Correction Workers’ Burnout and Outcomes: A Bayesian Network Approach
Abstract
:1. Introduction
1.1. Socio-Technical Systems Framework and Total Worker Health® Paradigm
1.2. Analytic Approach: Bayesian Network Analysis
2. Method
2.1. Participants
2.2. Measures
2.2.1. Exhaustion
2.2.2. Disengagement
2.2.3. Depression
2.2.4. Stress
2.2.5. Limitations to Regular Physical Leisure Exercise
2.2.6. Work–Family Balance (Work to Family and Family to Work Conflict)
2.2.7. Workability
2.3. Analysis
2.4. Ethical Approval
3. Results
3.1. Bayesian Network Model Specification
3.2. Validation of the Bayesian Network Model
3.3. Conditional Probabilities
4. Discussion
4.1. Theoretical and Analytic Implications
4.2. Practical Implications
4.3. Limitations and Suggestions for Future Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cherniack, M.; Dussetschleger, J.; Dugan, A.; Farr, D.; Namazi, S.; El Ghaziri, M.; Henning, R. Participatory action research in corrections: The HITEC 2 program. Appl. Ergon. 2016, 53, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Morse, T.; Dussetschleger, J.; Warren, N.; Cherniack, M. Talking about Health: Correction Employees’ Assessments of Obstacles to Healthy Living. J. Occup. Environ. Med. 2011, 53, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Punnett, L.; Warren, N.; Henning, R.; Nobrega, S.; Cherniack, M. CPH-NEW Research Team. Participatory Ergonomics as a Model for Integrated Programs to Prevent Chronic Disease. J. Occup. Environ. Med. 2013, 55, S19–S24. [Google Scholar] [CrossRef] [PubMed]
- Faghri, P.; Mignano, C. Overweight and Obesity in High Stress Workplaces. J. Nutr. Disord. Ther. 2013, 3, 3. [Google Scholar] [CrossRef]
- Lazarus, R.S.; DeLongis, A.; Folkman, S.; Gruen, R. Stress and adaptational outcomes: The problem of confounded measures. Am. Psychol. 1985, 40, 770–779. [Google Scholar] [CrossRef]
- U.S. Department of Justice. Addressing Correctional Officer Stress Programs and Strategies: Issues and Practices; NCJ No. 183474; U.S. Government Printing Office: Washington, DC, USA, 2000.
- Armstrong, G.S.; Griffin, M.L. Does the job matter? Comparing correlates of stress among treatment and correctional staff in prisons. J. Crim. Justice 2004, 32, 577–592. [Google Scholar] [CrossRef]
- Dignam, J.T.; Barrera, M.; West, S.G. Occupational stress, social support, and burnout among correctional officers. Am. J. Community Psychol. 1986, 14, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Pines, A.; Aronson, E. Career Burnout: Causes and Cures; Free Press: New York, NY, USA, 1988. [Google Scholar]
- Triplett, R.; Mullings, J.L.; Scarborough, K.E. Work-related stress and coping among correctional officers: Implications from organizational literature. J. Crim. Justice 1996, 24, 291–308. [Google Scholar] [CrossRef]
- Hurst, T.E.; Hurst, M.M. Gender differences in mediation of severe occupational stress among correctional officers. Am. J. Crim. Justice 1997, 22, 121–137. [Google Scholar] [CrossRef]
- Bakker, A.B.; Demerouti, E. The job demands-resources model: State of the art. J. Manag. Psychol. 2007, 22, 309–328. [Google Scholar] [CrossRef]
- Muraven, M.; Baumeister, R.F. Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychol. Bull. 2000, 126, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.A.; Cropanzano, R. Emotional exhaustion as a predictor of job performance and voluntary turnover. J. Appl. Psychol. 1998, 83, 486–493. [Google Scholar] [CrossRef]
- Lecca, L.; Campagna, M.; Portoghese, I.; Galletta, M.; Mucci, N.; Meloni, M.; Cocco, P. Work Related Stress, Well-Being and Cardiovascular Risk among Flight Logistic Workers: An Observational Study. Int. J. Environ. Res. Public Health 2018, 15, 1952. [Google Scholar] [CrossRef] [PubMed]
- Molero Jurado, M.; Pérez-Fuentes, M.; Gázquez Linares, J.; Simón Márquez, M.; Martos Martínez, Á. Burnout risk and protection factors in certified nursing aides. Int. J. Environ. Res. Public Health 2018, 15, 1116. [Google Scholar] [CrossRef] [PubMed]
- Voltmer, J.B.; Voltmer, E.; Deller, J. Differences of Four Work-Related Behavior and Experience Patterns in Work Ability and Other Work-Related Perceptions in a Finance Company. Int. J. Environ. Res. Public Health 2018, 15, 1521. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, S.M.; Quick, B.G.; Pegg, P.O. General job stress and job-specific stress in juvenile correctional officers. J. Crim. Justice 2003, 31, 25–36. [Google Scholar] [CrossRef]
- Leventhal, H.; Tomarken, A. Stress illness: Perspectives from health psychology In Stress and Health: Issues in Research Methodology; Kasl, S.V., Cooper, C.L., Eds.; Wiley: Chichester, NY, USA, 1987; pp. 27–55. [Google Scholar]
- Zapf, D.; Dormann, C.; Frese, M. Longitudinal studies in organizational stress research: A review of the literature with reference to methodological issues. J. Occup. Health Psychol. 1996, 1, 145–169. [Google Scholar] [CrossRef] [PubMed]
