A Transcriptomic Evaluation of Neuroactive Receptors in the Colon of a Dextran Sodium Sulphate Pig Model of Colitis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Gene Expression
3.1.1. Differential Expression
3.1.2. Co-Expression with Immune and Matrix Remodeling Related Targets
3.1.3. Comparison of Target Expressions of Colonic Tissue from Different Data Sources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suganya, K.; Koo, B.-S. Gut–Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int. J. Mol. Sci. 2020, 21, 7551. [Google Scholar] [CrossRef]
- Fleming, M.A., 2nd; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 2020, 8024171. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Gut Bacteria and Neurotransmitters. Microorganisms 2022, 10, 1838. [Google Scholar] [CrossRef]
- Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.h.; Mittal, J.; Yan, D.; Eshraghi, A.A. Neurotransmitters: The critical modulators regulating gut–brain axis. J. Cell. Physiol. 2017, 232, 2359–2372. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res. Int. 2020, 128, 108744. [Google Scholar] [CrossRef]
- Baj, A.; Moro, E.; Bistoletti, M.; Orlandi, V.; Crema, F.; Giaroni, C. Glutamatergic Signaling Along the Microbiota-Gut-Brain Axis. Int. J. Mol. Sci. 2019, 20, 1482. [Google Scholar] [CrossRef]
- Carretta, M.D.; Quiroga, J.; López, R.; Hidalgo, M.A.; Burgos, R.A. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Front. Physiol. 2021, 12, 662739. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G.A.D. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020, 12, 944. [Google Scholar] [CrossRef]
- Magalhães, H.I.R.; Castelucci, P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J. Gastroenterol. 2021, 27, 7909–7924. [Google Scholar] [CrossRef]
- Günther, C.; Rothhammer, V.; Karow, M.; Neurath, M.; Winner, B. The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 8870. [Google Scholar] [CrossRef]
- Oshaghi, M.; Kourosh-Arami, M.; Roozbehkia, M. Role of neurotransmitters in immune-mediated inflammatory disorders: A crosstalk between the nervous and immune systems. Neurol. Sci. 2023, 44, 99–113. [Google Scholar] [CrossRef]
- Sochal, M.; Ditmer, M.; Gabryelska, A.; Białasiewicz, P. The Role of Brain-Derived Neurotrophic Factor in Immune-Related Diseases: A Narrative Review. J. Clin. Med. 2022, 11, 6023. [Google Scholar] [CrossRef]
- Cox, M.A.; Bassi, C.; Saunders, M.E.; Nechanitzky, R.; Morgado-Palacin, I.; Zheng, C.; Mak, T.W. Beyond neurotransmission: Acetylcholine in immunity and inflammation. J. Intern. Med. 2020, 287, 120–133. [Google Scholar] [CrossRef]
- Chen, S.; Wu, X.; Xia, Y.; Wang, M.; Liao, S.; Li, F.; Yin, J.; Ren, W.; Tan, B.; Yin, Y. Effects of dietary gamma-aminobutyric acid supplementation on amino acid profile, intestinal immunity, and microbiota in ETEC-challenged piglets. Food Funct. 2020, 11, 9067–9074. [Google Scholar] [CrossRef]
- Gaskill, P.J.; Khoshbouei, H. Dopamine and norepinephrine are embracing their immune side and so should we. Curr. Opin. Neurobiol. 2022, 77, 102626. [Google Scholar] [CrossRef]
- Liu, G.; Gu, K.; Liu, X.; Jia, G.; Zhao, H.; Chen, X.; Wang, J. Dietary glutamate enhances intestinal immunity by modulating microbiota and Th17/Treg balance-related immune signaling in piglets after lipopolysaccharide challenge. Food Res. Int. 2023, 166, 112597. [Google Scholar] [CrossRef]
- Channer, B.; Matt, S.M.; Nickoloff-Bybel, E.A.; Pappa, V.; Agarwal, Y.; Wickman, J.; Gaskill, P.J. Dopamine, Immunity, and Disease. Pharmacol. Rev. 2023, 75, 62–158. [Google Scholar] [CrossRef] [PubMed]
