Immunotherapy in Anal Cancer
Abstract
:1. Introduction
2. Immunogenicity in Anal Cancer
3. Role of Immunotherapy in Non-Metastatic (Early-Stage) Anal Cancer
4. Role of Immunotherapy in Locally Advanced and Metastatic Anal Cancer
5. Immune Checkpoint Inhibitors (ICI) as Monotherapy
6. Immune Checkpoint Inhibitors (ICIs) in Combinations
7. Adoptive Cellular Therapy
8. Vaccine Therapy
9. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Cancer Facts & Figures. 2023. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html (accessed on 13 April 2023).
- Deshmukh, A.A.; Suk, R.; Shiels, M.S.; Sonawane, K.; Nyitray, A.G.; Liu, Y.; Gaisa, M.M.; Palefsky, J.M.; Sigel, K. Recent Trends in Squamous Cell Carcinoma of the Anus Incidence and Mortality in the United States, 2001-2015. J. Natl. Cancer Inst. 2020, 112, 829–838. [Google Scholar] [CrossRef] [PubMed]
- SEER * Explorer: An Interactive Website for SEER Cancer Statistics. Available online: https://seer.cancer.gov/explorer/ (accessed on 12 March 2023).
- Daling, J.R.; Madeleine, M.M.; Johnson, L.G.; Schwartz, S.M.; Shera, K.A.; Wurscher, M.A.; Carter, J.J.; Porter, P.L.; Galloway, D.A.; McDougall, J.K. Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. Cancer 2004, 101, 270–280. [Google Scholar] [CrossRef]
- Clifford, G.M.; Georges, D.; Shiels, M.S.; Engels, E.A.; Albuquerque, A.; Poynten, I.M.; de Pokomandy, A.; Easson, A.M.; Stier, E.A. A meta-analysis of anal cancer incidence by risk group: Toward a unified anal cancer risk scale. Int. J. Cancer 2021, 148, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.; Glimelius, B.; Wohlfahrt, J.; Adami, H.O.; Melbye, M. Tobacco smoking as a risk factor in anal carcinoma: An antiestrogenic mechanism? J. Natl. Cancer Inst. 1999, 91, 708–715. [Google Scholar] [CrossRef]
- Carr, R.M.; Jin, Z.; Hubbard, J. Research on Anal Squamous Cell Carcinoma: Systemic Therapy Strategies for Anal Cancer. Cancers 2021, 13, 2180. [Google Scholar] [CrossRef] [PubMed]
- Colón-López, V.; Shiels, M.S.; Machin, M.; Ortiz, A.P.; Strickler, H.; Castle, P.E.; Pfeiffer, R.M.; Engels, E.A. Anal Cancer Risk Among People with HIV Infection in the United States. J. Clin. Oncol. 2018, 36, 68–75. [Google Scholar] [CrossRef]
- Morel, A.; Neuzillet, C.; Wack, M.; Lameiras, S.; Vacher, S.; Deloger, M.; Servant, N.; Veyer, D.; Péré, H.; Mariani, O.; et al. Mechanistic Signatures of Human Papillomavirus Insertions in Anal Squamous Cell Carcinomas. Cancers 2019, 11, 1846. [Google Scholar] [CrossRef]
- Ciardiello, D.; Guerrera, L.P.; Maiorano, B.A.; Parente, P.; Latiano, T.P.; Di Maio, M.; Ciardiello, F.; Troiani, T.; Martinelli, E.; Maiello, E. Immunotherapy in advanced anal cancer: Is the beginning of a new era? Cancer Treat. Rev. 2022, 105, 102373. [Google Scholar] [CrossRef]
- Ott, P.A.; Piha-Paul, S.A.; Munster, P.; Pishvaian, M.J.; van Brummelen, E.M.J.; Cohen, R.B.; Gomez-Roca, C.; Ejadi, S.; Stein, M.; Chan, E.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017, 28, 1036–1041. [Google Scholar] [CrossRef]
- Smola, S.; Trimble, C.; Stern, P.L. Human papillomavirus-driven immune deviation: Challenge and novel opportunity for immunotherapy. Ther. Adv. Vaccines 2017, 5, 69–82. [Google Scholar] [CrossRef] [PubMed]
- NCT03233711 Nivolumab after Combined Modality Therapy in Treating Patients with High Risk Stage II-IIIB Anal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03233711 (accessed on 16 March 2023).
