Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies
Abstract
:1. Introduction
2. Cytotoxic Chemotherapy
2.1. Capecitabine
2.2. Platinum Agents
3. Targeted Therapies
PARP Inhibitors
4. Immunotherapy
4.1. Neoadjuvant Therapy
4.2. Adjuvant Therapy
5. Future Directions
5.1. Circulating Tumor DNA (ctDNA)
5.2. Other Targeted Pathways
5.3. Antibody–Drug Conjugates (ADCs)
6. Conclusions
Funding
Conflicts of Interest
References
- Brenner, D.R.; Poirier, A.; Woods, R.R.; Ellison, L.F.; Billette, J.M.; Demers, A.A.; Zhang, S.X.; Yao, C.; Finley, C.; Fitzgerald, N.; et al. Projected estimates of cancer in Canada in 2022. CMAJ 2022, 194, E601–E607. [Google Scholar] [CrossRef] [PubMed]
- Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef] [Green Version]
- Abuhadra, N.; Stecklein, S.; Sharma, P.; Moulder, S. Early-stage triple-negative breast cancer: Time to optimize personalized strategies. Oncologist 2022, 27, 30–39. [Google Scholar] [CrossRef]
- Blum, J.L.; Flynn, P.J.; Yothers, G.; Asmar, L.; Geyer, C.E.; Jacobs, S.A.; Robert, N.J.; Hopkins, J.O.; O’Shaughnessy, J.A.; Dang, C.T.; et al. Anthracyclines in early breast cancer: The ABC trials—USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG oncology). J. Clin. Oncol. 2017, 35, 2647–2655. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- Lluch, A.; Barrios, C.H.; Torrecillas, L.; Ruiz-Borrego, M.; Bines, J.; Segalla, J.; Guerrero-Zotano, Á.; García-Sáenz, J.A.; Torres, R.; de la Haba, J.; et al. Phase III trial of adjuvant capecitabine after standard neo-/adjuvant chemotherapy in patients with early triple-negative breast cancer (GEICAM/2003-11_CIBOMA/2004-01). J. Clin. Oncol. 2020, 38, 203–213. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.S.; Huang, H.; Cai, L.; Zhao, L.; Peng, R.J.; Lin, Y.; Tang, J.; Zeng, J.; Zhang, L.H.; et al. Effect of capecitabine maintenance therapy using lower dosage and higher frequency vs observation on disease-free survival among patients with early-stage triple-negative breast cancer who had received standard treatment: The SYSUCC-001 randomized clinical trial. JAMA 2021, 325, 50–58. [Google Scholar] [CrossRef]
- Mayer, I.A.; Zhao, F.; Arteaga, C.L.; Symmans, W.F.; Park, B.H.; Burnette, B.L.; Tevaarwerk, A.J.; Garcia, S.F.; Smith, K.L.; Makower, D.F.; et al. Randomized phase III postoperative trial of platinum-based chemotherapy versus capecitabine in patients with residual triple-negative breast cancer following neoadjuvant chemotherapy: ECOG-ACRIN EA1131. J. Clin. Oncol. 2021, 39, 2539–2551. [Google Scholar] [CrossRef]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef]
- Tutt, A.N.J.; Garber, J.E.; Gelber, R.D. OlympiA Phase III: OS Results of Olaparib in gBRCAm Breast Cancer. Available online: https://oncologypro.esmo.org/meeting-resources/esmo-virtual-plenary-resources/olympia-phase-iii-pre-specified-event-driven-analysis-of-overall-survival-of-olaparib-in-gbrcam-breast-cancer (accessed on 9 May 2022).