- Tolstanova, G.; Deng, X.; Ahluwalia, A.; Paunovic, B.; Prysiazhniuk, A.; Ostapchenko, L.; Tarnawski, A.; Sandor, Z.; Szabo, S. Role of Dopamine and D2 Dopamine Receptor in the Pathogenesis of Inflammatory Bowel Disease. Dig. Dis. Sci. 2015, 60, 2963–2975. [Google Scholar] [CrossRef] [PubMed]
- Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Ugalde, V.; Contreras, F.; Prado, C.; Chovar, O.; Espinoza, A.; Pacheco, R. Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol. 2021, 14, 652–666. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Aneman, A.; Friberg, P.; Hooper, D.; Fåndriks, L.; Lonroth, H.; Hunyady, B.; Mezey, E. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab. 1997, 82, 3864–3871. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Cheng, Z.; Piao, J.; Cui, R.; Li, B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front. Pharmacol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Niewiarowska-Sendo, A.; Polit, A.; Piwowar, M.; Tworzydło, M.; Kozik, A.; Guevara-Lora, I. Bradykinin B2 and dopamine D2 receptors form a functional dimer. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2017, 1864, 1855–1866. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Zhang, X.-L.; Feng, X.-Y.; Liu, C.-Z.; Zhang, X.-N.; Quan, Z.-S.; Yan, J.-T.; Zhu, J.-X. Dopamine promotes colonic mucus secretion through dopamine D5 receptor in rats. Am. J. Physiol.-Cell Physiol. 2019, 316, C393–C403. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Vaz de Castro, P.A.S.; Yaqub, D.; Jose, P.A.; Armando, I. Anti-Inflammatory Effects of Peripheral Dopamine. Int. J. Mol. Sci. 2023, 24, 13816. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, R.; Contreras, F.; Zouali, M. The dopaminergic system in autoimmune diseases. Front. Immunol. 2014, 5, 117. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Hiramoto, T.; Nishino, R.; Aiba, Y.; Kimura, T.; Yoshihara, K.; Koga, Y.; Sudo, N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 303, G1288–G1295. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.S.; Schmauss, C.; Cuenca, A.; Ratcliffe, E.; Gershon, M.D. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: Analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J. Neurosci. 2006, 26, 2798–2807. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Barrios, F.; Navarro, G.; Campos, J.; Ugalde, V.; Prado, C.; Raïch, I.; Contreras, F.; López, E.; Espinoza, A.; Lladser, A.; et al. The Heteromeric Complex Formed by Dopamine Receptor D5 and CCR9 Leads the Gut Homing of CD4+ T Cells Upon Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 489–506. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, Q.; Ma, S.-R.; Zhao, Z.-X.; Pan, L.-B.; Cong, L.; Han, P.; Peng, R.; Yu, H.; Lin, Y.; et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct. Target. Ther. 2021, 6, 77. [Google Scholar] [CrossRef]
- Olivier, B. Serotonin: A never-ending story. Eur. J. Pharmacol. 2015, 753, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Legan, T.B.; Lavoie, B.; Mawe, G.M. Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterol. Motil. 2022, 34, e14346. [Google Scholar] [CrossRef] [PubMed]
- El-Merahbi, R.; Löffler, M.; Mayer, A.; Sumara, G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015, 589, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Kanova, M.; Kohout, P. Serotonin-Its Synthesis and Roles in the Healthy and the Critically Ill. Int. J. Mol. Sci. 2021, 22, 4837. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Sun, E.W.; Martin, A.M.; Keating, D.J. The ever-changing roles of serotonin. Int. J. Biochem. Cell Biol. 2020, 125, 105776. [Google Scholar] [CrossRef] [PubMed]
