Eastern Canadian Gastrointestinal Cancer Consensus Conference 2019
Abstract
:1. Introduction
Basis of Recommendations
- Level I: evidence from randomized controlled trials
- Level II-1: evidence from controlled trials without randomization
- Level II-2: evidence from analytic cohorts or case-control studies, preferably from more than one center or research group
- Level II-3: evidence from comparisons between times or places with and without the intervention
- Level III: Opinion of respected authorities based on clinical experience; descriptive
2. Anal Cancer
- The standard treatment for localized T2-4, N0-1 anal cancer is chemoradiotherapy with mitomycin C (MMC)/5-fluorouracil (5FU). The addition of chemotherapy improves local control and reduces the need for colostomy/salvage surgery. (Level I)
- The radiation dose is 54–60 Gray (Gy) for treatment dose and 36–45 Gy for prophylactic dose. Radiotherapy planning should employ modern techniques that optimize dose delivery to minimize acute toxicities. (Level I)
- Dose escalation beyond 60 Gy increases toxicity of treatment without significant improvement in outcomes. (Level I)
- MMC may be given at a dose of 10 mg/m2 on d1+29 or as a single dose of 12 mg/m2 on d1. (Level I)
- Capecitabine may be substituted for 5FU, avoiding the need for a central venous access device and infusion pump. In case-control studies, capecitabine appears equally effective and possibly associated with less mucositis, diarrhea, and nausea but more hand-foot syndrome. (Level II/III)
- There is no role for either induction (prior to radiation) or maintenance (after radiation) chemotherapy. (Level I)
- T1N0 disease should be discussed at multidisciplinary rounds. For highly selected patients, radiation alone or local excision may be a reasonable option. Trials employing de-intensification of therapy should be supported. (Level II/III)
- Radiotherapy alone can be considered in well-selected patients not eligible for chemotherapy. (Level III)
- Patients who are HIV positive should receive the same treatment as HIV negative patients, particularly when HIV infection is well-controlled with anti-retroviral therapy. (Level III)
- Carboplatin/paclitaxel is recommended as first line therapy, with less toxicity and improved survival compared to Cisplatin/5FU. (Level I)
- Immunotherapy is active in pretreated metastatic/unresectable, recurrent anal cancer with objective response rate (ORR) 20–24%. Patients should be enrolled in studies where available. Nivolumab or pembrolizumab could be considered where available to a patient, although impact on survival is uncertain with current evidence. (Level II)
- First clinical assessment including DRE and inguinal node palpation should be between six to eight weeks post-therapy. Close observation every one to three months can be maintained up to 26 weeks post-treatment or until complete response. Assessment every three to six months should be undertaken up to three years. (Level III)
- Since a subset of patients will respond more slowly, in the absence of progression, treatment failure should not be declared before six months post-treatment. (Level I)
- Routine biopsies should not be considered unless there is a strong concern of persistent or progressive disease. (Level III)
- If biopsies confirm persistent disease after 26 weeks post-therapy or progressive disease at any time, the patient should have restaging investigations and be considered for salvage surgery. (Level II-2)
3. Non-Operative Management of Rectal Cancer
- Surgery after neoadjuvant treatment remains the standard of care in locally advanced rectal cancer (stage II and III), but watch and wait may be offered to patients who achieve a clinical complete response, ideally in a clinical trial context or when requested by informed patients. This can be considered at institutions with adequate expertise in the surveillance associated with this approach. (Level III)
- The first reassessment should be done no sooner than 8 weeks after treatment, and waiting up to 14–16 weeks may also be reasonable. Surveillance may include DRE, endoscopy, MRI, CT scans, and CEA up to every three months for the first year, with declining frequency over five years. Biopsies should be done if residual disease/recurrence is suspected. (Level III)
- There is currently a paucity of definitive evidence on the role of chemotherapy in the induction and consolidation settings. (Level III)
- In patients with a near-complete clinical response, the current standard of care is total mesorectal excision (TME). (Level I)
4. Dihydropyrimidine Dehydrogenase Deficiency
- Patients must be informed of the DPD deficiency-associated risks with fluoropyrimidines-based therapies and the available tests to detect it. (Level III)
- Resources should be made available to provide pre-emptive DPYD genotyping before starting treatment with fluoropyrimydines to detect these four clinically relevant variants: DPYD*2A, c.2846A > T, c.1679T > G, and c.1236G > A. (Level II-2)
- Initial 5FU or capecitabine dosage adjustment should be done according to published guidelines for each specific DPYD genotype and patients’ individual characteristics and circumstances. The dose should be readjusted during subsequent treatment cycles according to patients’ tolerance in order to achieve safe maximum exposure and to optimize treatment effectiveness. (Level II-3)
5. Biliary Tract Cancer
- All patients with localized (resectable, unresectable, borderline resectable) cholangiocarcinoma should be discussed at multidisciplinary tumour board rounds. (Level III)
- The role of radiation therapy may be considered in unresectable cases for local control and palliative goals. Survival advantage is seen in epidemiological and retrospective studies. (Level II-2)
- SBRT is preferred for unresectable cases. Conventional radiation with higher fractionations is also an option. (Level III)
- Active trials are available and patients should be treated under protocol if possible. (Level III)
- Patients considered for pre-transplant radiotherapy should be treated in the context of a clinical trial. (Level III)
- Patients with borderline resectable disease may benefit from preop radiotherapy or chemoradiotherapy. (Level II-3)
- Post-op chemoradiotherapy may reduce local and distant failure and improve OS based on a meta-analysis of phase II and retrospective data. (Level II)
- For resected positive margin (R1) or resected gross residual disease (R2) or positive regional nodes, chemoradiation should be considered. (Level II)
- For adjuvant radiation, the radiation target volume should include draining regional lymph nodes to 45 Gy in 25 fractions with the tumour bed receiving 50–60 Gy in 1.8 Gy to 2 Gy per fraction. (Level II)
- Patients with resected gallbladder cancer or cholangiocarcinoma should be considered for adjuvant chemotherapy. Capecitabine for six months is the current regimen of choice based on randomized trial results (Level I). Risk features such as lymph node involvement and positive resection margin should be considered in decision-making.