- Martin, D.; Balermpas, P.; Gollrad, J.; Weiß, C.; Valentini, C.; Stuschke, M.; Schäfer, H.; Henckenberens, C.; Debus, J.; Krug, D.; et al. RADIANCE-Radiochemotherapy with or without Durvalumab in the treatment of anal squamous cell carcinoma: A randomized multicenter phase II trial. Clin. Transl. Radiat. Oncol. 2020, 23, 43–49. [Google Scholar] [CrossRef]
- Eng, C. Anal cancer: Current and future methodology. Cancer Investig. 2006, 24, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; Carrasco, C.H.; Jackson, D.E.; Wallace, S. Combination of cisplatin plus fluoropyrimidine chemotherapy effective against liver metastases from carcinoma of the anal canal. Am. J. Med. 1989, 87, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Faivre, C.; Rougier, P.; Ducreux, M.; Mitry, E.; Lusinchi, A.; Lasser, P.; Elias, D.; Eschwege, F. 5-Fluorouracile and cisplatinum combination chemotherapy for metastatic squamous-cell anal cancer. Bull. Cancer 1999, 86, 861–865. [Google Scholar] [PubMed]
- Kim, S.; Jary, M.; Mansi, L.; Benzidane, B.; Cazorla, A.; Demarchi, M.; Nguyen, T.; Kaliski, A.; Delabrousse, E.; Bonnetain, F.; et al. DCF (docetaxel, cisplatin and 5-fluorouracil) chemotherapy is a promising treatment for recurrent advanced squamous cell anal carcinoma. Ann. Oncol. 2013, 24, 3045–3050. [Google Scholar] [CrossRef] [PubMed]
- Hainsworth, J.D.; Burris, H.A., 3rd; Meluch, A.A.; Baker, M.N.; Morrissey, L.H.; Greco, F.A. Paclitaxel, carboplatin, and long-term continuous infusion of 5-fluorouracil in the treatment of advanced squamous and other selected carcinomas: Results of a Phase II trial. Cancer 2001, 92, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Jaiyesimi, I.A.; Pazdur, R. Cisplatin and 5-fluorouracil as salvage therapy for recurrent metastatic squamous cell carcinoma of the anal canal. Am. J. Clin. Oncol. 1993, 16, 536–540. [Google Scholar] [CrossRef]
- Rao, S.; Sclafani, F.; Eng, C.; Adams, R.A.; Guren, M.G.; Sebag-Montefiore, D.; Benson, A.; Bryant, A.; Peckitt, C.; Segelov, E.; et al. International Rare Cancers Initiative Multicenter Randomized Phase II Trial of Cisplatin and Fluorouracil Versus Carboplatin and Paclitaxel in Advanced Anal Cancer: InterAAct. J. Clin. Oncol. 2020, 38, 2510–2518. [Google Scholar] [CrossRef]
- Morris, V.K.; Salem, M.E.; Nimeiri, H.; Iqbal, S.; Singh, P.; Ciombor, K.; Polite, B.; Deming, D.; Chan, E.; Wade, J.L.; et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 446–453. [Google Scholar] [CrossRef]
- Chung, H.C.; Ros, W.; Delord, J.P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Cassier, P.A.; Fakih, M.; Kao, S.; Nielsen, D.; Italiano, A.; Guren, T.K.; van Dongen, M.G.J.; Spencer, K.; Bariani, G.M.; et al. Pembrolizumab for previously treated advanced anal squamous cell carcinoma: Results from the non-randomised, multicohort, multicentre, phase 2 KEYNOTE-158 study. Lancet Gastroenterol. Hepatol. 2022, 7, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Anandappa, G.; Capdevila, J.; Dahan, L.; Evesque, L.; Kim, S.; Saunders, M.P.; Gilbert, D.C.; Jensen, L.H.; Samalin, E.; et al. A phase II study of retifanlimab (INCMGA00012) in patients with squamous carcinoma of the anal canal who have progressed following platinum-based chemotherapy (POD1UM-202). ESMO Open 2022, 7, 100529. [Google Scholar] [CrossRef] [PubMed]