- Pergolizzi, S.; Alesci, A.; Centofanti, A.; Aragona, M.; Pallio, S.; Magaudda, L.; Cutroneo, G.; Lauriano, E.R. Role of Serotonin in the Maintenance of Inflammatory State in Crohn’s Disease. Biomedicines 2022, 10, 765. [Google Scholar] [CrossRef] [PubMed]
- Spohn, S.N.; Mawe, G.M. Non-conventional features of peripheral serotonin signalling—The gut and beyond. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Fabà, L.; de Groot, N.; Ramis, G.; Cabrera-Gómez, C.G.; Doelman, J. Serotonin receptors and their association with the immune system in the gastrointestinal tract of weaning piglets. Porc. Health Manag. 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Costedio, M.M.; Coates, M.D.; Brooks, E.M.; Glass, L.M.; Ganguly, E.K.; Blaszyk, H.; Ciolino, A.L.; Wood, M.J.; Strader, D.; Hyman, N.H. Mucosal serotonin signaling is altered in chronic constipation, but not in opiate-induced constipation. Am. J. Gastroenterol. 2010, 105, 1173. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Tyler, K.; MacEachern, S.J.; Balemba, O.B.; Johnson, A.C.; Brooks, E.M.; Zhao, H.; Swain, G.M.; Moses, P.L.; Galligan, J.J. Activation of colonic mucosal 5-HT4 receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 2012, 142, 844–854.e844. [Google Scholar] [CrossRef]
- Skadhauge, E.; Grondahl, M.; Hansen, M. Pathophysiology and symptomatic treatment of secretory and osmotic diarrhoea. In Proceedings of the Digestive Physiology in Pigs: Proceedings of the VIIth International Symposium on Digestive Physiology in Pigs, St Malo, France, 26–28 May 1997. [Google Scholar]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15.25.11–15.25.14. [Google Scholar] [CrossRef]
- Kiesler, P.; Fuss, I.; Strober, W. Experimental Models of Inflammatory Bowel Diseases. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 154–170. [Google Scholar] [CrossRef]
- Rattigan, R.; O’Doherty, J.V.; Vigors, S.; Ryan, M.T.; Sebastiano, R.S.; Callanan, J.J.; Thornton, K.; Rajauria, G.; Margassery, L.M.; Dobson, A.D.W.; et al. The Effects of the Marine-Derived Polysaccharides Laminarin and Chitosan on Aspects of Colonic Health in Pigs Challenged with Dextran Sodium Sulphate. Mar. Drugs 2020, 18, 262. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012; p. 420. [Google Scholar]
- O’Shea, C.; O’Doherty, J.; Callanan, J.; Doyle, D.; Thornton, K.; Sweeney, T. The effect of algal polysaccharides laminarin and fucoidan on colonic pathology, cytokine gene expression and Enterobacteriaceae in a dextran sodium sulfate-challenged porcine model. J. Nutr. Sci. 2016, 5, e15. [Google Scholar] [CrossRef]
- Egan, Á.M.; O’Doherty, J.V.; Vigors, S.; Sweeney, T. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo. PLoS ONE 2016, 11, e0149820. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Simko, V. Package ‘Corrplot’: Visualization of a Correlation Matrix, Version 0.92. Available online: https://github.com/taiyun/corrplot/ (accessed on 1 November 2023).
- Schloerke, B.; Cook, D.; Larmarange, J.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Crowley, J. GGally: Extension to ‘ggplot2’. Available online: https://ggobi.github.io/ggally/ (accessed on 1 November 2023).
- Human Protein Atlas. Available online: https://www.proteinatlas.org/ (accessed on 22 March 2024).
