A Possible Preventive Role of Physically Active Lifestyle during the SARS-CoV-2 Pandemic; Might Regular Cold-Water Swimming and Exercise Reduce the Symptom Severity of COVID-19?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Risk of Infection and Course of COVID-19
3.2. Risk of Upper Respiratory Tract Infection
3.3. RF Machine-Learning Analysis of the Ability of Selected Variables/Predictors to Distinguish Individually or Jointly between COVID-19 Positive and Negative Individuals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knechtle, B.; Waśkiewicz, Z.; Sousa, C.V.; Hill, L.; Nikolaidis, P.T. Cold Water Swimming—Benefits and Risks: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 8984. [Google Scholar] [CrossRef]
- Skopich, Y. Swim Season Opens in December. The Moscow Times, 11 December 2019. [Google Scholar]
- Zenner, R.; De Decker, D.; Clement, D. Blood-pressure response to swimming in ice-cold water. Lancet 1980, 315, 120–121. [Google Scholar] [CrossRef]
- Checinska-Maciejewska, Z.; Miller-Kasprzak, E.; Checinska, A.; Korek, E.; Gibas-Dorna, M.; Adamczak-Ratajczak, A.; Bogdanski, P.; Krauss, H. Gender-related effect of cold water swimming on the seasonal changes in lipid profile, ApoB/ApoA-I ratio, and homocysteine concentration in cold water swimmers. J. Physiol. Pharmacol. 2017, 68, 887–896. [Google Scholar]
- Gibas-Dorna, M.; Checinska, Z.; Korek, E.; Kupsz, J.; Sowinska, A.; Krauss, H. Cold Water Swimming Beneficially Modulates Insulin Sensitivity in Middle-Aged Individuals. J. Aging Phys. Act. 2016, 24, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Street, S.J.; Byrne, N.M. Physical Activity and Health: “What is Old is New Again”. Adv. Food Nutr. Res. 2015, 75, 77–95. [Google Scholar] [PubMed]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Frel, D.L.; Atsma, D.E.; Pijl, H.; Seidell, J.C.; Leenen, P.J.M.; Dik, W.A.; van Rossum, E.F.C. The Impact of Obesity and Lifestyle on the Immune System and Susceptibility to Infections Such as COVID-19. Front. Nutr. 2020, 7, 597600. [Google Scholar] [CrossRef] [PubMed]
- Sallis, R.; Young, D.R.; Tartof, S.Y.; Sallis, J.F.; Sall, J.; Li, Q.; Smith, G.N.; Cohen, D.A. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: A study in 48 440 adult patients. Br. J. Sports Med. 2021. [Google Scholar] [CrossRef]
- Nunn, A.V.W.; Guy, G.W.; Brysch, W.; Botchway, S.W.; Frasch, W.; Calabrese, E.J.; Bell, J.D. SARS-CoV-2 and mitochondrial health: Implications of lifestyle and ageing. Immun. Ageing 2020, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Kivimäki, M.; Gale, C.R.; Batty, G.D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav. Immun. 2020, 87, 184–187. [Google Scholar] [CrossRef]
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B.; Ludwig, D. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020, 16, 341–342. [Google Scholar] [CrossRef] [Green Version]
- Nyenhuis, S.M.; Greiwe, J.; Zeiger, J.S.; Nanda, A.; Cooke, A. Exercise and Fitness in the Age of Social Distancing During the COVID-19 Pandemic. J. Allergy Clin. Immunol. Pract. 2020, 8, 2152–2155. [Google Scholar] [CrossRef]
- Gentil, P.; De Lira, C.A.B.; Souza, D.; Jimenez, A.; Mayo, X.; Gryschek, A.L.D.F.P.L.; Pereira, E.; Alcaraz, P.; Bianco, A.; Paoli, A.; et al. Resistance Training Safety during and after the SARS-Cov-2 Outbreak: Practical Recommendations. BioMed Res. Int. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, M.J.; Pasini, M.; De Dominicis, S.; Righi, E. Physical activity: Benefits and challenges during the COVID-19 pandemic. Scand. J. Med. Sci. Sports 2020, 30, 1291–1294. [Google Scholar] [CrossRef]
- Bentlage, E.; Ammar, A.; How, D.; Ahmed, M.; Trabelsi, K.; Chtourou, H.; Brach, M. Practical Recommendations for Maintaining Active Lifestyle during the COVID-19 Pandemic: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6265. [Google Scholar] [CrossRef] [PubMed]
- Siems, W.G.; Brenke, R.; Sommerburg, O.; Grune, T. Improved antioxidative protection in winter swimmers. QJM 1999, 92, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health of the Slovak Republic. Available online: https://www.health.gov.sk/Clanok?covid-19-komisia-pandemicka-plan (accessed on 15 June 2021).
