Development of a Prediction Model for Positive Surgical Margin in Robot-Assisted Laparoscopic Radical Prostatectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Outcome
2.3. Predictors
2.4. Sample Size
2.5. Statistical Analysis Method
3. Results
3.1. Study Population
3.2. Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
NSM | PSM | p | ||
---|---|---|---|---|
n | 752 | 151 | ||
ML (%) | Apex | 0 | 45 (33.1) | 0.143 |
Periphery | 0 | 42 (30.9) | ||
Base | 0 | 23 (16.9) | ||
Apex + Periphery | 0 | 12 (8.8) | ||
Base + Periphery | 0 | 6 (4.4) | ||
Base + Apex | 0 | 4 (2.9) | ||
Apex + Base + Periphery | 0 | 3 (2.2) | ||
Periphery + Spermaduct | 0 | 1 (0.7) | ||
Gleason (%) | 3 + 3 | 105 (14.0) | 3 (2.0) | <0.001 |
3 + 4 | 394 (52.4) | 71 (47.0) | ||
3 + 5 | 1 (0.1) | 0 (0.0) | ||
4 + 3 | 194 (25.8) | 51 (33.8) | ||
4 + 4 | 41 (5.5) | 16 (10.6) | ||
4 + 5 | 14 (1.9) | 9 (6.0) | ||
5 + 3 | 2 (0.3) | 1 (0.7) | ||
5 + 4 | 1 (0.1) | 0 (0.0) | ||
N (%) | 1 | 396 (52.7) | 100 (66.2) | 0.1 |
2 | 220 (29.3) | 28 (18.5) | ||
3 | 61 (8.1) | 10 (6.6) | ||
m | 75 (9.9) | 13 (8.6) | ||
TL (%) | M | 160 (21.3) | 47 (31.1) | <0.001 |
p | 380 (50.5) | 40 (26.5) | ||
T | 212 (28.2) | 64 (42.4) | ||
EPE (%) | 0 | 504 (67.0) | 45 (29.8) | <0.001 |
1 | 248 (33.0) | 106 (70.2) | ||
SVI (%) | 0 | 720 (95.7) | 123 (81.5) | <0.001 |
1 | 32 (4.3) | 28 (18.5) | ||
VI (%) | 0 | 730 (97.1) | 139 (92.1) | 0.006 |
1 | 22 (2.9) | 12 (7.9) | ||
NI(%) | 0 | 332 (44.1) | 25 (16.6) | <0.001 |
1 | 420 (55.9) | 126 (83.4) | ||
Lymph node (%) | 0 | 288 (38.3) | 86 (57.0) | |
1 | 11 (1.5) | 9 (6.0) | ||
2 | 453 (60.2) | 56 (37.1) | ||
pT (%) | T2 | 503 (66.9) | 43 (28.5) | <0.001 |
T3a | 217 (28.9) | 79 (52.3) | ||
T3b | 32 (4.3) | 27 (17.9) | ||
T4 | 0 (0.0) | 2 (1.3) |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Zhang, S.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2016. J. Natl. Cancer Cent. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Feng, R.-M.; Zong, Y.-N.; Cao, S.-M.; Xu, R.-H. Current cancer situation in China: Good or sbad news from the 2018 Global Cancer Statistics? Cancer Commun. Lond. Engl. 2019, 39, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.) 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yao, Y.; Liu, X.; Liu, Y.; Zhang, G.-M. Neoadjuvant hormone therapy for patients with high-risk prostate cancer: A systematic review and meta-analysis. Asian J. Androl. 2021, 23, 429–436. [Google Scholar] [CrossRef]
- McKay, R.R.; Berchuck, J.; Kwak, L.; Xie, W.; Silver, R.; Bubley, G.J.; Chang, P.K.; Wagner, A.; Zhang, Z.; Kibel, A.S.; et al. Outcomes of Post-Neoadjuvant Intense Hormone Therapy and Surgery for High Risk Localized Prostate Cancer: Results of a Pooled Analysis of Contemporary Clinical Trials. J. Urol. 2021, 205, 1689–1697. [Google Scholar] [CrossRef]
- Costello, A.J. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat. Rev. Urol. 2020, 17, 177–188. [Google Scholar] [CrossRef]