- Lonardi, S.; Prete, A.A.; Morano, F.; Messina, M.; Formica, V.; Corsi, D.C.; Orciuolo, C.; Frassineti, G.L.; Zampino, M.G.; Casagrande, M.; et al. Randomized phase II trial of avelumab alone or in combination with cetuximab for patients with previously treated, locally advanced, or metastatic squamous cell anal carcinoma: The CARACAS study. J. Immunother. Cancer 2021, 9, e002996. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, Y.; Fang, W.; Lu, C.; Chen, J.; Cui, G.; Diao, H. Cetuximab Enhanced the Cytotoxic Activity of Immune Cels during Treatment of Colorectal Cancer. Cell. Physiol. Biochem. 2017, 44, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Fasano, M.; Della Corte, C.M.; Di Liello, R.; Barra, G.; Sparano, F.; Viscardi, G.; Iacovino, M.L.; Paragliola, F.; Famiglietti, V.; Ciaramella, V.; et al. Induction of natural killer antibody-dependent cell cytotoxicity and of clinical activity of cetuximab plus avelumab in non-small cell lung cancer. ESMO Open 2020, 5, e000753. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.C.; Misso, G.; Pastina, P.; Costantini, S.; Vanni, F.; Gandolfo, C.; Botta, C.; Capone, F.; Lombardi, A.; Pirtoli, L.; et al. Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov. 2016, 2, 16025. [Google Scholar] [CrossRef] [PubMed]
- Morris, V.; Liu, S.; Johnson, B.; Prasad, S.; Mahvash, A.; Bhosale, P.; Rubin, M.L.; Rothschild, N.; Futreal, A.; Wistuba, I.I.; et al. 403MO Atezolizumab in combination with bevacizumab for patients with unresectable/metastatic anal cancer. Ann. Oncol. 2020, 31, S412. [Google Scholar] [CrossRef]
- Ravi, R.; Noonan, K.A.; Pham, V.; Bedi, R.; Zhavoronkov, A.; Ozerov, I.V.; Makarev, E.; Artemov, A.V.; Wysocki, P.T.; Mehra, R.; et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun. 2018, 9, 741. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, D.; Xu, C.; Hance, K.W.; Marelli, B.; Qi, J.; Yu, H.; Qin, G.; Sircar, A.; Hernández, V.M.; et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med. 2018, 10, eaan5488. [Google Scholar] [CrossRef]
- Strauss, J.; Gatti-Mays, M.E.; Cho, B.C.; Hill, A.; Salas, S.; McClay, E.; Redman, J.M.; Sater, H.A.; Donahue, R.N.; Jochems, C.; et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J. Immunother. Cancer 2020, 8, e001395. [Google Scholar] [CrossRef] [PubMed]
- Strauss, J.; Gatti-Mays, M.E.; Cho, B.C.; Hill, A.; Salas, S.; McClay, E.; Redman, J.M.; Sater, H.A.; Donahue, R.N.; Jochems, C.; et al. Long-term follow-up of patients with human papillomavirus (HPV)–associated malignancies treated with bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1. ESMO Congr. 2021. [CrossRef]
- Robbins, P.F.; Morgan, R.A.; Feldman, S.A.; Yang, J.C.; Sherry, R.M.; Dudley, M.E.; Wunderlich, J.R.; Nahvi, A.V.; Helman, L.J.; Mackall, C.L.; et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 2011, 29, 917. [Google Scholar] [CrossRef] [PubMed]
- Trimble, C.L.; Frazer, I.H. Development of therapeutic HPV vaccines. Lancet Oncol. 2009, 10, 975–980. [Google Scholar] [CrossRef]
- Jin, B.Y.; Campbell, T.E.; Draper, L.M.; Stevanović, S.; Weissbrich, B.; Yu, Z.; Restifo, N.P.; Rosenberg, S.A.; Trimble, C.L.; Hinrichs, C.S. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 2018, 3, e99488. [Google Scholar] [CrossRef]
- Nagarsheth, N.B.; Norberg, S.M.; Sinkoe, A.L.; Adhikary, S.; Meyer, T.J.; Lack, J.B.; Warner, A.C.; Schweitzer, C.; Doran, S.L.; Korrapati, S.; et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 2021, 27, 419–425. [Google Scholar] [CrossRef]
- Doran, S.L.; Stevanović, S.; Adhikary, S.; Gartner, J.J.; Jia, L.; Kwong, M.L.; Faquin, W.C.; Hewitt, S.M.; Sherry, R.M.; Yang, J.C.; et al. T-cell receptor gene therapy for human papillomavirus–associated epithelial cancers: A first-in-human, phase I/II study. J. Clin. Oncol. 2019, 37, 2759. [Google Scholar] [CrossRef]