- Coates, M.D.; Tekin, I.; Vrana, K.E.; Mawe, G.M. Review article: The many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 46, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Kurnik-Łucka, M.; Pasieka, P.; Łączak, P.; Wojnarski, M.; Jurczyk, M.; Gil, K. Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 12932. [Google Scholar] [CrossRef]
- Alvarado, D.M.; Ciorba, M.A. Serotonin Receptors Regulate Inflammatory Response in Experimental Colitis. J. Nutr. 2020, 150, 1678–1679. [Google Scholar] [CrossRef]
- Spohn, S.N.; Bianco, F.; Scott, R.B.; Keenan, C.M.; Linton, A.A.; O’Neill, C.H.; Bonora, E.; Dicay, M.; Lavoie, B.; Wilcox, R.L.; et al. Protective Actions of Epithelial 5-Hydroxytryptamine 4 Receptors in Normal and Inflamed Colon. Gastroenterology 2016, 151, 933–944.e933. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Cheng, L.; Wang, Q.; Zhou, L. Comparative Transcriptomic Analysis Reveals the Immunosuppressive Targets of Mesalazine in Dextran Sulfate Sodium-Induced Ulcerative Colitis. Front. Genet. 2021, 12, 698983. [Google Scholar] [CrossRef]
- Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res. 2015, 93, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rosas, R.; Yehia, G.; Peña, G.; Mishra, P.; del Rocio Thompson-Bonilla, M.; Moreno-Eutimio, M.A.; Arriaga-Pizano, L.A.; Isibasi, A.; Ulloa, L. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 2014, 20, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Vidal, P.M.; Pacheco, R. Targeting the Dopaminergic System in Autoimmunity. J. Neuroimmune Pharmacol. 2020, 15, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Cunha, E.; Araujo, F.; Meireles, E.; Pereira, P.; Dinis-Ribeiro, M.; Veloso, F.T.; Medeiros, R.; Soares-da-Silva, P. Dopamine D2 receptor polymorphisms in inflammatory bowel disease and the refractory response to treatment. Dig. Dis. Sci. 2006, 51, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.A.; Fu, J.; Chang, P.V. Dopamine receptor D2 confers colonization resistance via gut microbial metabolites. Nature 2024, 628, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Kolachalam, S.; Aringhieri, S.; Rossi, M.; Giovannini, L.; Maggio, R.; Scarselli, M. Dopamine D2 Receptors Dimers: How can we Pharmacologically Target Them? Curr. Neuropharmacol. 2018, 16, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Shin, S.H.; Santangelo, B.; Veronese, M.; Kang, S.K.; Lee, J.S.; Cheon, G.J.; Lee, W.; Kwon, J.S.; Howes, O.D. Dopamine dysregulation in psychotic relapse after antipsychotic discontinuation: An [18F] DOPA and [11C] raclopride PET study in first-episode psychosis. Mol. Psychiatry 2021, 26, 3476–3488. [Google Scholar] [CrossRef]
- Lovisa, S.; Genovese, G.; Danese, S. Role of Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. J. Crohn’s Colitis 2019, 13, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Marconi, G.D.; Fonticoli, L.; Rajan, T.S.; Pierdomenico, S.D.; Trubiani, O.; Pizzicannella, J.; Diomede, F. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis. Cells 2021, 10, 1587. [Google Scholar] [CrossRef]