- Ministry of Interior of the Slovak Republic. Available online: https://www.minv.sk/?tlacove-spravy-4&sprava=koronavirus-mame-cestovny-semafor (accessed on 15 June 2021).
- Ministry of Interior of the Slovak Republic. Available online: https://www.minv.sk/?tlacove-spravy&sprava=od-1-oktobra-plati-na-slovensku-nudzovy-stav (accessed on 15 June 2021).
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Thomaz, P.M.D.; da Silva, E.F.; da Costa, T.H.M. Validity of self-reported height, weight and body mass index in the adult population of Brasilia, Brazil. Rev. Bras. Epidemiol. 2013, 16, 157–169. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: http://www.r-project.org/index.html (accessed on 14 April 2021).
- Eklund, A. Beeswarm: The Bee Swarm Plot, an Alternative to Stripchart. Available online: https://cran.r-project.org/package=beeswarm (accessed on 14 April 2021).
- Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). Available online: https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf (accessed on 16 March 2021).
- Ehrlinger, J. ggRandomForests: Visually Exploring Random Forests. Available online: https://cran.r-project.org/package=ggRandomForests (accessed on 14 April 2021).
- Brawner, C.A.; Ehrman, J.K.; Bole, S.; Kerrigan, D.J.; Parikh, S.S.; Lewis, B.K.; Gindi, R.M.; Keteyian, C.; Abdul-Nour, K.; Keteyian, S.J. Inverse Relationship of Maximal Exercise Capacity to Hospitalization Secondary to Coronavirus Disease 2019. Mayo Clin. Proc. 2021, 96, 32–39. [Google Scholar] [CrossRef]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut off Points. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Sharma, A.; Garg, A.; Rout, A.; Lavie, C.J. Association of Obesity With More Critical Illness in COVID-19. Mayo Clin. Proc. 2020, 95, 2040–2042. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Lavie, C.J.; Mehra, M.R.; Henry, B.M.; Lippi, G. Obesity and Outcomes in COVID-19: When an Epidemic and Pandemic Collide. Mayo Clin. Proc. 2020, 95, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Ho, F.K.; Celis-Morales, C.A.; Gray, S.R.; Katikireddi, S.V.; Niedzwiedz, C.L.; Hastie, C.; Ferguson, L.D.; Berry, C.; Mackay, D.F.; Gill, J.M.; et al. Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: Results from a UK Biobank prospective cohort study. BMJ Open 2020, 10, e040402. Available online: https://pubmed.ncbi.nlm.nih.gov/33444201 (accessed on 12 January 2021). [CrossRef] [PubMed]
- Zbinden-Foncea, H.; Francaux, M.; Deldicque, L.; Hawley, J.A. Does High Cardiorespiratory Fitness Confer Some Protection Against Proinflammatory Responses After Infection by SARS-CoV-2? Obesity 2020, 28, 1378–1381. [Google Scholar] [CrossRef] [PubMed]
- Motta-Santos, D.; Santos, R.A.S.; Santos, S.H.S. Angiotensin-(1–7) and Obesity: Role in Cardiorespiratory Fitness and COVID-19 Implications. Obesity 2020, 28, 1786. [Google Scholar] [CrossRef] [PubMed]
- Filgueira, T.O.; Castoldi, A.; Santos, L.E.R.; de Amorim, G.J.; de Sousa Fernandes, M.S.; De Lima Do Nascimento Anastácio, W.; Campos, E.Z.; Santos, T.M.; Souto, F.O. The Relevance of a Physical Active Lifestyle and Physical Fitness on Immune Defense: Mitigating Disease Burden, with Focus on COVID-19 Consequences. Front. Immunol. 2021, 12, 587146. [Google Scholar] [CrossRef]
- Monlun, M.; Hyernard, C.; Blanco, P.; Lartigue, L.; Faustin, B. Mitochondria as Molecular Platforms Integrating Multiple Innate Immune Signalings. J. Mol. Biol. 2017, 429, 1–13. [Google Scholar] [CrossRef]
- Khan, M.; Syed, G.H.; Kim, S.-J.; Siddiqui, A. Mitochondrial dynamics and viral infections: A close nexus. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853 Pt B, 2822–2833. Available online: https://www.sciencedirect.com/science/article/pii/S0167488915000099 (accessed on 12 January 2021).