- Stevanović, S.; Helman, S.R.; Wunderlich, J.R.; Langhan, M.M.; Doran, S.L.; Kwong, M.L.; Somerville, R.P.; Klebanoff, C.; Kammula, U.S.; Sherry, R.M.; et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus–associated epithelial cancers. Clin. Cancer Res. 2019, 25, 1486–1493. [Google Scholar] [CrossRef]
- Massarelli, E.; William, W.; Johnson, F.; Kies, M.; Ferrarotto, R.; Guo, M.; Feng, L.; Lee, J.J.; Tran, H.; Kim, Y.U.; et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16–related cancer: A phase 2 clinical trial. JAMA Oncol. 2019, 5, 67–73. [Google Scholar] [CrossRef]
- De Sousa, L.G.; Rajapakshe, K.; Canales, J.R.; Chin, R.L.; Feng, L.; Wang, Q.; Barrese, T.Z.; Massarelli, E.; William, W.; Johnson, F.M.; et al. ISA101 and nivolumab for HPV-16+ cancer: Updated clinical efficacy and immune correlates of response. J. Immunother. Cancer 2022, 10, e004232. [Google Scholar] [CrossRef]
- Eng, C.; Fakih, M.; Amin, M.; Morris, V.; Hochster, H.S.; Boland, P.M.; Uronis, H. A phase II study of axalimogene filolisbac for patients with previously treated, unresectable, persistent/recurrent loco-regional or metastatic anal cancer. Oncotarget 2020, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- NCT04719988 Anti-PD-1 and mDCF Followed by Chemoradiotherapy in Patients with Stage III Squamous Cell Anal Carcinoma. (INTERACT-ION). Available online: https://clinicaltrials.gov/ct2/show/NCT04719988 (accessed on 13 April 2023).
- NCT04046133 Phase 1b/II Trial of Pembrolizumab Plus IMRT in Stage III/IV Carcinoma of Anus (CORINTH). Available online: https://clinicaltrials.gov/ct2/show/NCT04046133 (accessed on 13 April 2023).
- NCT01671488 A Phase I/II Evaluation of ADXS11-001, Mitomycin, 5-fluorouracil (5-FU) and IMRT for Anal Cancer (276). Available online: https://clinicaltrials.gov/ct2/show/NCT01671488 (accessed on 13 April 2023).
- Morris, V.K.; Eng, C. Role of Immunotherapy in the Treatment of Squamous Cell Carcinoma of the Anal Canal. J. Natl. Compr. Canc. Netw. 2018, 16, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jary, M.; André, T.; Vendrely, V.; Buecher, B.; François, E.; Bidard, F.C.; Dumont, S.; Samalin, E.; Peiffert, D.; et al. Docetaxel, cisplatin, and 5-fluorouracil (DCF) chemotherapy in the treatment of metastatic or unresectable locally recurrent anal squamous cell carcinoma: A phase II study of French interdisciplinary GERCOR and FFCD groups (Epitopes-HPV02 study). BMC Cancer 2017, 17, 574. [Google Scholar] [CrossRef]
- Wahl, A.F.; Donaldson, K.L.; Faircnild, C.; Lee, F.Y.; Foster, S.A.; Demers, G.W.; Galloway, D.A. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat. Med. 1996, 2, 72–79. [Google Scholar] [CrossRef]
- Kim, S.; Buecher, B.; André, T.; Jary, M.; Bidard, F.-C.; Ghiringhelli, F.; François-Clément, B.; Taieb, J.; Smith, D.; De La Fouchardière, C.; et al. Atezolizumab plus modified docetaxel-cisplatin-5-fluorouracil (mDCF) regimen versus mDCF in patients with metastatic or unresectable locally advanced recurrent anal squamous cell carcinoma: A randomized, non-comparative phase II SCARCE GERCOR trial. BMC Cancer 2020, 20, 352. [Google Scholar] [CrossRef] [PubMed]
- NCT04444921 EA2176: Phase 3 Clinical Trial of Carboplatin and Paclitaxel +/− Nivolumab in Metastatic Anal Cancer Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT04444921 (accessed on 13 April 2023).