- Surveillance with no adjuvant therapy is an option, particularly in early-stage, node-negative disease with clear margins. (Level II-1)
- Patients with resected periampullary tumors should be considered for adjuvant gemcitabine chemotherapy. (Level I)
- Current evidence suggests gemcitabine alone or combined with oxaliplatin is not associated with benefit in the adjuvant setting for cholangiocarcinoma or gallbladder cancer (Level I). Other regimens (including gemcitabine/cisplatin) are currently under investigation
6. Gastric Cancer
- Perioperative FLOT (docetaxel, oxaliplatin, and leucovorin (LV) with short term 24-h infusional 5-FU) chemotherapy is the preferred approach as it produces the highest survival rate in regimens tested in phase III trials, but should be reserved to fit patients. (Level I)
- Consideration can be given to CF or FOLFOX in the perioperative setting for patients requiring a less intensive regimen than FLOT based on expert opinion. (Level II-1)
- The role of radiotherapy in the curative management of resectable, early-stage gastric cancer who received peri-operative FLOT/ECF chemotherapy is not clear. (Level I)
- Routine postoperative chemoradiation is not indicated, but after multidisciplinary discussion, postoperative chemoradiation therapy could be considered in resected gastric cancer at high risk for relapse with the aim to improve local recurrence (e.g., R1 or R2 resection). (Level III)
- The preferred approach is perioperative treatment, but if the patient has upfront surgical resection, then there are two options available for discussion in post-operative management:
- Adjuvant chemo-radiotherapy (based on the adequacy of D2 resection). (Contradicting Level I evidence for and against this option)
- Adjuvant chemotherapy with the CAPOX regimen for six months. (Level I)
- The role of neoadjuvant radiation therapy or chemoradiation therapy for borderline resectable, true gastric cancers is unclear and should not be routinely done. Consider only treating on a clinical trial. (Level II-3)
- The prognosis of these patients with poor metabolic or pathologic response is guarded whether the same regimen is continued or replaced by chemoradiotherapy. (Level II)
- It is unknown whether a switch to a non-cross-resistant regimen would improve the prognosis. A clinical trial, if available, would be the best option for these patients. (Level III)
- At present there is no evidence to support the use of biologics, targeted therapy, or immunotherapy in early-stage gastric cancer.
- Testing for microsatellite instability (MSI) status should be considered to help guide treatment decisions and discussions around the possibility of lack of benefit of chemotherapy in MSI-high tumours. (Level II)
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics Canada. Canadian Cancer Registry; Statistics Canada: Ottawa, ON, Canada, 2020. [Google Scholar]
- Touboul, E.; Schlienger, M.; Buffat, L.; Lefkopoulos, D.; Pène, F.; Parc, R.; Tiret, E.; Gallot, D.; Malafosse, M.; Laugier, A. Epidermoid carcinoma of the anal canal. Results of curative-intent radiation therapy in a series of 270 patients. Cancer 1994, 73, 1569–1579. [Google Scholar] [CrossRef]
- Nigro, N.D.; Vaitkevicius, V.K.; Considine, B., Jr. Combined therapy for cancer of the anal canal: A preliminary report. Dis. Colon Rectum 1974, 17, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Bartelink, H.; Roelofsen, F.; Eschwege, F.; Rougier, P.; Bosset, J.F.; Gonzalez, D.G.; Peiffert, D.; Van Glabbeke, M.; Pierart, M. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: Results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J. Clin. Oncol. 1997, 15, 2040–2049. [Google Scholar] [CrossRef] [PubMed]
- Northover, J.; Glynne-Jones, R.; Sebag-Montefiore, D.; James, R.; Meadows, H.; Wan, S.; Jitlal, M.; Ledermann, J. Chemoradiation for the treatment of epidermoid anal cancer: 13-year follow-up of the first randomised UKCCCR Anal Cancer Trial (ACT I). Br. J. Cancer 2010, 102, 1123–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flam, M.; John, M.; Pajak, T.F.; Petrelli, N.; Myerson, R.; Doggett, S.; Quivey, J.; Rotman, M.; Kerman, H.; Coia, L.; et al. Role of mitomycin in combination with fluorouracil and radiotherapy, and of salvage chemoradiation in the definitive nonsurgical treatment of epidermoid carcinoma of the anal canal: Results of a phase III randomized intergroup study. J. Clin. Oncol. 1996, 14, 2527–2539. [Google Scholar] [CrossRef]