- Laurens, C.; Bergouignan, A.; Moro, C. Exercise-Released Myokines in the Control of Energy Metabolism. Front. Physiol. 2020, 11, 91. [Google Scholar] [CrossRef]
- Chen, K.; Xu, Z.; Liu, Y.; Wang, Z.; Li, Y.; Xu, X.; Chen, C.; Xia, T.; Liao, Q.; Yao, Y.; et al. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci. Transl. Med. 2017, 9, eaao6298. [Google Scholar] [CrossRef] [Green Version]
- Colaianni, G.; Cinti, S.; Colucci, S.; Grano, M. Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 2017, 1402, 5–9. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.; De Sibio, M.T.; Mathias, L.S.; Rodrigues, B.M.; Sakalem, M.E.; Nogueira, C.R. Irisin modulates genes associated with severe coronavirus disease (COVID-19) outcome in human subcutaneous adipocytes cell culture. Mol. Cell. Endocrinol. 2020, 515, 110917. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Becerril, S.; Ezquerro, S.; Méndez-Giménez, L.; Frühbeck, G. Crosstalk between adipokines and myokines in fat browning. Acta Physiol. 2017, 219, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.; Pedersen, B.K. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J. Biomed. Biotechnol. 2010, 2010, 520258. [Google Scholar] [CrossRef] [PubMed]
- McNeill, B.T.; Morton, N.M.; Stimson, R.H. Substrate Utilization by Brown Adipose Tissue: What’s Hot and What’s Not? Front. Endocrinol. 2020, 11, 571659. [Google Scholar] [CrossRef]
- Liepinsh, E.; Makarova, E.; Plakane, L.; Konrade, I.; Liepins, K.; Videja, M.; Sevostjanovs, E.; Grinberga, S.; Makrecka-Kuka, M.; Dambrova, M. Low-intensity exercise stimulates bioenergetics and increases fat oxidation in mitochondria of blood mononuclear cells from sedentary adults. Physiol. Rep. 2020, 8, e14489. [Google Scholar] [CrossRef] [PubMed]
- Kovaničová, Z.; Kurdiová, T.; Baláž, M.; Štefanička, P.; Varga, L.; Kulterer, O.C.; Betz, M.J.; Haug, A.R.; Burger, I.A.; Kiefer, F.W.; et al. Cold Exposure Distinctively Modulates Parathyroid and Thyroid Hormones in Cold-Acclimatized and Non-Acclimatized Humans. Endocrinology 2020, 161. [Google Scholar] [CrossRef]
- da Silva, J.T.; Cella, P.S.; Testa, M.T.; de Jesus Testa, M.T.; Perandini, L.A.; Festuccia, W.T.; Deminice, R.; Chimin, P. Mild-cold water swimming does not exacerbate white adipose tissue browning and brown adipose tissue activation in mice. J. Physiol. Biochem. 2020, 76, 663–672. [Google Scholar] [CrossRef]
- Junker, D.; Syväri, J.; Weidlich, D.; Holzapfel, C.; Drabsch, T.; Waschulzik, B.; Rummeny, E.J.; Hauner, H.; Karampinos, D.C. Investigation of the Relationship between MR-Based Supraclavicular Fat Fraction and Thyroid Hormones. Obes. Facts 2020, 13, 331–343. [Google Scholar] [CrossRef]