- Pusztai, L.; Barlow, W.; Ganz, P.; Henry, N.; White, J.; Jagsi, R.; Mammen, J.; Lew, D.; Mejia, J.; Karantza, V.; et al. Abstract OT1-02-04: SWOG S1418/NRG -BR006: A randomized, phase III trial to evaluate the efficacy and safety of MK-3475 as adjuvant therapy for triple receptor-negative breast cancer with >1 cm residual invasive cancer or positive lymph nodes (>pN1mic) after neoadjuvant chemotherapy. Cancer Res. 2018, 78 (Suppl. 4), OT1-02-04. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Schneeweiss, A.; Loibl, S.; Salat, C.; Denkert, C.; Rezai, M.; Blohmer, J.U.; Jackisch, C.; Paepke, S.; Gerber, B.; et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 2014, 15, 747–756. [Google Scholar] [CrossRef]
- Shepherd, J.H.; Ballman, K.; Polley, M.Y.C.; Campbell, J.D.; Fan, C.; Selitsky, S.; Fernandez-Martinez, A.; Parker, J.S.; Hoadley, K.A.; Hu, Z.; et al. CALGB 40603 (alliance): Long-term outcomes and genomic correlates of response and survival after neoadjuvant chemotherapy with or without carboplatin and bevacizumab in triple-negative breast cancer. J. Clin. Oncol. 2022, 40, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; O’Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; von Minckwitz, G.; Maag, D.; et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): A randomised, phase 3 trial. Lancet Oncol. 2018, 19, 497–509. [Google Scholar] [CrossRef]
- Geyer, C.E.; Sikov, W.M.; Huober, J.; Rugo, H.S.; Wolmark, N.; O’Shaughnessy, J.; Maag, D.; Untch, M.; Golshan, M.; Lorenzo, J.P.; et al. Long-term efficacy and safety of addition of carboplatin with or without veliparib to standard neoadjuvant chemotherapy in triple-negative breast cancer: 4-year follow-up data from BrighTNess, a randomized phase III trial. Ann. Oncol. 2022, 33, 384–394. [Google Scholar] [CrossRef]
- Wang, H.; Yee, D. I-SPY 2: A neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Curr. Breast Cancer Rep. 2019, 11, 303–310. [Google Scholar] [CrossRef]
- Rugo, H.S.; Olopade, O.I.; DeMichele, A.; Yau, C.; van’t Veer, L.J.; Buxton, M.B.; Hogarth, M.; Hylton, N.M.; Paoloni, M.; Perlmutter, J.; et al. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. N. Engl. J. Med. 2016, 375, 23–34. [Google Scholar] [CrossRef]
- Litton, J.K.; Beck, J.T.; Jones, J.M.; Andersen, J.; Blum, J.L.; Mina, L.A.; Brig, R.; Danso, M.A.; Yuan, Y.; Abbattista, A.; et al. Neoadjuvant talazoparib in patients with germline BRCA1/2 (gBRCA1/2) mutation-positive, early HER2-negative breast cancer (BC): Results of a phase 2 study. J. Clin. Oncol. 2021, 39 (Suppl. 15), 505. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020, 396, 1090–1100. [Google Scholar] [CrossRef]
- Loibl, S.; Schneeweiss, A.; Huober, J.B.; Braun, M.; Rey, J.; Blohmer, J.U.; Furlanetto, J.; Zahm, D.M.; Hanusch, C.; Thomalla, J.; et al. Durvalumab improves long-term outcome in TNBC: Results from the phase II randomized GeparNUEVO study investigating neodjuvant durvalumab in addition to an anthracycline/taxane based neoadjuvant chemotherapy in early triple-negative breast cancer (TNBC). J. Clin. Oncol. 2021, 39 (Suppl. 15), 506. [Google Scholar] [CrossRef]
- Oliveira, M.; Saura, C.; Nuciforo, P.; Calvo, I.; Andersen, J.; Passos-Coelho, J.L.; Gil Gil, M.; Bermejo, B.; Patt, D.A.; Ciruelos, E.; et al. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann. Oncol. 2019, 30, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Zuo, W.; Chen, Y.; Shao, Z.; Yu, K. The advance of adjuvant treatment for triple-negative breast cancer. Cancer Biol. Med. 2022, 19, 187. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N. Engl. J. Med. 2019, 380, 741–751. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 2022. Online publication ahead of print. [Google Scholar] [CrossRef]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Von Minckwitz, G.; Untch, M.; Blohmer, J.-U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Huo, X.; Li, J.; Zhao, F.; Ren, D.; Ahmad, R.; Yuan, X.; Du, F.; Zhao, J. The role of capecitabine-based neoadjuvant and adjuvant chemotherapy in early-stage triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer 2021, 21, 78. [Google Scholar] [CrossRef]
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.; Trapani, D.; Viale, G.; Criscitiello, C.; Curigliano, G. Practical classification of triple-negative breast cancer: Intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020, 6, 54. [Google Scholar] [CrossRef]
- Ali, R.M.M.; McIntosh, S.A.; Savage, K.I. Homologous recombination deficiency in breast cancer: Implications for risk, cancer development, and therapy. Genes Chromosomes Cancer 2021, 60, 358–372. [Google Scholar] [CrossRef]
- Poggio, F.; Bruzzone, M.; Ceppi, M.; Pondé, N.F.; La Valle, G.; Del Mastro, L.; De Azambuja, E.; Lambertini, M. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis. Ann. Oncol. 2018, 29, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Doxorubicin Hydrochloride and Cyclophosphamide Followed by Paclitaxel with or without Carboplatin in Treating Patients with Triple-Negative Breast Cancer—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02488967 (accessed on 9 May 2022).