- Sooriakumaran, P.; Karnes, J.; Stief, C.; Copsey, B.; Montorsi, F.; Hammerer, P.; Beyer, B.; Moschini, M.; Gratzke, C.; Steuber, T.; et al. A Multi-institutional Analysis of Perioperative Outcomes in 106 Men Who Underwent Radical Prostatectomy for Distant Metastatic Prostate Cancer at Presentation. Eur. Urol. 2016, 69, 788–794. [Google Scholar] [CrossRef]
- Van den Broeck, T.; van den Bergh, R.C.N.; Briers, E.; Cornford, P.; Cumberbatch, M.; Tilki, D.; De Santis, M.; Fanti, S.; Fossati, N.; Gillessen, S.; et al. Biochemical Recurrence in Prostate Cancer: The European Association of Urology Prostate Cancer Guidelines Panel Recommendations. Eur. Urol. Focus 2020, 6, 231–234. [Google Scholar] [CrossRef]
- Morizane, S.; Yumioka, T.; Makishima, K.; Tsounapi, P.; Iwamoto, H.; Hikita, K.; Honda, M.; Umekita, Y.; Takenaka, A. Impact of positive surgical margin status in predicting early biochemical recurrence after robot-assisted radical prostatectomy. Int. J. Clin. Oncol. 2021, 26, 1961–1967. [Google Scholar] [CrossRef]
- Martini, A.; Gandaglia, G.; Fossati, N.; Scuderi, S.; Bravi, C.A.; Mazzone, E.; Stabile, A.; Scarcella, S.; Robesti, D.; Barletta, F.; et al. Defining Clinically Meaningful Positive Surgical Margins in Patients Undergoing Radical Prostatectomy for Localised Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Lim, B.; Kyung, Y.S.; Kim, C.-S. Impact of positive surgical margin on biochemical recurrence in localized prostate cancer. Prostate Int. 2021, 9, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.E.; Jung, J.H.; Edgerton, Z.; Lee, H.; Lee, S.; Bakker, C.J.; Dahm, P. Retzius-sparing versus standard robotic-assisted laparoscopic prostatectomy for the treatment of clinically localized prostate cancer. Cochrane Database Syst. Rev. 2020, 8, CD013641. [Google Scholar] [CrossRef] [PubMed]
- Soeterik, T.F.W.; van Melick, H.H.E.; Dijksman, L.M.; Stomps, S.; Witjes, J.A.; van Basten, J.P.A. Nerve Sparing during Robot-Assisted Radical Prostatectomy Increases the Risk of Ipsilateral Positive Surgical Margins. J. Urol. 2020, 204, 91–95. [Google Scholar] [CrossRef]
- Koga, F.; Ito, M.; Kataoka, M.; Fukushima, H.; Nakanishi, Y.; Takemura, K.; Suzuki, H.; Sakamoto, K.; Kobayashi, S.; Tobisu, K.-I. Novel anatomical apical dissection utilizing puboprostatic “open-collar” technique: Impact on apical surgical margin and early continence recovery. PLoS ONE 2021, 16, e0249991. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.G.; Schatloff, O.; Haidar, A.M.; Samavedi, S.; Palmer, K.J.; Cheon, J.; Patel, V.R. Overall rate, location, and predictive factors for positive surgical margins after robot-assisted laparoscopic radical prostatectomy for high-risk prostate cancer. Asian J. Androl. 2016, 18, 123–128. [Google Scholar] [CrossRef]