- Elias, G.P.; Wyckelsma, V.; Varley, M.; McKenna, M.; Aughey, R. Effectiveness of Water Immersion on Postmatch Recovery in Elite Professional Footballers. Int. J. Sports Physiol. Perform. 2013, 8, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Poppendieck, W.; Faude, O.; Wegmann, M.; Meyer, T. Cooling and Performance Recovery of Trained Athletes: A Meta-Analytical Review. Int. J. Sports Physiol. Perform. 2013, 8, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Manolis, A.S.; Manolis, S.A.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.; Melita, H. Winter Swimming: Body Hardening and Cardiorespiratory Protection Via Sustainable Acclimation. Curr. Sports Med. Rep. 2019, 18, 401–415. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Laukkanen, J.A. High fitness levels, frequent sauna bathing and risk of pneumonia in a cohort study: Are there potential implications for COVID-19? Eur. J. Clin. Investig. 2021, 51, e13490. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Baker, J.S.; Quan, W.; Shen, S.; Fekete, G.; Gu, Y. A Preventive Role of Exercise Across the Coronavirus 2 (SARS-CoV-2) Pandemic. Front. Physiol. 2020, 11, 572718. [Google Scholar] [CrossRef] [PubMed]
Male * | Female * | |
---|---|---|
age (years) | 30.5 (29.7–31.3) | 35.1 (34.4–35.8) |
height (cm) | 181.6 (181.0–182.0) | 167.4 (167–168) |
weight (kg) | 83.1 (82.2–84.0) | 67.0 (66.1–67.9) |
BMI | 25.2 (25.0 to 25.4) | 23.9 (23.6–24.2) |
physical activity | male (n) | female (n) |
sedentary | 137 | 228 |
recreational athlete (3–5 h/week) | 225 | 295 |
recreational athlete (6–9 h/week) | 128 | 90 |
sub-elite athlete (>10 h/week) | 27 | 10 |
cold-water swimming (year) | male (n) | female (n) |
none | 517 | 623 |
second to third | 193 | 102 |
fourth and more | 79 | 30 |
* Data are presented as mean and (95 %CI) |
Antigen Test | PCR and Antigen Test | PCR Test | p | |
---|---|---|---|---|
gender | 0.62 | |||
male | 48 (49%) | 12 (48%) | 81 (55%) | |
female | 49 (51%) | 13 (52%) | 66 (45%) | |
age (years) | 31 (22, 43) | 28 (22, 42) | 31 (22, 42) | 0.88 |
height (cm) | 174 (167, 180) | 176 (168, 183) | 175 (168, 183) | 0.49 |
weight (kg) | 78 (63, 86) | 73 (60, 86) | 75 (62, 86) | 0.76 |
physical activity | ||||
sedentary | 21 (22%) | 5 (20%) | 33 (22%) | |
recreational athlete (3–5 h/week) | 46 (47%) | 9 (36%) | 60 (41%) | |
recreational athlete (6–9 h/week) | 24 (25%) | 8 (32%) | 41 (28%) | |
sub-elite athlete (>10 h/week) | 6 (6.2%) | 3 (12%) | 13 (8.8%) | |
cold-water swimming (year) | 0.76 | |||
none | 53 (55%) | 14 (56%) | 76 (52%) | |
first | 22 (23%) | 4 (16%) | 30 (20%) | |
second to third | 10 (10%) | 3 (12%) | 27 (18%) | |
fourth to fifth | 7 (7%) | 2 (8.0%) | 8 (5.4%) | |
sixth and more | 5 (5%) | 2 (8.0%) | 6 (4.1%) | |
cold-water swimming (days/week) | 0.65 | |||
none | 50 (52%) | 13 (52%) | 76 (52%) | |
once | 13 (13%) | 3 (12%) | 31 (21%) | |
twice | 24 (25%) | 7 (28%) | 27 (18%) | |
three times and more | 10 (10%) | 2 (8%) | 13 (8.8%) | |
positive for COVID-19 | 0.00 | |||
no | 31 (32%) | 7 (28%) | 10 (6.8%) | |