- Pathak, N.; Sharma, A.; Elavarasi, A.; Sankar, J.; Deo, S.V.S.; Sharma, D.N.; Mathur, S.; Kumar, S.; Prasad, C.P.; Kumar, A.; et al. Moment of truth-adding carboplatin to neoadjuvant/adjuvant chemotherapy in triple negative breast cancer improves overall survival: An individual participant data and trial-level meta-analysis. Breast 2022, 64, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.H.; Schild, D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res. 2001, 477, 131–153. [Google Scholar] [CrossRef]
- Nijman, S.M. Synthetic lethality: General principles, utility and detection using genetic screens in human cells. FEBS Lett. 2011, 585, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Emens, L.A.; Adams, S.; Cimino-Mathews, A.; Disis, M.L.; Gatti-Mays, M.E.; Ho, A.Y.; Kalinsky, K.; McArthur, H.L.; Mittendorf, E.A.; Nanda, R.; et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J. Immunother. Cancer 2021, 9, 2597. [Google Scholar] [CrossRef]
- US Food and Drug Administration (FDA). Highlights of Prescribing Information—Pembrolizumab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125514s110lbl.pdf (accessed on 9 May 2022).
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef]
- Loibl, S.; Untch, M.; Burchardi, N.; Huober, J.; Sinn, B.V.; Blohmer, J.U.; Grischke, E.M.; Furlanetto, J.; Tesch, H.; Hanusch, C.; et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. 2019, 30, 1279–1288. [Google Scholar] [CrossRef] [Green Version]
- Gianni, L.; Huang, C.S.; Egle, D.; Bermejo, B.; Zamagni, C.; Thill, M.; Anton, A.; Zambelli, S.; Bianchini, G.; Russo, S.; et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann. Oncol. 2022, 33, 534–543. [Google Scholar] [CrossRef] [PubMed]
- McArthur, H.L.; Ignatiadis, M.; Guillaume, S.; Bailey, A.; Martinez, J.L.; Brandao, M.; Metzger, O.; Lai, C.; Fumagalli, D.; Daly, F.; et al. ALEXANDRA/IMpassion030: A phase III study of standard adjuvant chemotherapy with or without atezolizumab in early-stage triple-negative breast cancer. J. Clin. Oncol. 2019, 37 (Suppl. 15), TPS598. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Cullinane, C.; Fleming, C.; O’Leary, D.P.; Hassan, F.; Kelly, L.; O’Sullivan, M.J.; Corrigan, M.A.; Redmond, H.P. Association of circulating tumor DNA with disease-free survival in breast cancer: A systematic review and meta-analysis. JAMA Netw. Open 2020, 3, e2026921. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Hancock, B.A.; Solzak, J.P.; Brinza, D.; Scafe, C.; Miller, K.D.; Radovich, M. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. NPJ Breast Cancer 2017, 3, 24. [Google Scholar] [CrossRef]
- Efficacy and Safety Comparison of Niraparib to Placebo in Participants with Human Epidermal Growth Factor 2 Negative (HER2-) Breast Cancer Susceptibility Gene Mutation (BRCAmut) or Triple-Negative Breast Cancer (TNBC) with Molecular Disease—Full Text View—ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04915755 (accessed on 9 May 2022).