- Ajani, J.A.; Winter, K.A.; Gunderson, L.L.; Pedersen, J.; Benson, A.B., 3rd; Thomas, C.R., Jr.; Mayer, R.J.; Haddock, M.G.; Rich, T.A.; Willett, C. Fluorouracil, mitomycin, and radiotherapy vs fluorouracil, cisplatin, and radiotherapy for carcinoma of the anal canal: A randomized controlled trial. JAMA 2008, 299, 1914–1921. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Meadows, H.; Wan, S.; Gollins, S.; Leslie, M.; Levine, E.; McDonald, A.C.; Myint, S.; Samuel, L.; Sebag-Montefiore, D. EXTRA—A Multicenter Phase II Study of Chemoradiation Using a 5 Day per Week Oral Regimen of Capecitabine and Intravenous Mitomycin C in Anal Cancer. Int. J. Radiat. Oncol. 2008, 72, 119–126. [Google Scholar] [CrossRef]
- Yu, I.S.; Cheung, W.Y. Comparison of 5-FU versus capecitabine in combination with mitomycin or cisplatin in the treatment of anal cancer. J. Clin. Oncol. 2017, 35, 680. [Google Scholar] [CrossRef]
- Peiffert, D.; Tournier-Rangeard, L.; Gérard, J.-P.; Lemanski, C.; François, E.; Giovannini, M.; Cvitkovic, F.; Mirabel, X.; Bouché, O.; Luporsi, E.; et al. Induction Chemotherapy and Dose Intensification of the Radiation Boost in Locally Advanced Anal Canal Carcinoma: Final Analysis of the Randomized UNICANCER ACCORD 03 Trial. J. Clin. Oncol. 2012, 30, 1941–1948. [Google Scholar] [CrossRef]
- James, R.D.; Glynne-Jones, R.; Meadows, H.M.; Cunningham, D.; Myint, A.S.; Saunders, M.P.; Maughan, T.; McDonald, A.; Essapen, S.; Leslie, M.; et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous-cell carcinoma of the anus (ACT II): A randomised, phase 3, open-label, 2 × 2 factorial trial. Lancet Oncol. 2013, 14, 516–524. [Google Scholar] [CrossRef]
- Martenson, J.A.; Lipsitz, S.R.; Wagner, H., Jr.; Kaplan, E.H.; Otteman, L.A.; Schuchter, L.M.; Mansour, E.G.; Talamonti, M.S. Initial results of a phase II trial of high dose radiation therapy, 5-fluorouracil, and cisplatin for patients with anal cancer (E4292): An Eastern Cooperative Oncology Group study. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 745–749. [Google Scholar] [CrossRef]
- John, M.; Pajak, T.; Flam, M.; Hoffman, J.; Markoe, A.; Wolkov, H.; Paris, K. Dose escalation in chemoradiation for anal cancer: Preliminary results of RTOG 92-08. Cancer J. Sci. Am. 1996, 2, 205–211. [Google Scholar]
- Zilli, T.; Schick, U.; Ozsahin, M.; Gervaz, P.; Roth, A.D.; Allal, A.S. Node-negative T1–T2 anal cancer: Radiotherapy alone or concomitant chemoradiotherapy? Radiother. Oncol. 2012, 102, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Youssef, I.; Osborn, V.; Lee, A.; Katsoulakis, E.; Kavi, A.; Choi, K.; Safdieh, J.; Schreiber, D. Survival benefits and predictors of use of chemoradiation compared with radiation alone for early stage (T1-T2N0) anal squamous cell carcinoma. J. Gastrointest. Oncol. 2019, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.; Nalin, A.; Diaz Pardo, D.; Arnett, A.; Abushahin, L.; Husain, S.; Jin, N.; Williams, T.; Bazan, J. Stage I Squamous Cell Carcinoma of the Anus: Is Radiation Therapy Alone Sufficient Treatment? Cancers 2020, 12, 3248. [Google Scholar] [CrossRef]
- Wexler, A.; Berson, A.M.; Goldstone, S.E.; Waltzman, R.; Penzer, J.; Maisonet, O.G.; McDermott, B.; Rescigno, J. Invasive Anal Squamous-Cell Carcinoma in the HIV-Positive Patient: Outcome in the Era of Highly Active Antiretroviral Therapy. Dis. Colon Rectum 2008, 51, 73–81. [Google Scholar] [CrossRef]
- Chiao, E.Y.; Giordano, T.P.; Richardson, P.; El-Serag, H.B. Human Immunodeficiency Virus–Associated Squamous Cell Cancer of the Anus: Epidemiology and Outcomes in the Highly Active Antiretroviral Therapy Era. J. Clin. Oncol. 2008, 26, 474–479. [Google Scholar] [CrossRef]
- National Cancer Institute. Cancer Stat Facts: Anal Cancer United States 2020. Available online: https://seer.cancer.gov/statfacts/html/anus.html (accessed on 24 March 2021).