- Jiang, H.; Shen, J.; Ran, Z. Epithelial–mesenchymal transition in Crohn’s disease. Mucosal Immunol. 2018, 11, 294–303. [Google Scholar] [CrossRef]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Maître, J.L.; Heisenberg, C.P. Three functions of cadherins in cell adhesion. Curr. Biol. 2013, 23, R626–R633. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, M.; Tarutani, M.; Takeda, J.; Sano, S. Mesenchymal to Epithelial Transition Induced by Reprogramming Factors Attenuates the Malignancy of Cancer Cells. PLoS ONE 2016, 11, e0156904. [Google Scholar] [CrossRef] [PubMed]
- Loh, C.-Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, Y.; Wang, B.; Jiang, Y.; Lin, L.; Li, X.; Yang, S. DA-DRD5 signaling controls colitis by regulating colonic M1/M2 macrophage polarization. Cell Death Dis. 2021, 12, 500. [Google Scholar] [CrossRef] [PubMed]
- Corridoni, D.; Chapman, T.; Antanaviciute, A.; Satsangi, J.; Simmons, A. Inflammatory Bowel Disease Through the Lens of Single-cell RNA-seq Technologies. Inflamm. Bowel Dis. 2020, 26, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Miles, P. IBD BioResource: An open-access platform of 25,000 patients to accelerate research in Crohn’s and Colitis. Gut 2019, 68, 1537. [Google Scholar] [CrossRef]
Accession Number | Gene Symbol | Forward Primer (5′-3′) Reverse Primer (5′-3′) | Size bp |
---|---|---|---|
Reference genes | |||
AY550069.1 | ACTB | F: CAAATGCTTCTAGGCGGACTGT R: TCTCATTTTCTGCGCAAGTTAGG | 75 |
AF017079.1 | GAPDH | F: CAGCAATGCCTCCTGTACCA R: ACGATGCCGAAGTTGTCATG | 72 |
Dopamine related | |||
NM_001123108.1 | DRD1 | F: TTGGCCCAGGATCCTTTTT R: CCACCCGATGCGCAAA | 55 |
NM_001244253.1 | DRD2 | F: GAAGCTCTCCCAGCAGAAGGA R: GATGAACACGCCGAGAACAA | 67 |
XM_021070345.1 | DRD3 | F: GCCCAAGCATGTCTGTTCTGT R: TGATTGGCAGTGAAGATTTTTGA | 77 |
XM_003122390.3 | DRD4 | F: TGGCTGGGCTATGTCAACAG R: CGGAACTCGGCGTTGAAG | 65 |
XM_013989284.2 | DRD5 | F: CGTGAGGGAGGAAAACTGTGA R: CCGGGATGTAGAAGCTGATGAG | 80 |
XM_021076839.1 | SLC6A3 | F: CGTCCGTGTCGTTGTGTAACTT R: CGCGACTGGGATGTTTCTG | 66 |
Serotonin related | |||
XM_003357301.4 | HTR3A | F: ATCGGCACGCCTCTCATC R: GGCCAAGCTGATCACCAGAA | 66 |
NM_001001267.1 | HTR4 | F: TGAGCGCTACCGAAGACCTT R: TTGACGGTTGTGGTTGAACAG | 63 |
NM_214085.1 | HTR7 | F: CTACGGCAGAGCCGAGAAAG R: CGATCGTCAGCAGCGTGAT | 65 |
XM_021067520.1 | SLC6A4 | F: CGCCACCCCACTGATAAAA R: TGGACTGACCCGAATTCTGAA | 68 |
Selected neuroactive receptors and factors | |||
NM_001128436.1 | ADRB2 | F: CAGCCACATCCTCATGAAAATG R: GCACGTCAATGGAAATCCAA | 71 |
XM_005654684.3 | BDNF | F: TGCCGAACTACCCAGTCGTAT R: CAGCCAATTCGCTTTTTGC | 62 |
XM_021098695.1 | CHRNA7 | F: CGCCAGCACCATGATCATC R: GGTCATGGTGGTGATACTGTAGCA | 74 |
NM_001278783.1 | FFAR1 | F: GGCTGGTTTTTGGGTTGGA R: GCAGACTGGAGAGCCATTGAC | 95 |
XM_013978643.2 | GABRA2 | F: CTGCTGGGATTGTGGTCCTT R: TCGGATTAACTGCTGCGAAA | 68 |
XM_021071050.1 | GRM7 | F: CCAGCGGAGTGCCTTGTG R: GCGTAAAGCATCGCTTCCA | 70 |
Additional immune Genes | |||
NM_213867.1 | CXCL8 | F: TGCACTTACTCTTGCCAGAACTG R: CAAACTGGCTGTTGCCTTCTT | 82 |
XM_021096205.1 | CDH2 | F: TCAATGACAATCCTCCAGAGTTTACT R: ATTAGTACTATGACATCCACCCTGTT | 83 |
NM_001348795.1 | MMP7 | F: TGGGCCGGGAAACACA R: CATCCTCATCAAAGTGAGCATCTC | 77 |
Basal | Basal + DSS | |||
---|---|---|---|---|
Gene Symbol | LSMean | LSMean | SEM | p-Value |
Dopamine related | ||||
DRD1 | 2.19 | 0.71 | 0.21 | <0.0001 *** |
