–1.38) | 0.533 |
Bone metastasis (no vs. yes) | 1.19 (0.76–1.86) | 0.456 | 0.78 (0.44–1.37) | 0.384 |
Tumor burden (≥2 sites of disease vs. <2) | 1.21 (0.83–1.77) | 0.330 | 1.69 (1.06–2.70) | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, P.; Elghawy, O.; Mock, J.; Wynter, E.; Gentzler, R.D.; Martin, L.W.; Novicoff, W.; Hall, R. Impact of Opioid Use on Duration of Therapy and Overall Survival for Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Curr. Oncol. 2024, 31, 260-273. https://doi.org/10.3390/curroncol31010017
Young P, Elghawy O, Mock J, Wynter E, Gentzler RD, Martin LW, Novicoff W, Hall R. Impact of Opioid Use on Duration of Therapy and Overall Survival for Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Current Oncology. 2024; 31(1):260-273. https://doi.org/10.3390/curroncol31010017
Chicago/Turabian StyleYoung, Philip, Omar Elghawy, Joseph Mock, Emmett Wynter, Ryan D. Gentzler, Linda W. Martin, Wendy Novicoff, and Richard Hall. 2024. "Impact of Opioid Use on Duration of Therapy and Overall Survival for Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors" Current Oncology 31, no. 1: 260-273. https://doi.org/10.3390/curroncol31010017
APA StyleYoung, P., Elghawy, O., Mock, J., Wynter, E., Gentzler, R. D., Martin, L. W., Novicoff, W., & Hall, R. (2024). Impact of Opioid Use on Duration of Therapy and Overall Survival for Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Current Oncology, 31(1), 260-273. https://doi.org/10.3390/curroncol31010017