- Collins, K.; Mitchell, J.R. Telomerase in the human organism. Oncogene 2002, 21, 564–579. [Google Scholar] [CrossRef] [PubMed]
- Thalmensi, J.; Pliquet, E.; Liard, C.; Escande, M.; Bestetti, T.; Julithe, M.; Kostrzak, A.; Pailhes-Jimenez, A.S.; Bourges, E.; Loustau, M.; et al. Anticancer DNA vaccine based on human telomerase reverse transcriptase generates a strong and specific T cell immune response. Oncoimmunology 2016, 5, e1083670. [Google Scholar] [CrossRef]
- Rebucci-Peixoto, M.; Vienot, A.; Adotevi, O.; Jacquin, M.; Ghiringhelli, F.; De La Fouchardiere, C.; You, B.; Maurina, T.; Kalbacher, E.; Bazan, F.; et al. A Phase II Study Evaluating the Interest to Combine UCPVax, a Telomerase CD4 TH1-Inducer Cancer Vaccine, and Atezolizumab for the Treatment of HPV Positive Cancers: VolATIL Study. Front. Oncol. 2022, 12, 957580. [Google Scholar] [CrossRef]
- NCT02379520 HPV-16/18 E6/E7-Specific T Lymphocytes, Relapsed HPV-Associated Cancers, HESTIA (HESTIA). Available online: https://clinicaltrials.gov/ct2/show/NCT02379520 (accessed on 13 April 2023).
Ongoing Immunotherapy Trials in Non-Metastatic Anal Cancer | ||||||
---|---|---|---|---|---|---|
NCT | Phase | N | Type of Study | Treatment Arms | Setting | End Points |
NCT04230759 (RADIANCE) | II | 178 | Randomized parallel assignment | Arm 1: chemoradiation (mitomycin C/5-FU and radiation) Arm 2: chemoradiation + durvalumab 1500 mg every 4 weeks starting 14 days prior to chemoradiation | First line | DFS, AE, cCR, OS, LRR, and others |
NCT03233711 (EA2165) | III | 379 | Randomized parallel assignment | All patients received standard chemoradiation Arm 1: nivolumab 480 mg IV every 4 weeks for 6 cycles Arm 2: observation | Maintenance | DFS, ORR, mAE, OS, and others |
Trials in Locally Advanced/Metastatic Anal Cancer | |||||||
---|---|---|---|---|---|---|---|
NCT No. | Phase | N | Type of Study | Treatment Arms | Targets | Line of Therapy | Key Results |
NCT02314169 (Moris 2017) | II | 37 | Single arm | Nivolumab 3 g/kg q14 days | PD-1 | 2nd line and beyond | ORR 24% mPFS 4.1 m mOS 11.5 m |
NCT02054806 (Ott 2017) Keynote 028 | I | 24 (SCCA) | Single arm | Pembrolizumab 10 mg/kg in solid tumor with PD-L1 ≥ 1% q14 days | PD-1 | 2nd line and beyond | ORR 17% DCR 58% mPFS 3 m |
NCT02628067 (Ros Willke 2019) Keynote 158 | II | 112 | Single arm | Pembrolizumab 200 mg q21 days | PD-1 | 2nd line and beyond | ORR 11% ORR 15% (CPS ≥ 1) ORR 1% (CPS < 1) mPFS 2 m |
NCT03597295 (Rao 2022) POD1UM 202 | II | 94 | Single arm | Retifanlimab 500 mg q28 days | PD-1 | 2nd line and beyond | ORR 13.8% DCR 48.9% mPFS 2.3 m mOS 10.1 m |