- UKCCCR Anal Cancer Trial Working Party. Epidermoid anal cancer: Results from the UKCCCR randomised trial of radiotherapy alone versus radiotherapy, 5-fluorouracil, and mitomycin. Lancet 1996, 348, 1049–1054. [Google Scholar] [CrossRef]
- Evesque, L.; Benezery, K.; Follana, P.; Falk, A.T.; Doyen, J.; Reure, J.; Cavaglione, G.; François, E. Multimodal Therapy of Squamous Cell Carcinoma of the Anus with Distant Metastasis: A Single-Institution Experience. Dis. Colon Rectum 2017, 60, 785–791. [Google Scholar] [CrossRef]
- Sclafani, F.; Morano, F.; Cunningham, D.; Baratelli, C.; Kalaitzaki, E.; Watkins, D.; Starling, N.; Chau, I.; Rao, S. Platinum-Fluoropyrimidine and Paclitaxel-Based Chemotherapy in the Treatment of Advanced Anal Cancer Patients. Oncologist 2017, 22, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Eng, C.; Chang, G.J.; You, Y.N.; Das, P.; Rodriguez-Bigas, M.; Xing, Y.; Vauthey, J.-N.; Rogers, J.E.; Ohinata, A.; Pathak, P.; et al. The role of systemic chemotherapy and multidisciplinary management in improving the overall survival of patients with metastatic squamous cell carcinoma of the anal canal. Oncotarget 2014, 5, 11133–11142. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.; Sclafani, F.; Eng, C.; Adams, R.A.; Guren, M.G.; Sebag-Montefiore, D.; Benson, A.; Bryant, A.; Peckitt, C.; Segelov, E.; et al. International Rare Cancers Initiative Multicenter Randomized Phase II Trial of Cisplatin and Fluorouracil Versus Carboplatin and Paclitaxel in Advanced Anal Cancer: InterAAct. J. Clin. Oncol. 2020, 38, 2510–2518. [Google Scholar] [CrossRef]
- Govindarajan, R.; Gujja, S.; Siegel, E.R.; Batra, A.; Saeed, A.; Lai, K.; James, J.D.; Fogel, B.J.; Williamson, S. Programmed Cell Death-Ligand 1 (PD-L1) Expression in Anal Cancer. Am. J. Clin. Oncol. 2018, 41, 638–642. [Google Scholar] [CrossRef]
- De Jong, A.; van Poelgeest, M.I.; van der Hulst, J.M.; Drijfhout, J.W.; Fleuren, G.J.; Melief, C.J.; Kenter, G.; Offringa, R.; van der Burg, S.H. Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res. 2004, 64, 5449–5455. [Google Scholar] [CrossRef] [Green Version]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Morris, V.K.; Salem, M.E.; Nimeiri, H.; Iqbal, S.; Singh, P.; Ciombor, K.; Polite, B.; Deming, D.; Chan, E.; Wade, J.L.; et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Ott, P.A.; Piha-Paul, S.A.; Munster, P.; Pishvaian, M.J.; van Brummelen, E.M.J.; Cohen, R.B.; Gomez-Roca, C.; Ejadi, S.; Stein, M.; Chan, E.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017, 28, 1036–1041. [Google Scholar] [CrossRef]
- Frazer, M.L.; Yang, G.; Felder, S.; McDonald, J.; Sanchez, J.; Dessureault, S.; Imanirad, I.; Carballido, E.; Kim, R.D.; Hoffe, S.E.; et al. Determining Optimal Follow-up for Patients with Anal Cancer Following Chemoradiation. Am. J. Clin. Oncol. 2020, 43, 319–324. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Anal Carcinoma; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2017. [Google Scholar]
- Glynne-Jones, R.; Sebag-Montefiore, D.; Meadows, H.M.; Cunningham, D.; Begum, R.; Adab, F.; Benstead, K.; Harte, R.J.; Stewart, J.; Beare, S.; et al. Best time to assess complete clinical response after chemoradiotherapy in squamous cell carcinoma of the anus (ACT II): A post-hoc analysis of randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Dossa, F.; Chesney, T.R.; Acuna, S.A.; Baxter, N.N. A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 501–513. [Google Scholar] [CrossRef]
- Chadi, S.A.; Malcomson, L.; Ensor, J.; Riley, R.D.; Vaccaro, C.A.; Rossi, G.L.; Daniels, I.R.; Smart, N.J.; Osborne, M.E.; Beets, G.L.; et al. Factors affecting local regrowth after watch and wait for patients with a clinical complete response following chemoradiotherapy in rectal cancer (InterCoRe consortium): An individual participant data meta-analysis. Lancet Gastroenterol. Hepatol. 2018, 3, 825–836. [Google Scholar] [CrossRef] [Green Version]
- van der Valk, M.J.; Hilling, D.E.; Bastiaannet, E.; Kranenbarg, E.M.K.; Beets, G.L.; Figueiredo, N.L.; Habr-Gama, A.; Perez, R.O.; Renehan, A.G.; van de Velde, C.J.; et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): An international multicentre registry study. Lancet 2018, 391, 2537–2545. [Google Scholar]
- Renehan, A.G.; Malcomson, L.; Emsley, R.; Gollins, S.; Maw, A.; Myint, A.S.; Rooney, P.S.; Susnerwala, S.; Blower, A.; Saunders, M.P.; et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): A propensity-score matched cohort analysis. Lancet Oncol. 2016, 17, 174–183. [Google Scholar] [CrossRef]
- Appelt, A.L.; Pløen, J.; Harling, H.; Jensen, F.S.; Jensen, L.H.; Jørgensen, J.C.R.; Lindebjerg, J.; Rafaelsen, S.R.; Jakobsen, A. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: A prospective observational study. Lancet Oncol. 2015, 16, 919–927. [Google Scholar] [CrossRef]
- Martens, M.H.; Maas, M.; Heijnen, L.A.; Lambregts, D.; Leijtens, J.W.A.; Stassen, L.P.S.; Breukink, S.O.; Hoff, C.; Belgers, E.J.; Melenhorst, J.; et al. Long-term Outcome of an Organ Preservation Program After Neoadjuvant Treatment for Rectal Cancer. J. Natl. Cancer Inst. 2016, 108, djw171. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.J.; Chow, O.S.; Gollub, M.J.; Nash, G.M.; Temple, L.K.; Weiser, M.R.; Guillem, J.G.; Paty, P.B.; Avila, K.; Garcia-Aguilar, J. Organ Preservation in Rectal Adenocarcinoma: A phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management. BMC Cancer 2015, 15, 767. [Google Scholar] [CrossRef] [Green Version]
- Maas, M.; Beets-Tan, R.G.; Lambregts, D.; Lammering, G.; Nelemans, P.J.; Engelen, S.M.; Van Dam, R.M.; Jansen, R.L.; Sosef, M.; Leijtens, J.W.; et al. Wait-and-See Policy for Clinical Complete Responders After Chemoradiation for Rectal Cancer. J. Clin. Oncol. 2011, 29, 4633–4640. [Google Scholar] [CrossRef]
- Bernier, L.; Balyasnikova, S.; Tait, D.; Brown, G. Watch-and-Wait as a Therapeutic Strategy in Rectal Cancer. Curr. Colorectal Cancer Rep. 2018, 14, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Akce, M.; El-Rayes, B.F. Nonsurgical Management of Rectal Cancer. J. Oncol. Pract. 2019, 15, 123–131. [Google Scholar] [CrossRef]
- NIH. Trial Evaluating 3-Year Disease Free Survival in Patients with Locally Advanced Rectal Cancer Treated with Chemoradiation Plus Induction or Consolidation Chemotherapy and Total Mesorectal Excision or Non-Operative Management. Available online: https://clinicaltrials.gov/ct2/show/NCT02008656 (accessed on 17 February 2021).
