Comparison of Older and Newer Generation Active Style Pro Accelerometers in Physical Activity and Sedentary Behavior Surveillance under a Free-Living Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Accelerometer Devices and Data Management
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gebel, K.; Ding, D.; Chey, T.; Stamatakis, E.; Brown, W.J.; Bauman, A.E. Effect of Moderate to Vigorous Physical Activity on All-Cause Mortality in Middle-Aged and Older Australians. JAMA Intern. Med. 2015, 175, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Hupin, D.; Roche, F.; Gremeaux, V.; Chatard, J.C.; Oriol, M.; Gaspoz, J.M.; Barthelemy, J.C.; Edouard, P. Even a Low-Dose of Moderate-To-Vigorous Physical Activity Reduces Mortality by 22% in Adults Aged ≥ 60 Years: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2015, 49, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Buchner, D.M.; Rillamas-Sun, E.; Di, C.; LaMonte, M.J.; Marshall, S.W.; Hunt, J.; Zhang, Y.; Rosenberg, D.E.; Lee, I.M.; Evenson, K.R.; et al. Accelerometer-Measured Moderate to Vigorous Physical Activity and Incidence Rates of Falls in Older Women. J. Am. Geriatr. Soc. 2017, 65, 2480–2487. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too Much Sitting: the Population-Health Science of Sedentary Behavior. Exerc. Sport Sci. Rev. 2010, 38, 105. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary Time and Its Association With Risk for Disease Incidence, Mortality, and Hospitalization in Adults A Systematic Review and Meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef]
- Dyrstad, S.M.; Hansen, B.H.; Holme, I.M.; Anderssen, S.A. Comparison of Self-Reported Versus Accelerometer-Measured Physical Activity. Med. Sci. Sports Exerc. 2014, 46, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C.; Tremblay, M. A Comparison of Direct Versus Self-Report Measures for Assessing Physical Activity in Adults: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J. Using Accelerometers to Measure Physical Activity in Large-Scale Epidemiological Studies: Issues and Challenges. Br. J. Sports Med. 2014, 48, 197–201. [Google Scholar] [CrossRef]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of Accelerometer Methods for Physical Activity Research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Evenson, K.R.; Kamada, M.; LaCroix, A.Z.; Buring, J.E. Accelerometer-Measured Physical Activity and Sedentary Behavior in Relation to All-Cause Mortality: The Women’s Health Study. Circulation 2018, 137, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.E.; Keadle, S.K.; Troiano, R.P.; Kahle, L.; Koster, A.; Brychta, R.; Van Domelen, D.; Caserotti, P.; Chen, K.Y.; Harris, T.B.; et al. Accelerometer-Measured Dose-Response for Physical Activity, Sedentary Time, and Mortality in US Adults. Am. J. Clin. Nutr. 2016, 104, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Kishimoto, H.; Honda, T.; Hata, J.; Yoshida, D.; Mukai, N.; Shibata, M.; Ninomiya, T.; Kumagai, S. Patterns and Levels of Sedentary Behavior and Physical Activity in a General Japanese Population: The Hisayama Study. J. Epidemiol. 2017, 28, 260–265. [Google Scholar] [CrossRef]