yes (from March to September) | 5 (5.2%) | 2 (8.0%) | 21 (14%) | |
yes (from October to December) | 61 (63%) | 16 (64%) | 116 (79%) | |
course of COVID-19 | 0.06 | |||
asymptomatic | 22 (29%) | 2 (11%) | 35 (25%) | |
mild | 29 (39%) | 10 (56%) | 40 (28%) | |
moderate | 24 (32%) | 5 (28%) | 61 (43%) | |
severe | 0 (0%) | 1 (5.6%) | 5 (3.5%) | |
unknown | 22 | 7 | 6 | |
incidence of ARTI/yr | 0.21 | |||
<once | 55 (57%) | 13 (52%) | 70 (48%) | |
once | 26 (27%) | 4 (16%) | 46 (31%) | |
twice | 10 (10%) | 4 (16%) | 24 (16%) | |
>twice | 6 (6.2%) | 4 (16%) | 7 (4.8%) |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
RR (95% CI) | p | RR (95% CI) | p | RR (95% CI) | p | |
COVID-19 diagnostics | ||||||
PCR/Positive | 1.091 (0.688, 1.730) | 0.36 | 1.163 (0.696, 1.942) | 0.28 | 1.093 (0.802, 1.488) | 0.29 |
PCR + Antigen/Positive | 0.992 (0.685, 1.439) | 0.48 | 1.074 (0.710, 1.625) | 0.37 | 1.025 (0.794, 1.323) | 0.43 |
Course of COVID-19 | ||||||
asymptomatic | 1.677 (0.628, 4.477) | 0.15 | 2.321 (0.836, 6.442) | 0.05 | 1.421 (0.779, 2.590) | 0.13 |
mild | 1.207 (0.627, 2.320) | 0.29 | 0.987 (0.457, 2.134) | 0.49 | 1.194 (0.766, 1.859) | 0.22 |
moderate | 0.696 (0.399, 1.213) | 0.1 | 0.829 (0.446, 1.540) | 0.28 | 0.760 (0.504, 1.146) | 0.1 |
severe | - | 1.364 (0.229, 8.110) | 0.37 | 1.351 (0.226, 8.068) | 0.37 | |
Incidence of acute respiratory infection/yr | ||||||
<once | 1.108 (0.936, 1.311) | 0.12 | 1.923 (1.1641, 2.253) | 0.00 | 1.070 (0.916, 1.249) | 0.20 |
once | 1.154 (0.971, 1.370) | 0.05 | 0.578 (0.457, 0.731) | 0.00 | 1.232 (0.823, 1.844) | 0.16 |
twice | 0.869 (0.680, 1.112) | 0.13 | 0.394 (0.270, 0.574) | 0.00 | 0.485 (0.256, 0.920) | 0.01 |
>twice | 0.718 (0.496, 1.038) | 0.04 | 0.258 (0.138, 0.483) | 0.00 | 0.485 (0.160, 1.476) | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielik, V.; Grendar, M.; Kolisek, M. A Possible Preventive Role of Physically Active Lifestyle during the SARS-CoV-2 Pandemic; Might Regular Cold-Water Swimming and Exercise Reduce the Symptom Severity of COVID-19? Int. J. Environ. Res. Public Health 2021, 18, 7158. https://doi.org/10.3390/ijerph18137158
Bielik V, Grendar M, Kolisek M. A Possible Preventive Role of Physically Active Lifestyle during the SARS-CoV-2 Pandemic; Might Regular Cold-Water Swimming and Exercise Reduce the Symptom Severity of COVID-19? International Journal of Environmental Research and Public Health. 2021; 18(13):7158. https://doi.org/10.3390/ijerph18137158
Chicago/Turabian StyleBielik, Viktor, Marian Grendar, and Martin Kolisek. 2021. "A Possible Preventive Role of Physically Active Lifestyle during the SARS-CoV-2 Pandemic; Might Regular Cold-Water Swimming and Exercise Reduce the Symptom Severity of COVID-19?" International Journal of Environmental Research and Public Health 18, no. 13: 7158. https://doi.org/10.3390/ijerph18137158