- Garcia-Aguilar, J.; Chow, O.S.; Smith, D.D.; Marcet, J.E.; Cataldo, P.A.; Varma, M.G.; Kumar, A.S.; Oommen, S.; Coutsoftides, T.; Hunt, S.R.; et al. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: A multicentre, phase 2 trial. Lancet Oncol. 2015, 16, 957–966. [Google Scholar] [CrossRef] [Green Version]
- Hoff, P.M.; Ansari, R.; Batist, G.; Cox, J.; Kocha, W.; Kuperminc, M.; Maroun, J.; Walde, D.; Weaver, C.; Harrison, E.; et al. Comparison of Oral Capecitabine Versus Intravenous Fluorouracil Plus Leucovorin as First-Line Treatment in 605 Patients With Metastatic Colorectal Cancer: Results of a Randomized Phase III Study. J. Clin. Oncol. 2001, 19, 2282–2292. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Twelves, C.; Cassidy, J.; Allman, D.; Bajetta, E.; Boyer, M.; Bugat, R.; Findlay, M.; Frings, S.; Jahn, M.; et al. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: Results of a large phase III study. J. Clin. Oncol. 2001, 19, 4097–4106. [Google Scholar] [CrossRef]
- Diasio, R.B. The role of dihydropyrimidine dehydrogenase (DPD) modulation in 5-FU pharmacology. Oncology 1998, 12, 23–27. [Google Scholar] [PubMed]
- Terrazzino, S.; Cargnin, S.; Del Re, M.; Danesi, R.; Canonico, P.L.; Genazzani, A.A. DPYD IVS14 + 1G > A and 2846A > T genotyping for the prediction of severe fluoropyrimidine-related toxicity: A meta-analysis. Pharmacogenomics 2013, 14, 1255–1272. [Google Scholar] [CrossRef] [PubMed]
- Rosmarin, D.; Palles, C.; Church, D.; Domingo, E.; Jones, A.; Johnstone, E.; Wang, H.; Love, S.; Julier, P.; Scudder, C.; et al. Genetic Markers of Toxicity from Capecitabine and Other Fluorouracil-Based Regimens: Investigation in the QUASAR2 Study, Systematic Review, and Meta-Analysis. J. Clin. Oncol. 2014, 32, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Deenen, M.J.; Meulendijks, D.; Cats, A.; Sechterberger, M.K.; Severens, J.L.; Boot, H.; Smits, P.H.; Rosing, H.; Mandigers, C.M.; Soesan, M.; et al. Upfront Genotyping of DPYD * 2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis. J. Clin. Oncol. 2016, 34, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meulendijks, D.; Henricks, L.M.; Sonke, G.S.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiadèr, C.R.; Jennings, B.A.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical relevance of DPYD variants c.1679T > G, c.1236G > A/HapB3, and c.1601G > A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef]
- Henricks, L.M.; Lunenburg, C.A.T.C.; de Man, F.; Meulendijks, D.; Frederix, G.W.J.; Kienhuis, E.; Creemers, G.-J.; Baars, A.; Dezentjé, V.O.; Imholz, A.L.T.; et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: A prospective safety analysis. Lancet Oncol. 2018, 19, 1459–1467. [Google Scholar] [CrossRef]
- Nie, Q.; Shrestha, S.; Tapper, E.E.; Trogstad-Isaacson, C.S.; Bouchonville, K.J.; Lee, A.M.; Wu, R.; Jerde, C.R.; Wang, Z.; Kubica, P.A.; et al. Quantitative Contribution of rs75017182 to Dihydropyrimidine Dehydrogenase mRNA Splicing and Enzyme Activity. Clin. Pharmacol. Ther. 2017, 102, 662–670. [Google Scholar] [CrossRef]
- Boige, V.; Vincent, M.; Alexandre, P.; Tejpar, S.; Landolfi, S.; Le Malicot, K.; Greil, R.; Cuyle, P.J.; Yilmaz, M.; Faroux, R.; et al. DPYD Genotyping to Predict Adverse Events Following Treatment with Fluorouracil-Based Adjuvant Chemotherapy in Patients With Stage III Colon Cancer: A Secondary Analysis of the PETACC-8 Randomized Clinical Trial. JAMA Oncol. 2016, 2, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Toffoli, G.; Giodini, L.; Buonadonna, A.; Berretta, M.; De Paoli, A.; Scalone, S.; Miolo, G.; Mini, E.; Nobili, S.; Lonardi, S.; et al. Clinical validity of aDPYD-based pharmacogenetic test to predict severe toxicity to fluoropyrimidines. Int. J. Cancer 2015, 137, 2971–2980. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.; Shi, Q.; Pavey, E.; Alberts, S.R.; Sargent, D.J.; Sinicrope, F.A.; Berenberg, J.L.; Goldberg, R.M.; Diasio, R.B. DPYD Variants as Predictors of 5-fluorouracil Toxicity in Adjuvant Colon Cancer Treatment (NCCTG N0147). J. Natl. Cancer Inst. 2014, 106, 298. [Google Scholar] [CrossRef] [PubMed]
- INESSS. Traitements A Base de Fluoropyrimidine: GOUVERNEMENT de QUEBEC. 2019 [Cited 2020]. Available online: https://www.inesss.qc.ca/fileadmin/doc/INESSS/Rapports/Oncologie/INESSS_DPYD_Traitements.pdf (accessed on 15 January 2021).