DRD2 | 0.58 | 3.46 | 0.57 | 0.0020 ** |
DRD3 | 1.23 | 0.87 | 0.10 | 0.0253 * |
DRD4 | 1.26 | 0.87 | 0.12 | 0.0305 * |
SLC6A3 | 1.38 | 1.03 | 0.22 | 0.2722 |
Serotonin related | ||||
HTR4 | 1.99 | 0.81 | 0.23 | 0.0017 ** |
HTR7 | 1.53 | 2.26 | 0.88 | 0.5663 |
SLC6A4 | 2.44 | 1.28 | 0.54 | 0.1413 |
Selected neuroactive receptors and factors | ||||
ADRB2 | 1.47 | 0.86 | 0.20 | 0.4054 |
BDNF | 0.88 | 1.42 | 0.21 | 0.0821 |
CHRNA7 | 1.28 | 0.99 | 0.16 | 0.2151 |
FFAR1 | 1.44 | 1.18 | 0.33 | 0.5896 |
GABRA2 | 3.65 | 0.72 | 0.66 | 0.0048 ** |
GRM7 | 1.25 | 0.85 | 0.11 | 0.0150 * |
Source | Current Study | RNA-Seq * | Protein Expression * |
---|---|---|---|
Data | Threshold cycle (CT) Mean (Min–Max) (n = 21) | Mean nTPM (Min–Max) Sigmoid colon bulk baseline (n = 373) | Not detected, Low, Medium, High Sigmoid colon (n = 6) |
Reference Genes | |||
ACTB | 14.69 (14.32–15.53) | 6358.9 (1123–15,780) | Enterocytes (High) |
GAPDH | 16.62 (15.73–18.84) | 1669.2 (747–5383) | Endothelial cell/nerve ganglion (High) |
Dopamine Related | |||
DRD1 | 27.54 (25.41–30.70) | 0.2 (0.0–1.5) | No Data available |
DRD2 | 29.99 (25.41–33.74) | 0.4 (0.0–1.4) | Not Detected |
DRD3 | 28.61 (27.10–30.14) | 0.0 (0.0–0.0) | No Data available |
DRD4 | 30.15 (29.10–31.30) | 1.8 (0.0–10.3) | No Data available |
DRD5 | ND | 0.0 (0.0–0.1) | Not Detected |
SLC6A3 | 27.72 (25.74–30.49) | 0.0 (0.0–0.0) | Not Detected |
Serotonin Related | |||
HTR3A | ND | 2.0 (0.0–9.0) | Not Detected |
HTR4 | 22.67 (20.60–26.07) | 2.5 (0.0–6.2) | Endocrine cells/Enterocytes (High) |
HTR7 | 33.07 (28.56–36.54) | 0.6 (0.0–1.0) | Glandular cells (Low) |
SLC6A4 | 29.75 (27.12–35.00) | 0.5 (0.0–3.2) | Not detected |
Selected neuroactive receptors and factors | |||
ADRB2 | 31.98 (29.13–35.38) | 2.2 (0.2–5.6) | No Data available |
BDNF | 27.06 (24.87–28.57) | 0.4 (0.0–14.2) | Not Detected |
CHRNA7 | 26.75 (25.07–29.26) | 1.4 (0.0–2.4) | Enterocyte/Endocrine/Goblet Cells (High) |
FFAR1 | 30.29 (28.25–32.66) | 0.0 (0.0–0.4) | No Data available |
GABRA2 | 32.80 (29.53–36.63) | 2.9 (0.1–8.8) | No Data available |
GRM7 | 28.56 (27.59–30.41) | 0.1 (0.0–0.5) | No Data available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, M.T.; O’Doherty, J.V.; Sweeney, T. A Transcriptomic Evaluation of Neuroactive Receptors in the Colon of a Dextran Sodium Sulphate Pig Model of Colitis. Nutraceuticals 2024, 4, 395-408. https://doi.org/10.3390/nutraceuticals4030023
Ryan MT, O’Doherty JV, Sweeney T. A Transcriptomic Evaluation of Neuroactive Receptors in the Colon of a Dextran Sodium Sulphate Pig Model of Colitis. Nutraceuticals. 2024; 4(3):395-408. https://doi.org/10.3390/nutraceuticals4030023
Chicago/Turabian StyleRyan, Marion T., John V. O’Doherty, and Torres Sweeney. 2024. "A Transcriptomic Evaluation of Neuroactive Receptors in the Colon of a Dextran Sodium Sulphate Pig Model of Colitis" Nutraceuticals 4, no. 3: 395-408. https://doi.org/10.3390/nutraceuticals4030023
APA StyleRyan, M. T., O’Doherty, J. V., & Sweeney, T. (2024). A Transcriptomic Evaluation of Neuroactive Receptors in the Colon of a Dextran Sodium Sulphate Pig Model of Colitis. Nutraceuticals, 4(3), 395-408. https://doi.org/10.3390/nutraceuticals4030023