Trial (NCT Number) | Phase | Stage | Treatment | Patients in Analysis | Outcomes | Refs | |
---|---|---|---|---|---|---|---|
Chemotherapy | ABC Trials (NCT00493870, NCT00887536, NCT01547741) | III | Early II– III | Docetaxel and cyclophosphamide versus doxorubicin and cyclophosphamide | 1288 | DFS: HR 1.42, 95% CI 1.04–1.94 OS: not significant (favoring AC) | [5] |
CREATE-X (NCT00130533) | III | Early I–IIIb | Patients without pCR, standard of care with or without capecitabine | 286 | DFS: HR 0.58, 95% CI 0.39–0.87 OS: HR 0.52, 95% CI 0.30–0.90 | [6] | |
GEICAM/2003-11_CIBOMA/2004-01 (NCT00130533) | III | Early I–III | Capecitabine versus observation | 869 | DFS: HR 0.82, 95% CI 0.63–1.0 OS: HR 0.92, 95% CI 0.66–1.28 | [7] | |
SYSUCC-001 (NCT01112826) | III | Early I–III | Low-dose capecitabine vs. observation | 424 | DFS: HR 0.64, 95% CI 0.42–0.95 OS: HR 0.75, 95% CI 0.47–1.19 | [8] | |
EA1131 (NCT02445391) | III | Early II–III | Neoadjuvant chemotherapy followed by adjuvant capecitabine versus platinum | 308 | DFS: 49.4%, 95% CI 39.0 to 59.0 versus 42.0%, 95% CI 30.5–53.1 DFS: HR 1 (Ref) versus 1.06, 95% CI 0.62–1.81 | [9] | |
Targeted therapy | OlympiaA (NCT02032823) | III | Early II–III | Olaparib versus placebo in patients with BRCA1/2 mutations | 1509 | DFS, distant: HR 0.57, 99.5% CI 0.39–0.83 OS: HR 0.68, 98.5% CI 0.47–0.97 | [10,11] |
Immunotherapy | SWOG S1418/BR-006 (NCT02954874) | III | Early II–III | Patients without pCR received pembrolizumab versus observation | Recruitment on going | Not yet reported | [12] |
Trial (NCT Number) | Phase | Stage | Treatment | Patients in Analysis | Outcomes | Refs | |
---|---|---|---|---|---|---|---|
Chemotherapy | GeparSixto (NCT01426880) | II | Early II–III | Neoadjuvant chemotherapy with versus without carboplatin | 315 | Achieving a pCR: OR 1.94, 95% CI 1.24–3.04 | [13] |
CALGB 40603 (NCT00861705) | II | Early II–III | Weekly paclitaxel with versus without carboplatin, followed by AC | 113 | The addition of carboplatin increased pCR from 41% to 61% | [14] | |
BrighTNess (NCT02032277) | III | Early II–III | Paclitaxel with versus without carboplatin | 318 | EFS: HR 0.57, 95% CI 0.36–0.91 | [15,16] | |
Targeted therapy | I-SPY-2 (NCT02032277) | II | Early II–III | Paclitaxel with versus without veliparib–carboplatin | 116 | Rate of pCR: 51%, 95% CI 36–66 versus 26%, 95% CI 9–43 | [17,18] |
BrighTNess (NCT02032277) | III | Early II–III | Paclitaxel and carboplatin with versus without veliparib | 476 | Rate of pCR: 53% versus 58% p = 0.36 | [15,16] | |
NEOTALA (NCT03499353) | II | Early I–III | Single-agent talazoparib in patients with BRCA1/2 mutations | 61 | Rate of pCR: 49.2%, 95% CI 34.0–64.5 | [19] | |
Immunotherapy | KEYNOTE-522 (NCT03036488) | III | Early II–III | Paclitaxel and carboplatin with versus without pembrolizumab, followed by AC | 1174 -EFS 602 -pCR | EFS: HR 0.63, 95% CI 0.48–0.82 Rate of pCR: 64.8%, increase of 13.6%, 95% CI 5.4–21.8 | [20] |
IMpassion031 (NCT03498716) | III | Early II–III | nab-paclitaxel followed by ddAC with versus without atezolizumab | 333 | Rate of pCR: 58%, increase of 17%, 95% CI 6–27 | [21] | |
GeparNUEVO (NCT02685059) | II | Early II–III | nab-paclitaxel followed by ddAC with versus without durvalumab | 174 | Rate of pCR: 53.4%, increase of 9.2%, NS Achieving a pCR OR 1.45, 95% CI 0.80–2.63 DFS: HR 0.54 OS: HR 0.26 | [22] |
Agent Type | Agent Class | Agent | Mechanism | Relevant Trials | Ref |