- Tuliao, P.H.; Koo, K.C.; Komninos, C.; Chang, C.H.; Choi, Y.D.; Chung, B.H.; Hong, S.J.; Rha, K.H. Number of positive preoperative biopsy cores is a predictor of positive surgical margins (PSM) in small prostates after robot-assisted radical prostatectomy (RARP). BJU Int. 2015, 116, 897–904. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Li, W.; Xu, L.; Zhang, Q.; Gao, J.; Li, D.; Li, X.; Qiu, X.; Guo, H. Tumour location determined by preoperative MRI is an independent predictor for positive surgical margin status after Retzius-sparing robot-assisted radical prostatectomy. BJU Int. 2020, 126, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.-J.; Wang, Z.-L.; Li, G.; Cao, S.-J.; Cui, H.-R.; Li, Z.-H.; Liu, Z.; Li, B.-L.; Ma, L.-L.; Zhuang, S.-R.; et al. Development and validation of a preoperative nomogram for predicting positive surgical margins after laparoscopic radical prostatectomy. Chin. Med. J. (Engl.) 2019, 132, 928–934. [Google Scholar] [CrossRef]
- Park, M.Y.; Park, K.J.; Kim, M.; Kim, J.K. Preoperative MRI-based estimation of risk for positive resection margin after radical prostatectomy in patients with prostate cancer: Development and validation of a simple scoring system. Eur. Radiol. 2021, 31, 4898–4907. [Google Scholar] [CrossRef]
- Xu, B.; Luo, C.; Zhang, Q.; Jin, J. Preoperative characteristics of the P.R.O.S.T.A.T.E. scores: A novel predictive tool for the risk of positive surgical margin after radical prostatectomy. J. Cancer Res. Clin. Oncol. 2017, 143, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, M.S.; Saba, K.; Umbehr, M.H.; Murtola, T.J.; Fankhauser, C.D.; Adank, J.-P.; Hofmann, M.; Sulser, T.; Hermanns, T.; Moch, H.; et al. Prognostic Role of Preoperative Serum Lipid Levels in Patients Undergoing Radical Prostatectomy for Clinically Localized Prostate Cancer. Prostate 2017, 77, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.I.; Amin, M.B.; Reuter, V.E.; Humphrey, P.A. Contemporary Gleason Grading of Prostatic Carcinoma: An Update With Discussion on Practical Issues to Implement the 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2017, 41, e1–e7. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, Y.; Bai, L.; Xiahou, J.; Hancock, E. High-order covariate interacted Lasso for feature selection. Pattern Recognit. Lett. 2017, 87, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.M.D.; Wender, R.C.; Etzioni, R.B.; Thompson, I.M.; D’Amico, A.V.; Volk, R.J.; Brooks, D.D.; Dash, C.; Guessous, I.; Andrews, K.; et al. American Cancer Society guideline for the early detection of prostate cancer: Update 2010. CA Cancer J. Clin. 2010, 60, 70–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, B.; Burnett, C.; Sweeney, C.J.; Rider, J.R.; Sridhar, S.S. Impact of age at diagnosis of de novo metastatic prostate cancer on survival. Cancer 2020, 126, 986–993. [Google Scholar] [CrossRef]
- Deniz, M.; Zengerling, F.; Gundelach, T.; Moreno-Villanueva, M.; Bürkle, A.; Janni, W.; Bolenz, C.; Kostezka, S.; Marienfeld, R.; Benckendorff, J.; et al. Age-related activity of Poly (ADP-Ribose) Polymerase (PARP) in men with localized prostate cancer. Mech. Ageing Dev. 2021, 196, 111494. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. Grading Committee The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef] [PubMed]