NCT03944252 (Lonardi 2021) CARACAS trial | II | 60 | Double arm | Arm 1: avelumab 10 mg/kg q14 days (monotherapy) Arm2: avelumab 10 mg/kg q14 days + cetuximab 500 mg/m2 | PD-L1 PD-L1+ EGFRi | 2nd line and beyond | ORR: 17% vs. 10% mPFS: 3.9 vs. 2.0 m mOS: 7.8 vs. 13.9 m(ARM B vs. ARM A) |
NCT03074513 (Morris 2020) | II | 20 (SCCA) | Single arm | Atezolizumab 1200 mg + bevacizumab 15 mg/kg q21 days | PD-L1 + VEGF-i | 2nd line and beyond | ORR 10% DCR 65% mPFS 4.1 m mOS 11.6 m |
NCT03427411 NCT02517398 (Strauss 2020) | Ib and II (post-hoc analysis) | 59 (6 with SCCA) | Single arm | Bintrasfusp-alfa 1200 mg q 14 days | PD-L1 + TGFβ | 2nd line and beyond | ORR 30.5% DCR 44.1% mPFS 2.8 m mOS NR (mOS 21.2 months in long-term follow up) |
NCT02280811 (Doran 2019) | I/II | 12 (4 patients with SCCA) | Single arm | HPV E6 T-cell receptor (TCR), followed by high dose aldesleukin | E6 T-cell receptor | 2nd line and beyond | No DLT MTD 105 × 109 E6 TCT T-cells ORR 16.7% |
NCT02858310 (Nagarseth 2021) | I/II | 12 (2 patients with SCCA) | Single arm | HPV E7 T-cell receptor (TCR), followed by high dose aldesleukin | E7 T-cell receptors | 2nd line and beyond | MDT: 100 billion E7 TCR T-cells ORR 50% |
NCT01585428 Stevanovi 2019 | II | 29 (5 SCCA patients) | Single arm | Young tumor-infiltrating lymphocytes (TIL) plus high dose IV aldesleukin. | 2nd line and beyond | ORR 28% in cervical cohort ORR 18% in non-cervical cohort | |
NCT02426892 (Massarelli 2019) | II | 24 (1 with SCCA) | Single arm | HPV 16 vaccination (ISA 101) SC at 100 mcg × 3 doses q 3 to 4 weeks + Nivolumab 3 mg/kg q 2 weeks beginning on day 8 after the first vaccine dose. | PD-1 + HPV 16 peptide vaccine | 2nd line and beyond | ORR 33% mPFS 2.7 m mOS 17.5 m |
NCT02399813 (Eng 2020) | II | 36 | Single arm | axalimogene filolisbac (ADXS11-001) q 3 weeks at a dose of 1 × 109 cfu | HPV 16 E7 protein | 2nd line and beyond | ORR was 3.4% 6-month PFS was 15.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhawan, N.; Afzal, M.Z.; Amin, M. Immunotherapy in Anal Cancer. Curr. Oncol. 2023, 30, 4538-4550. https://doi.org/10.3390/curroncol30050343
Dhawan N, Afzal MZ, Amin M. Immunotherapy in Anal Cancer. Current Oncology. 2023; 30(5):4538-4550. https://doi.org/10.3390/curroncol30050343
Chicago/Turabian StyleDhawan, Natasha, Muhammad Z. Afzal, and Manik Amin. 2023. "Immunotherapy in Anal Cancer" Current Oncology 30, no. 5: 4538-4550. https://doi.org/10.3390/curroncol30050343
APA StyleDhawan, N., Afzal, M. Z., & Amin, M. (2023). Immunotherapy in Anal Cancer. Current Oncology, 30(5), 4538-4550. https://doi.org/10.3390/curroncol30050343