- Lecomte, T.; Ferraz, J.-M.; Zinzindohoué, F.; Loriot, M.-A.; Tregouet, D.-A.; Landi, B.; Berger, A.; Cugnenc, P.-H.; Jian, R.; Beaune, P.; et al. Thymidylate Synthase Gene Polymorphism Predicts Toxicity in Colorectal Cancer Patients Receiving 5-Fluorouracil-based Chemotherapy. Clin. Cancer Res. 2004, 10, 5880–5888. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.S.; Wo, J.Y.; Yeap, B.Y.; Ben-Josef, E.; McDonnell, E.I.; Blaszkowsky, L.S.; Kwak, E.L.; Allen, J.N.; Clark, J.W.; Goyal, L.; et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients with Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J. Clin. Oncol. 2016, 34, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, E.T.; Mitra, N.; Guo, M.; Metz, J.M. Radiation Therapy Is Associated with Improved Survival in the Adjuvant and Definitive Treatment of Intrahepatic Cholangiocarcinoma. Int. J. Radiat. Oncol. 2008, 72, 1495–1501. [Google Scholar] [CrossRef]
- Phelip, J.-M.; Vendrely, V.; Rostain, F.; Subtil, F.; Jouve, J.-L.; Gasmi, M.; Michel, P.; Le Malicot, K.; Smith, D.; Seitz, J.-F.; et al. Gemcitabine plus cisplatin versus chemoradiotherapy in locally advanced biliary tract cancer: Fédération Francophone de Cancérologie Digestive 9902 phase II randomised study. Eur. J. Cancer 2014, 50, 2975–2982. [Google Scholar] [CrossRef]
- Brunner, T.B.; Blanck, O.; Lewitzki, V.; Abbasi-Senger, N.; Momm, F.; Riesterer, O.; Duma, M.N.; Wachter, S.; Baus, W.; Gerum, S.; et al. Stereotactic body radiotherapy dose and its impact on local control and overall survival of patients for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. Radiother. Oncol. 2019, 132, 42–47. [Google Scholar] [CrossRef]
- Tse, R.V.; Hawkins, M.; Lockwood, G.; Kim, J.J.; Cummings, B.; Knox, J.; Sherman, M.; Dawson, L.A. Phase I Study of Individualized Stereotactic Body Radiotherapy for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J. Clin. Oncol. 2008, 26, 657–664. [Google Scholar] [CrossRef]
- Fletcher, M.S.; Brinkley, D.; Dawson, J.L.; Nunnerley, H.; Williams, R. Treatment of hilar carcinoma by bile drainage combined with internal radiotherapy using192iridium wire. J. Br. Surg. 1983, 70, 733–735. [Google Scholar] [CrossRef]
- Kuvshinoff, B.W.; Armstrong, J.G.; Fong, Y.; Schupak, K.; Getradjman, G.; Heffernan, N.; Blumgart, L.H. Palliation of irresectable hilar cholangiocarcinoma with biliary drainage and radiotherapy. J. Br. Surg. 1995, 82, 1522–1525. [Google Scholar] [CrossRef]
- McMasters, K.M.; Tuttle, T.; Leach, S.D.; Rich, T.; Cleary, K.R.; Evans, D.B.; Curley, S.A. Neoadjuvant chemoradiation for extrahepatic cholangiocarcinoma. Am. J. Surg. 1997, 174, 605–609. [Google Scholar] [CrossRef]
- Rea, D.J.; Heimbach, J.K.; Rosen, C.B.; Haddock, M.G.; Alberts, S.R.; Kremers, W.K.; Gores, G.J.; Nagorney, D.M. Liver Transplantation with Neoadjuvant Chemoradiation is More Effective than Resection for Hilar Cholangiocarcinoma. Ann. Surg. 2005, 242, 451–461, discussion 8–61. [Google Scholar] [CrossRef]
- Darwish Murad, S.; Kim, W.R.; Harnois, D.M.; Douglas, D.D.; Burton, J.; Kulik, L.M.; Botha, J.F.; Mezrich, J.D.; Chapman, W.C.; Schwartz, J.J.; et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 2012, 143, 88–98.e3, quiz e14. [Google Scholar] [CrossRef] [Green Version]
- Lunsford, K.E.; Javle, M.; Heyne, K.; Shroff, R.T.; Abdel-Wahab, R.; Gupta, N.; Mobley, C.M.; Saharia, A.; Victor, D.W.; Nguyen, D.T.; et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: A prospective case-series. Lancet Gastroenterol. Hepatol. 2018, 3, 337–348. [Google Scholar] [CrossRef]
- Ghali, P.; Marotta, P.J.; Yoshida, E.M.; Bain, V.G.; Marleau, D.; Peltekian, K.; Metrakos, P.; Deschênes, M. Liver transplantation for incidental cholangiocarcinoma: Analysis of the Canadian experience. Liver Transplant. 2005, 11, 1412–1416. [Google Scholar] [CrossRef]
- Becker, N.S.; Rodriguez, J.A.; Barshes, N.R.; O’Mahony, C.A.; Goss, J.A.; Aloia, T.A. Outcomes Analysis for 280 Patients with Cholangiocarcinoma Treated with Liver Transplantation Over an 18-year Period. J. Gastrointest. Surg. 2008, 12, 117–122. [Google Scholar] [CrossRef]
- Czito, B.G.; Anscher, M.S.; Willett, C.G. Radiation therapy in the treatment of cholangiocarcinoma. Oncology 2006, 20, 873–884, discussion 86-8, 93-5. [Google Scholar]
- Kopelson, G.; Harisiadis, L.; Tretter, P.; Chang, C.H. The role of radiation therapy in cancer of the extra-hepatic biliary system: An analysis of thirteen patients and a review of the literature of the effectiveness of surgery, chemotherapy and radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1977, 2, 883–894. [Google Scholar] [CrossRef]