- Kelly, P.; Fitzsimons, C.; Baker, G. Should We Reframe How We Think about Physical Activity and Sedentary Behaviour Measurement? Validity and Reliability Reconsidered. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 32. [Google Scholar] [CrossRef]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-Time Estimation of Daily Physical Activity Intensity by a Triaxial Accelerometer and a Gravity-Removal Classification Algorithm. Br. J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Kurita, S.; Yano, S.; Ishii, K.; Shibata, A.; Sasai, H.; Nakata, Y.; Fukushima, N.; Inoue, S.; Tanaka, S.; Sugiyama, T. Comparability of Activity Monitors Used in Asian and Western-Country Studies for Assessing Free-Living Sedentary Behaviour. PLoS ONE 2017, 12, e0186523. [Google Scholar] [CrossRef]
- Chen, S.; Honda, T.; Narazaki, K.; Chen, T.; Nofuji, Y.; Kumagai, S. Global Cognitive Performance and Frailty in Non-Demented Community-Dwelling Older Adults: Findings from the S Asaguri G Enkimon Study. Geriatr. Gerontol. Int. 2016, 16, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Liu-Ambrose, T.; Shimada, H.; Doi, T.; Park, H.; Tsutsumimoto, K.; Uemura, K.; Suzuki, T. Moderate-Intensity Physical Activity, Hippocampal Volume, and Memory in Older Adults with Mild Cognitive Impairment. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 70, 480–486. [Google Scholar] [CrossRef]
- Yasunaga, A.; Shibata, A.; Ishii, K.; Koohsari, M.J.; Inoue, S.; Sugiyama, T.; Owen, N.; Oka, K. Associations of Sedentary Behavior and Physical Activity with Older Adults’ Physical Function: An Isotemporal Substitution Approach. BMC Geriatr. 2017, 17, 280. [Google Scholar] [CrossRef]
- Kim, J.; Tanabe, K.; Yokoyama, N.; Zempo, H.; Kuno, S. Objectively Measured Light-Intensity Lifestyle Activity and Sedentary Time are Independently Associated with Metabolic Syndrome: A Cross-Sectional Study of Japanese Adults. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 30. [Google Scholar] [CrossRef]
- Colley, R.; Gorber, S.C.; Tremblay, M.S. Quality Control and Data Reduction Procedures for Accelerometry-Derived Measures of Physical Activity. Health Rep. 2010, 21, 63–69. [Google Scholar]
- Phillips, L.R.; Parfitt, G.; Rowlands, A.V. Calibration of the GENEA Accelerometer for Assessment of Physical Activity Intensity in Children. J. Sci. Med. Sport 2013, 16, 124–128. [Google Scholar] [CrossRef]
- Oshima, Y.; Kawaguchi, K.; Tanaka, S.; Ohkawara, K.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I. Classifying Household and Locomotive Activities Using a Triaxial Accelerometer. Gait Posture 2010, 31, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Matthews, C.E.; Dunstan, D.W.; Winkler, E.A.H.; Owen, N. Sedentary Time and Cardio-Metabolic Biomarkers in US Adults: NHANES 2003–06. Eur. Heart J. 2011, 32, 590–597. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O. Compendium of Physical Activities: An Update of Activity Codes and MET Intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Hänggi, J.M.; Phillips, L.R.; Rowlands, A.V. Validation of the GT3X ActiGraph in Children and Comparison with the GT1M ActiGraph. J. Sci. Med. Sport 2013, 16, 40–44. [Google Scholar] [CrossRef]
- Bassett, D.R.; Troiano, R.P.; McClain, J.J.; Wolff, D.L. Accelerometer-Based Physical Activity: Total Volume Per Day and Standardized Measures. Med. Sci. Sports Exerc. 2015, 47, 833–838. [Google Scholar] [CrossRef]
- Cain, K.L.; Conway, T.L.; Adams, M.A.; Husak, L.E.; Sallis, J.F. Comparison of Older and Newer Generations of ActiGraph Accelerometers with the Normal Filter and the Low Frequency Extension. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 51. [Google Scholar] [CrossRef]