- Tennant, C. Work-related stress and depressive disorders. J. Psychosom. Res. 2001, 51, 697–704. [Google Scholar] [CrossRef]
- Zedeck, S.; Mosier, K.L. Work in the family and employing organization. Am. Psychol. 1990, 45, 240–251. [Google Scholar] [CrossRef]
- Hobfoll, S.E. Conservation of resources: A new attempt at conceptualizing stress. Am. Psychol. 1989, 44, 513–524. [Google Scholar] [CrossRef]
- Gordon, R.S., Jr. An operational classification of disease prevention. Public Health Rep. 1983, 98, 107–109. [Google Scholar] [PubMed]
- Emery, F.E.; Trist, E. The causal texture of organizational environments. Hum. Relat. 1965, 18, 12–32. [Google Scholar] [CrossRef]
- Kleiner, B.M. Macroergonomics: Analysis and design of work systems. Appl. Ergon. 2006, 37, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Haro, E.; Kleiner, B.M. Macroergonomics as an organizing process for systems safety. Appl. Ergon. 2008, 39, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.; Warren, N.; Robertson, M.; Faghri, P.; Cherniack, M.; CPH-NEW Research Team. Workplace health protection and promotion through participatory ergonomics: An integrated approach. Public Health Rep. 2009, 124 (Suppl. 1), 26–35. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. Total Worker Health® Program. 2015. Available online: http://www.cdc.gov/niosh/twh/ (accessed on 1 September 2015).
- Tamers, S.L.; Goetzel, R.; Kelly, K.M.; Luckhaupt, S.; Nigam, J.; Pronk, N.P.; Rohlman, D.S.; Baron, S.; Brosseau, L.M.; Bushnell, T.; et al. Research Methodologies for Total Worker Health®: Proceedings from a Workshop. J. Occup. Environ. Med. 2018, 60, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Schill, A.L.; Chosewood, L.C. The NIOSH Total Worker Health® program: An overview. J. Occup. Environ. Med. 2013, 55, S8–S11. [Google Scholar] [CrossRef]
- Westman, M. Crossover of stress and strain in the family and in the workplace. Res. Occup. Stress Well-Being 2002, 2, 143–181. [Google Scholar]
- Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence; Chapman & Hall: Boca Raton, FL, USA, 2004. [Google Scholar]
- Murphy, K. A Brief Introduction to Graphical Models and Bayesian Networks. 1998. Available online: http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html (accessed on 19 November 2018).
- Cooper, G.F.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992, 9, 309–347. [Google Scholar] [CrossRef] [Green Version]
- Curtis, S.M.; Ghosh, S.K. A Bayesian Approach to Multicollinearity and the Simultaneous Selection and Clustering of Predictors in Linear Regression. J. Stat. Theory Pract. 2011, 5, 715–735. [Google Scholar] [CrossRef]
- Sebastiani, P.; Perls, T.T. Complex Genetic Models. In To Appear in Bayesian Belief Networks: A Practical Guide to Applications; Pourret, O., Nam, P., Marcot, B.G., Eds.; Wiley: New York, NY, USA, 2007; pp. 53–72. [Google Scholar]
- García-Herrero, S.; Mariscal, M.A.; Gutiérrez, J.M.; Ritzel, D.O. Using Bayesian networks to analyze occupational stress caused by work demands: Preventing stress through social support. Acc. Anal. Prev. 2013, 57, 114–123. [Google Scholar] [CrossRef] [Green Version]
- García-Herrero, S.; Saldaña, M.Á.M.; Rodriguez, J.G.; Ritzel, D.O. Influence of task demands on occupational stress: Gender differences. J. Saf. Res. 2012, 43, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Brough, P.; Williams, J. Managing occupational stress in a high-risk industry: Measuring the job demands of correctional officers. Crim. Justice Behav. 2007, 34, 555–567. [Google Scholar] [CrossRef]
- Finney, C.; Stergiopoulos, E.; Hensel, J.; Bonato, S.; Dewa, C.S. Organizational stressors associated with job stress and burnout in correctional officers: A systematic review. BMC Public Health 2013, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Ghaddar, A.; Mateo, I.; Sanchez, P. Occupational stress and mental health among correctional officers: A cross-sectional study. J. Occup. Health 2008, 50, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Demerouti, E.; Bakker, A.B.; Nachreiner, F.; Schaufeli, W.B. The job demands-resources model of burnout. J. Appl. Psychol. 2000, 86, 499–512. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory; McGraw-Hill Series in Psychology; McGraw-Hill: New York, NY, USA, 1994; Volume 3. [Google Scholar]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Stanton, J.M.; Blazer, W.K.; Smith, P.C.; Parra, L.F.; Ironson, G. A general measure of work stress: The stress in general scale. Educ. Psychol. Meas. 2001, 61, 866–888. [Google Scholar] [CrossRef]
- University of Massachusetts Lowell, University of Connecticut. (n.d.). Center for the Promotion of Health in the New England Workplace (CPH-NEW). Available online: http://www.uml.edu/Research/centers/CPH-NEW/ (accessed on 19 November 2018).