Level | Overall | NSM | PSM | p | Test | SMD | |
---|---|---|---|---|---|---|---|
n | 903 | 752 | 151 | ||||
age (median [IQR]) | 70.00 [66.00, 75.00] | 70.00 [65.00, 74.00] | 71.00 [66.00, 77.00] | 0.014 | nonnorm | 0.240 | |
BMI (mean (SD)) | 24.60 (2.95) | 24.60 (2.93) | 24.58 (3.06) | 0.922 | 0.009 | ||
V (median [IQR]) | 32.40 [24.70, 44.90] | 33.05 [24.78, 45.92] | 31.10 [24.20, 39.20] | 0.095 | nonnorm | 0.139 | |
PPN (median [IQR]) | 0.36 [0.21, 0.50] | 0.34 [0.19, 0.50] | 0.44 [0.29, 0.67] | <0.001 | nonnorm | 0.559 | |
ISUP (%) | 1 | 235 (26.0) | 218 (29.0) | 17 (11.3) | <0.001 | 0.587 | |
2 | 264 (29.2) | 230 (30.6) | 34 (22.5) | ||||
3 | 230 (25.5) | 179 (23.8) | 51 (33.8) | ||||
4 | 164 (18.2) | 118 (15.7) | 46 (30.5) | ||||
5 | 10 (1.1) | 7 (0.9) | 3 (2.0) | ||||
PT (median [IQR]) | 14.29 [6.25, 25.94] | 12.50 [5.53, 23.47] | 24.29 [12.32, 37.71] | <0.001 | nonnorm | 0.669 | |
PI-RADS (%) | 3 | 193 (21.4) | 180 (23.9) | 13 (8.6) | <0.001 | 0.673 | |
4 | 355 (39.3) | 311 (41.4) | 44 (29.1) | ||||
5 | 318 (35.2) | 227 (30.2) | 91 (60.3) | ||||
N | 37 (4.1) | 34 (4.5) | 3 (2.0) | ||||
TL (%) | M | 236 (26.1) | 185 (24.6) | 51 (33.8) | 0.056 | 0.246 | |
N | 32 (3.5) | 28 (3.7) | 4 (2.6) | ||||
p | 354 (39.2) | 307 (40.8) | 47 (31.1) | ||||
T | 281 (31.1) | 232 (30.9) | 49 (32.5) | ||||
D (median [IQR]) | 1.30 [0.90, 1.90] | 1.30 [0.90, 1.80] | 1.70 [1.20, 2.40] | <0.001 | nonnorm | 0.545 | |
NT (%) | 0 | 37 (4.1) | 33 (4.4) | 4 (2.6) | 0.520 | 0.154 | |
1 | 546 (60.5) | 458 (60.9) | 88 (58.3) | ||||
2 | 263 (29.1) | 217 (28.9) | 46 (30.5) | ||||
3 | 51 (5.6) | 40 (5.3) | 11 (7.3) | ||||
4 | 6 (0.7) | 4 (0.5) | 2 (1.3) | ||||
T-MRI (%) | 1 | 483 (53.5) | 428 (56.9) | 55 (36.4) | <0.001 | exact | 0.426 |
2 | 75 (8.3) | 55 (7.3) | 20 (13.2) | ||||
3 | 345 (38.2) | 269 (35.8) | 76 (50.3) | ||||
PSA (median [IQR]) | 8.94 [6.40, 13.61] | 8.57 [6.11, 12.10] | 14.90 [8.02, 23.77] | <0.001 | nonnorm | 0.561 | |
PSAD (median [IQR]) | 0.27 [0.18, 0.44] | 0.26 [0.17, 0.40] | 0.42 [0.27, 0.80] | <0.001 | nonnorm | 0.570 | |
II (median [IQR]) | 376.68 [276.07, 519.53] | 382.54 [274.14, 515.20] | 366.61 [282.82, 541.58] | 0.965 | nonnorm | 0.022 | |
margin (%) | 0 | 752 (83.3) | 752 (100.0) | 0 (0.0) | <0.001 | NaN | |
1 | 151 (16.7) | 0 (0.0) | 151 (100.0) | ||||
t (median [IQR]) | 14.00 [10.00, 18.00] | 14.00 [10.00, 18.00] | 13.00 [10.00, 18.00] | 0.571 | nonnorm | 0.019 | |
Operator (%) | 1 | 416 (46.1) | 339 (45.1) | 77 (51.0) | 0.397 | 0.122 | |
2 | 409 (45.3) | 346 (46.0) | 63 (41.7) | ||||
3 | 78 (8.6) | 67 (8.9) | 11 (7.3) | ||||
Others (%) | 0 | 858 (95.0) | 722 (96.0) | 136 (90.1) | 0.004 | 0.235 | |
1 | 45 (5.0) | 30 (4.0) | 15 (9.9) |
Coefficients: | Univariate Analysis | ||
---|---|---|---|
Estimate | Std. Error | Pr (>|z|) | |
age | 0.039 | 0.014 | 0.006 *** |
BMI | −0.019 | 0.031 | 0.546 |
V | −0.007 | 0.005 | 0.159 |
PPN | 2.266 | 0.4.5 | 2.13 × 10−8 *** |