- Esliger, D.W.; Rowlands, A.V.; Hurst, T.L.; Catt, M.; Murray, P.; Eston, R.G. Validation of the GENEA Accelerometer. Med. Sci. Sports Exerc. 2011, 43, 1085–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ried-Larsen, M.; Brønd, J.C.; Brage, S.; Hansen, B.H.; Grydeland, M.; Andersen, L.B.; Møller, N.C. Mechanical and Free Living Comparisons of Four Generations of the Actigraph Activity Monitor. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 113. [Google Scholar] [CrossRef]
- Bhammar, D.M.; Sawyer, B.J.; Tucker, W.J.; Lee, J.-M.; Gaesser, G.A. Validity of SenseWear® Armband v5. 2 and v2. 2 for Estimating Energy Expenditure. J. Sports Sci. 2016, 34, 1830–1838. [Google Scholar] [CrossRef] [PubMed]
- Tripette, J.; Ando, T.; Murakami, H.; Yamamoto, K.; Ohkawara, K.; Tanaka, S.; Miyachi, M. Evaluation of Active Video Games Intensity: Comparison Between Accelerometer-Based Predictions and Indirect Calorimetric Measurements. Technol. Health Care 2014, 22, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-Y.; Macfarlane, D.J.; Cerin, E. Comparison of Three Models of Actigraph Accelerometers During Free Living and Controlled Laboratory Conditions. Eur. J. Sport Sci. 2013, 13, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Garner, H.R.; Bassett, D.R. Evaluation of ActiGraph’s Low-Frequency Filter in Laboratory and Free-Living Environments. Med. Sci. Sports Exerc. 2015, 47, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhelst, J.; Mikulovic, J.; Bui-Xuan, G.; Dieu, O.; Blondeau, T.; Fardy, P.; Béghin, L. Comparison of Two ActiGraph Accelerometer Generations in the Assessment of Physical Activity in Free Living Conditions. BMC Res. Notes 2012, 5, 187. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | Active Workers | Sedentary Workers |
---|---|---|---|
n (men) | 26 (16) | 14 (8) | 12 (8) |
Height, cm | 166.4 ± 8.0 | 166.9 ± 8.4 | 165.8 ± 7.7 |
Weight, kg | 61.4 ± 11.9 | 62.9 ± 12.8 | 59.7 ± 11.0 |
Age, year | 42.7 ± 8.8 | 40.1 ± 8.5 | 45.8 ± 8.6 |
BMI, kg/m² | 22.1 ± 3.4 | 22.5 ± 3.8 | 21.6 ± 2.8 |
Accelerometer Outcomes | 350IT | 750C | Difference (95% CI) | p | ICC (95% CI) |
---|---|---|---|---|---|
Total | |||||
Wearing time (min/day) | 834.0 ± 93.4 | 834.2 ± 92.0 | −0.2 (−3.1, 2.6) | 0.88 | 0.997 (0.990, 0.999) ** |
SB (min/day) | 457.0 ± 121.0 | 450.5 ± 122.6 | 6.5 (1.4, 11.5) | <0.05 | 0.994 (0.981, 0.998) ** |
LPA (min/day) | 303.8 ± 70.5 | 313.0 ± 71.3 | −9.2 (−13.5, −4.8) | <0.01 | 0.983 (0.834, 0.996) ** |
MPA (min/day) | 71.8 ± 26.9 | 69.4 ± 26.2 | 2.4 (0.9, 3.8) | <0.01 | 0.970 (0.790, 0.992) ** |
VPA (min/day) | 1.4 ± 1.9 | 1.3 ± 1.8 | 0.1 (−0.1, 0.3) | 0.20 | 0.974 (0.901, 0.992) ** |
MVPA (min/day) | 73.2 ± 27.4 | 70.7 ± 26.6 | 2.5 (1.0, 4.0) | <0.01 | 0.969 (0.746, 0.992) ** |
Step counts (steps/day) | 9127.2 ± 2903.4 | 9192.9 ± 2818.8 | −65.7 (−176.5, 45.1) | 0.23 | 0.993 (0.980, 0.998) ** |
Active workers | |||||
Wearing time (min/day) | 820.1 ± 88.2 | 822.4 ± 87.0 | −2.3 (−6.3, 1.7) | 0.24 | 0.998 (0.992, 0.999) ** |
SB (min/day) | 399.6 ± 87.8 | 396.5 ± 89.0 | 3.1 (−2.5, 8.7) | 0.26 | 0.991 (0.950, 0.998) ** |
LPA (min/day) | 337.3 ± 69.6 | 346.7 ± 68.6 | −9.3 (−14.7, −3.9) | <0.01 | 0.958 (0.806, 0.989) ** |
MPA (min/day) | 81.1 ± 22.1 | 77.4 ± 21.6 | 3.7 (1.3, 6.1) | <0.01 | 0.996 (0.988, 0.999) ** |