- Kim, T.H.; Han, S.-S.; Park, S.-J.; Lee, W.J.; Woo, S.M.; Moon, S.H.; Yoo, T.; Kim, S.S.; Kim, S.H.; Hong, E.K.; et al. Role of Adjuvant Chemoradiotherapy for Resected Extrahepatic Biliary Tract Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e853–e859. [Google Scholar] [CrossRef]
- Hughes, M.A.; Frassica, D.A.; Yeo, C.J.; Riall, T.S.; Lillemoe, K.D.; Cameron, J.L.; Donehower, R.C.; Laheru, D.A.; Hruban, R.H.; Abrams, R.A. Adjuvant Concurrent Chemoradiation for Adenocarcinoma of the Distal Common Bile Duct. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 178–182. [Google Scholar] [CrossRef]
- Cameron, J.L.; Pitt, H.A.; Zinner, M.J.; Kaufman, S.L.; Coleman, J. Management of Proximal cholangiocarcinomas by surgical resection and radiotherapy. Am. J. Surg. 1990, 159, 91–98, discussion 7–8. [Google Scholar] [CrossRef]
- Gonzalez, D.G.; Gerard, J.P.; Maners, A.W.; De la Lande-Guyaux, B.; Van Dijk-Milatz, A.; Meerwaldt, J.H.; Bosset, J.F.; Van Dijk, J.D.P. Results of radiation therapy in carcinoma of the proximal bile duct (Klatskin tumor). Semin. Liver Dis. 1990, 10, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Gerhards, M.F.; Van Gulik, T.M.; González, D.G.; Rauws, E.A.J.; Gouma, D.J. Results of Postoperative Radiotherapy for Resectable Hilar Cholangiocarcinoma. World J. Surg. 2003, 27, 173–179. [Google Scholar] [CrossRef]
- Pitt, H.A.; Nakeeb, A.; Abrams, R.A.; Coleman, J.; Piantadosi, S.; Yeo, C.J.; Lillemoe, K.D.; Cameron, J.L. Perihilar Cholangiocarcinoma Postoperative Radiotherapy Does Not Improve Survival. Ann. Surg. 1995, 221, 788–802. [Google Scholar] [CrossRef]
- Ben-Josef, E.; Guthrie, K.A.; El-Khoueiry, A.B.; Corless, C.L.; Zalupski, M.M.; Lowy, A.M.; Thomas, C.R.J.; Alberts, S.R.; Dawson, L.A.; Micetich, K.C.; et al. SWOG S0809: A Phase II Intergroup Trial of Adjuvant Capecitabine and Gemcitabine Followed by Radiotherapy and Concurrent Capecitabine in Extrahepatic Cholangiocarcinoma and Gallbladder Carcinoma. J. Clin. Oncol. 2015, 33, 2617–2622. [Google Scholar] [CrossRef] [Green Version]
- Horgan, A.M.; Amir, E.; Walter, T.; Knox, J.J. Adjuvant Therapy in the Treatment of Biliary Tract Cancer: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2012, 30, 1934–1940. [Google Scholar] [CrossRef]
- Primrose, J.N.; Fox, R.P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): A randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019, 20, 663–673. [Google Scholar] [CrossRef] [Green Version]
- Neoptolemos, J.P.; Moore, M.J.; Cox, T.F.; Valle, J.W.; Palmer, D.H.; McDonald, A.C.; Carter, R.; Tebbutt, N.C.; Dervenis, C.; Smith, D.; et al. Effect of adjuvant chemotherapy with fluorouracil plus folinic acid or gemcitabine vs observation on survival in patients with resected periampullary adenocarcinoma: The ESPAC-3 periampullary cancer randomized trial. JAMA 2012, 308, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Edeline, J.; Benabdelghani, M.; Bertaut, A.; Watelet, J.; Hammel, P.; Joly, J.-P.; Boudjema, K.; Fartoux, L.; Bouhier-Leporrier, K.; Jouve, J.-L.; et al. Gemcitabine and Oxaliplatin Chemotherapy or Surveillance in Resected Biliary Tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study. J. Clin. Oncol. 2019, 37, 658–667. [Google Scholar] [CrossRef]
- Ebata, T.; Hirano, S.; Konishi, M.; Uesaka, K.; Tsuchiya, Y.; Ohtsuka, M.; Kaneoka, Y.; Yamamoto, M.; Ambo, Y.; Shimizu, Y.; et al. Randomized clinical trial of adjuvant gemcitabine chemotherapy versus observation in resected bile duct cancer. J. Br. Surg. 2018, 105, 192–202. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van De Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elimova, E.; Janjigian, Y.Y.; Mulcahy, M.; Catenacci, D.V.; Blum, M.A.; Almhanna, K.; Hecht, J.R.; Ajani, J.A. It Is Time to Stop Using Epirubicin to Treat Any Patient with Gastroesophageal Adenocarcinoma. J. Clin. Oncol. 2017, 35, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Ychou, M.; Boige, V.; Pignon, J.-P.; Conroy, T.; Bouché, O.; Lebreton, G.; Ducourtieux, M.; Bedenne, L.; Fabre, J.-M.; Saint-Aubert, B.; et al. Perioperative Chemotherapy Compared with Surgery Alone for Resectable Gastroesophageal Adenocarcinoma: An FNCLCC and FFCD Multicenter Phase III Trial. J. Clin. Oncol. 2011, 29, 1715–1721. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Koh, C.E.; Bu, Z.-D.; Wu, A.-W.; Zhang, L.-H.; Wu, X.-J.; Wu, Q.; Zong, X.-L.; Ren, H.; Tang, L.; et al. Neoadjuvant chemotherapy with FOLFOX: Improved outcomes in Chinese patients with locally advanced gastric cancer. J. Surg. Oncol. 2011, 105, 793–799. [Google Scholar] [CrossRef]