ISUP-2 | 0.573 | 0.315 | 0.069 * |
ISUP-3 | 1.270 | 0.299 | 2.13 × 10−5 *** |
ISUP-4 | 1.480 | 0.311 | 1.90 × 10−6 *** |
ISUP-5 | 1.681 | 0.735 | 0.022 ** |
PT | 0.040 | 0.006 | 1.8 × 10−11 *** |
D | 0.693 | 0.115 | 1.67 × 10−9 *** |
PI-RADS-4 | 0.551 | 0.322 | 0.087 * |
PI-RADS-5 | 1.544 | 0.306 | 4.5 × 10−7 *** |
PI-RADS-N | −0.313 | 0.779 | 0.688 |
NT-1 | 0.417 | 0.543 | 0.443 |
NT-2 | 0.515 | 0.555 | 0.354 |
NT-3 | 0.819 | 0.630 | 0.193 |
NT-4 | 1.705 | 1.055 | 0.106 |
PSA | 0.026 | 0.009 | 0.006 *** |
PSAD | 1.263 | 0.220 | 9.59 × 10−9 *** |
T-MRI-2 | 0.070 | 0.373 | 0.852 |
T-MRI-3 | 0.235 | 0.246 | 0.342 |
TL-N | −1.484 | 0.745 | 0.046 ** |
TL-p | −0.607 | 0.231 | 0.009 *** |
TL-T | −0.127 | 0.224 | 0.574 |
II | 0.0002 | 0.000 | 0.692 |
t | −0.001 | 0.004 | 0.796 |
Others-1 | 0.860 | 0.345 | 0.013 ** |
Operator 100–200 cases | −0.220 | 0.191 | 0.248 |
Operator <100 cases | −0.387 | 0.363 | 0.286 |
Coefficients | Estimate | OR | 95% Confidence Interval | Pr (>|z|) | |
---|---|---|---|---|---|
age | 0.020 | 1.020 | 0.991 | 1.051 | 0.180 |
PPN | 0.696 | 2.006 | 0.424 | 9.500 | 0.381 |
ISUP-2 | 0.260 | 1.297 | 0.673 | 2.502 | 0.438 |
ISUP-3 | 0.630 | 1.877 | 0.968 | 3.636 | 0.063 * |
ISUP-4 | 0.846 | 2.329 | 1.172 | 4.630 | 0.016 ** |
ISUP-5 | 1.243 | 3.466 | 0.742 | 16.202 | 0.115 |
PT | 0.017 | 1.017 | 0.993 | 1.043 | 0.169 |
D | 0.076 | 1.079 | 0.747 | 1.559 | 0.687 |
PI-RADS-4 | 0.349 | 1.417 | 0.727 | 2.762 | 0.306 |
PI-RADS-5 | 0.699 | 2.012 | 0.979 | 4.135 | 0.058 * |
PI-RADS-N | −1.358 | 0.257 | 0.013 | 4.907 | 0.367 |
PSA | 0.026 | 1.026 | 1.008 | 1.045 | 0.006 *** |
T-MRI2 | 0.070 | 1.072 | 0.516 | 2.228 | 0.852 |
T-MRI3 | 0.235 | 1.264 | 0.780 | 2.050 | 0.342 |
TL-N | 1.357 | 3.883 | 0.211 | 71.321 | 0.361 |
TL-p | −0.360 | 0.697 | 0.408 | 1.193 | 0.189 |
TL-T | 0.430 | 1.537 | 0.908 | 2.604 | 0.110 |
Intercept | −5.203 | 0.005 | 0.00001 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Zhang, Q.; Hang, J.; Xu, L.; Zhang, S.; Guo, H. Development of a Prediction Model for Positive Surgical Margin in Robot-Assisted Laparoscopic Radical Prostatectomy. Curr. Oncol. 2022, 29, 9560-9571. https://doi.org/10.3390/curroncol29120751
Hao Y, Zhang Q, Hang J, Xu L, Zhang S, Guo H. Development of a Prediction Model for Positive Surgical Margin in Robot-Assisted Laparoscopic Radical Prostatectomy. Current Oncology. 2022; 29(12):9560-9571. https://doi.org/10.3390/curroncol29120751
Chicago/Turabian StyleHao, Ying, Qing Zhang, Junke Hang, Linfeng Xu, Shiwei Zhang, and Hongqian Guo. 2022. "Development of a Prediction Model for Positive Surgical Margin in Robot-Assisted Laparoscopic Radical Prostatectomy" Current Oncology 29, no. 12: 9560-9571. https://doi.org/10.3390/curroncol29120751
APA StyleHao, Y., Zhang, Q., Hang, J., Xu, L., Zhang, S., & Guo, H. (2022). Development of a Prediction Model for Positive Surgical Margin in Robot-Assisted Laparoscopic Radical Prostatectomy. Current Oncology, 29(12), 9560-9571. https://doi.org/10.3390/curroncol29120751