---|---|---|---|---|---|
Chemotherapy | Anti-metabolites | Capecitabine | Prodrug that is converted to 5-FU, and subsequent metabolites inhibit formation of thymidylate, necessary for DNA synthesis | CREATE-X | [6] |
Alkylating agents | Platinum (carboplatin) | Reactive platinum complexes inhibit DNA synthesis by forming interstrand and intrastrand cross-linking of DNA molecules | GeparSixto | [13] | |
CALGB 40603 | [14] | ||||
BrighTNess | [15,16] | ||||
Cyclophosphamide | Prodrug that is metabolized to its active form phosphoramide mustard that forms cross-links between strands of DNA | ABC Trials | [5] | ||
CALGB 40603 | [14] | ||||
GeparNUEVO | [22] | ||||
Anti-microtubule | Taxanes (paclitaxel, docetaxel) | Prevents effective microtubules by binding and promoting stabilization and growth | ABC Trials (See Table 1 and Table 2) | [5] | |
Cytotoxic antibiotics | Doxorubicin | Intercalates with DNA leading to topoisomerase II inhibition and subsequent apoptosis | ABC Trials (See Table 1 and Table 2) | [5] | |
Targeted therapy | PARPi | Veliparib Talazoparib Olaparib | Inhibition of PARP leads to ineffective repair of DNA SSBs, leading to DSBs, and apoptosis | BrighTNess | [15,16] |
I-SPY-II | [17] | ||||
NEOTALA | [19] | ||||
OlympiaA | [10] | ||||
AKTi | Ipatasertib | Inhibition of AKT slows down upregulated cell division pathways | FAIRLANE | [23] | |
Immunotherapy | PD-L1 inhibitor | Atezolizumab Durvalumab | MAB checkpoint inhibitor blocks PD-L1 interrupting the interaction with PD-1 on T-cells, enhancing antitumor immune response and leading to increased T-cell activation against tumors | IMPassion031 | [21] |
GeparNUEVO | [22] | ||||
PD-1 inhibitor | Pembrolizumab | MAB checkpoint inhibitor that blocks PD-1 as opposed to PD-L1, enhancing antitumor immune response and leading to increased T-cell activation against tumors | KEYNOTE522 | [20] | |
Androgen Deprivation | Androgen receptor signaling inhibitor (ARSI) | Enzalutamide | Prevents the androgen receptor from translocating through the cell, preventing DNA transcription | MDV3100-11 | [24] |
Pregnenolone Analogue | Abiraterone | Suppresses CPY17A1-mediated androgen synthesis and direct AR-inhibitory properties | UCBG 12-1 | [24] | |
Antibody–Drug Conjugates | Sacituzumab govitecan-hziy | Antibody targeting Trop-2 linked to SN-38 (topoisomerase inhibitor), with chemotherapy released after cell internalization of the antibody. | NCT01631552 | [25] | |
Trastuzumab deruxtecan | Antibody targeting HER-2 linked to a topoisomerase inhibitor (deruxtecan). Used in patients with low expression of HER-2. | DESTINY-Breast04 | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacDonald, I.; Nixon, N.A.; Khan, O.F. Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies. Curr. Oncol. 2022, 29, 4768-4778. https://doi.org/10.3390/curroncol29070378
MacDonald I, Nixon NA, Khan OF. Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies. Current Oncology. 2022; 29(7):4768-4778. https://doi.org/10.3390/curroncol29070378
Chicago/Turabian StyleMacDonald, Isaiah, Nancy A. Nixon, and Omar F. Khan. 2022. "Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies" Current Oncology 29, no. 7: 4768-4778. https://doi.org/10.3390/curroncol29070378
APA StyleMacDonald, I., Nixon, N. A., & Khan, O. F. (2022). Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies. Current Oncology, 29(7), 4768-4778. https://doi.org/10.3390/curroncol29070378