VPA (min/day) | 2.1 ± 2.3 | 1.8 ± 2.2 | 0.3 (0, 0.5) | <0.05 | 0.944 (0.826, 0.983) ** |
MVPA (min/day) | 83.2 ± 22.3 | 79.2 ± 21.9 | 4.0 (1.6, 6.3) | <0.01 | 0.996 (0.988, 0.999) ** |
Step counts (steps/day) | 10,079.7 ± 2585.3 | 10128.6± 2474.1 | −48.9 (−222.6, 124.8) | 0.55 | 0.996 (0.987, 0.999) ** |
Sedentary workers | |||||
Wearing time (min/day) | 850.2 ± 100.6 | 848.0 ± 99.5 | 2.2 (−2.0, 6.5) | 0.27 | 0.998 (0.992, 0.999) ** |
SB (min/day) | 524.0 ± 122.9 | 513.5 ± 129.5 | 10.5 (1.2, 19.7) | <0.05 | 0.991 (0.950, 0.998) ** |
LPA (min/day) | 264.8 ± 49.9 | 273.7 ± 53.6 | −8.9 (−17.1, −0.8) | <0.05 | 0.958 (0.806, 0.989) ** |
MPA (min/day) | 60.9 ± 28.8 | 60.1 ± 28.9 | 0.8 (−0.7, 2.4) | 0.27 | 0.996 (0.988, 0.999) ** |
VPA (min/day) | 0.5 ± 0.9 | 0.6 ± 1.0 | −0.1 (−0.3, 0.1) | 0.37 | 0.944 (0.826, 0.983) ** |
MVPA (min/day) | 61.5 ± 28.9 | 60.7 ± 29.0 | 0.7 (−0.8, 2.3) | 0.32 | 0.996 (0.988, 0.999) ** |
Step counts (steps/day) | 8015.9 ± 2959.4 | 8101.2 ± 2900.1 | −85.3 (−245.2, 74.5) | 0.27 | 0.996 (0.987, 0.999) ** |
Accelerometer Outcomes | Mean Difference | Limits of Agreement | r | p | |
---|---|---|---|---|---|
Lower | Upper | ||||
Total | |||||
SB (min/day) | 6.5 | 19.2 | −6.2 | −0.13 | 0.53 |
LPA (min/day) | −9.2 | −27.2 | 8.8 | −0.07 | 0.72 |
MPA (min/day) | 2.4 | 7.1 | −2.3 | 0.19 | 0.35 |
VPA (min/day) | 0.1 | 0.3 | −0.1 | 0.35 | 0.08 |
MVPA (min/day) | 2.5 | 7.4 | −2.4 | 0.19 | 0.34 |
Step counts (steps/day) | −65.7 | −194.5 | 63.1 | 0.31 | 0.12 |
Active workers | |||||
SB (min/day) | 3.1 | 9.2 | −3.0 | −0.12 | 0.68 |
LPA (min/day) | −9.3 | 27.5 | 8.9 | 0.10 | 0.72 |
MPA (min/day) | 3.7 | 11.0 | −3.6 | 0.13 | 0.66 |
VPA (min/day) | 0.3 | 0.9 | −0.3 | 0.37 | 0.20 |
MVPA (min/day) | 4.0 | 11.8 | −3.8 | 0.10 | 0.74 |
Step counts (steps/day) | −48.9 | −144.7 | 46.9 | 0.37 | 0.19 |
Sedentary workers | |||||
SB (min/day) | 10.5 | 31.1 | −10.1 | −0.46 | 0.13 |
LPA (min/day) | −8.9 | −26.3 | 8.5 | −0.29 | 0.36 |
MPA (min/day) | 0.8 | 2.4 | −0.8 | −0.04 | 0.90 |
VPA (min/day) | −0.1 | −0.3 | 0.1 | −0.36 | 0.25 |
MVPA (min/day) | 0.7 | 2.1 | −0.7 | −0.06 | 0.86 |
Step counts (steps/day) | −85.3 | −252.5 | 81.9 | 0.24 | 0.46 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, S.; Koohsari, M.J.; Shibata, A.; Ishii, K.; Frehlich, L.; McCormack, G.R.; Oka, K. Comparison of Older and Newer Generation Active Style Pro Accelerometers in Physical Activity and Sedentary Behavior Surveillance under a Free-Living Environment. Int. J. Environ. Res. Public Health 2019, 16, 1597. https://doi.org/10.3390/ijerph16091597
Yano S, Koohsari MJ, Shibata A, Ishii K, Frehlich L, McCormack GR, Oka K. Comparison of Older and Newer Generation Active Style Pro Accelerometers in Physical Activity and Sedentary Behavior Surveillance under a Free-Living Environment. International Journal of Environmental Research and Public Health. 2019; 16(9):1597. https://doi.org/10.3390/ijerph16091597
Chicago/Turabian StyleYano, Shohei, Mohammad Javad Koohsari, Ai Shibata, Kaori Ishii, Levi Frehlich, Gavin R. McCormack, and Koichiro Oka. 2019. "Comparison of Older and Newer Generation Active Style Pro Accelerometers in Physical Activity and Sedentary Behavior Surveillance under a Free-Living Environment" International Journal of Environmental Research and Public Health 16, no. 9: 1597. https://doi.org/10.3390/ijerph16091597