- Ahn, H.S.; Jeong, S.; Son, Y.G.; Lee, H.; Im, S.; Bang, Y.; Kim, H.; Yang, H. Effect of neoadjuvant chemotherapy on postoperative morbidity and mortality in patients with locally advanced gastric cancer. J. Br. Surg. 2014, 101, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Cats, A.; Jansen, E.P.M.; van Grieken, N.C.T.; Sikorska, K.; Lind, P.; Nordsmark, M.; Kranenbarg, E.M.-K.; Boot, H.; Trip, A.K.; Swellengrebel, H.A.M.; et al. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): An international, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 616–628. [Google Scholar] [CrossRef]
- Dai, Q.; Jiang, L.; Lin, R.-J.; Wei, K.-K.; Gan, L.-L.; Deng, C.-H.; Guan, Q.-L. Adjuvant chemoradiotherapy versus chemotherapy for gastric cancer: A meta-analysis of randomized controlled trials. J. Surg. Oncol. 2014, 111, 277–284. [Google Scholar] [CrossRef]
- Macdonald, J.S.; Smalley, S.R.; Benedetti, J.; Hundahl, S.A.; Estes, N.C.; Stemmermann, G.N.; Haller, D.G.; Ajani, J.A.; Gunderson, L.L.; Jessup, J.M.; et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N. Engl. J. Med. 2001, 345, 725–730. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Kim, Y.-W.; Yang, H.-K.; Chung, H.C.; Park, Y.-K.; Lee, K.H.; Lee, K.-W.; Kim, Y.H.; Noh, S.-I.; Cho, J.Y.; et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): A phase 3 open-label, randomised controlled trial. Lancet 2012, 379, 315–321. [Google Scholar] [CrossRef]
- Stahl, M.; Walz, M.K.; Riera-Knorrenschild, J.; Stuschke, M.; Sandermann, A.; Bitzer, M.; Wilke, H.; Budach, W. Preoperative chemotherapy versus chemoradiotherapy in locally advanced adenocarcinomas of the oesophagogastric junction (POET): Long-term results of a controlled randomised trial. Eur. J. Cancer 2017, 81, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Polom, K.; Marano, L.; Marrelli, D.; De Luca, R.; Roviello, G.; Savelli, V.; Tan, P. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. J. Br. Surg. 2018, 105, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Wotherspoon, A.; Peckitt, C.; Gonzalez, D.; Hulkki-Wilson, S.; Eltahir, Z.; Fassan, M.; Rugge, M.; Valeri, N.; Okines, A.; et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol. 2017, 3, 1197–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.Y.; Kim, H.; Shin, S.J.; Kim, H.Y.; Lee, J.; Yang, H.K.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; et al. Microsatellite Instability and Programmed Cell Death-Ligand 1 Expression in Stage II/III Gastric Cancer: Post Hoc Analysis of the CLASSIC Randomized Controlled study. Ann. Surg. 2019, 270, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Miceli, R.; Raimondi, A.; Kim, Y.W.; Kang, W.K.; Langley, R.E.; Choi, Y.Y.; Kim, K.-M.; Nankivell, M.G.; Morano, F.; et al. Individual Patient Data Meta-Analysis of the Value of Microsatellite Instability As a Biomarker in Gastric Cancer. J. Clin. Oncol. 2019, 37, 3392–3400. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotfrit, J.; Goodwin, R.; Asmis, T.; Hyde, A.J.; Alcindor, T.; Aubin, F.; Berry, S.; Bossé, D.; Brown, C.; Burkes, R.; et al. Eastern Canadian Gastrointestinal Cancer Consensus Conference 2019. Curr. Oncol. 2021, 28, 1988-2006. https://doi.org/10.3390/curroncol28030185
Gotfrit J, Goodwin R, Asmis T, Hyde AJ, Alcindor T, Aubin F, Berry S, Bossé D, Brown C, Burkes R, et al. Eastern Canadian Gastrointestinal Cancer Consensus Conference 2019. Current Oncology. 2021; 28(3):1988-2006. https://doi.org/10.3390/curroncol28030185
Chicago/Turabian StyleGotfrit, Joanna, Rachel Goodwin, Timothy Asmis, Angela J. Hyde, Thierry Alcindor, Francine Aubin, Scott Berry, Dominick Bossé, Colin Brown, Ronald Burkes, and et al. 2021. "Eastern Canadian Gastrointestinal Cancer Consensus Conference 2019" Current Oncology 28, no. 3: 1988-2006. https://doi.org/10.3390/curroncol28030185
APA StyleGotfrit, J., Goodwin, R., Asmis, T., Hyde, A. J., Alcindor, T., Aubin, F., Berry, S., Bossé, D., Brown, C., Burkes, R., Burnell, M., Colwell, B., Corbett, J., Craswell, J., Daaboul, N., Doherty, M., Fleming, D. A. B., Galvis, L., Goel, R., ... Vickers, M. (2021). Eastern Canadian Gastrointestinal Cancer Consensus Conference 2019. Current Oncology, 28(3), 1988-2006. https://doi.org/10.3390/curroncol28030185