- Frone, M.R.; Russell, M.; Cooper, M.L. Antecedents and outcomes of work-family conflict: Testing a model of the work-family interface. J. Appl. Psychol. 1992, 77, 65–78. [Google Scholar] [CrossRef]
- Ilmarinen, J.; Tuomi, K.; Eskelinen, L.; Nygård, C.H.; Huuhtanen, P.; Klockars, M. Background and objectives of the Finnish research project on aging workers in municipal occupations. Scand. J. Work Environ. Health 1991, 17 (Suppl. 1), 7–11. [Google Scholar]
- Druzdzel, M.J. SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: A development environment for graphical decision-theoretic models. In Proceedings of the AAAI/IAAI, Orlando, FL, USA, 18–22 July 1999; pp. 902–903. [Google Scholar]
- Friedman, N. The Bayesian structural EM algorithm. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI, USA, 24–26 July 1998; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1998; pp. 129–138. [Google Scholar]
- Murphy, K. An Introduction to Graphical Models. 2001. Available online: http://www2.denizyuret.com/ref/murphy/intro_gm.pdf (accessed on 19 November 2018).
- Cakmak, A.; Kirac, M.; Reynolds, M.R.; Ozsoyoglu, Z.M.; Ozsoyoglu, G. Gene ontology-based annotation analysis and categorization of metabolic pathways. In Proceedings of the 19th International Conference on Scientific and Statistical Database Management (SSBDM’07), Banff, AB, Canada, 9–11 July 2007; pp. 33–42. [Google Scholar]
- Obidoa, C.; Reeves, D.; Warren, N.; Reisine, S.; Cherniack, M. Depression and work family conflict among corrections officers. J. Occup. Environ. Med. 2011, 53, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Neveu, J.P. Jailed resources: Conservation of resources theory as applied to burnout among prison guards. J. Organ. Behav. 2007, 28, 21–42. [Google Scholar] [CrossRef]
- Wagner, R.; Harter, J. The Elements of Great Managing; Gallup Press: New York, NY, USA, 2006. [Google Scholar]
- Robison, J. Disengagement Can Really Be Depressing. Gallup Business Journal Online. 2010. Available online: http://www.gallup.com/businessjournal/127100/disengagement-really-depressing.aspx (accessed on 19 November 2018).
- MacCallum, R.C.; Austin, J.T. Applications of structural equation modeling in psychological research. Annu. Rev. Psychol. 2000, 51, 201–226. [Google Scholar] [CrossRef] [PubMed]
Study Variables | Mean (SD) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Exhaustion | 30.88 (10.21) | - | |||||||||
2. Disengagement | 30.82 (10.53) | 0.49 ** | - | ||||||||
3. Depression | 10.63 (0.44) | 0.51 ** | 0.40 ** | - | |||||||
4. Stress | 10.56 (10.02) | 0.47 ** | 0.46 ** | 0.34 ** | - | ||||||
5. Exercise Limit | 20.36 (10.73) | 0.40 ** | 0.29 ** | 0.40 ** | 0.22 ** | - | |||||
6. Work-Family balance | 30.37 (0.79) | −0.40 ** | −0.24 ** | −0.45 ** | −0.27 ** | −0.23 ** | - | ||||
7. Workability | 80.76 (10.40) | −0.38 ** | −0.30 ** | −0.54 ** | −0.32 ** | −0.35 ** | 0.43 ** | - | |||
8. Healthy diet | 20.95 (0.54) | −0.18 ** | −0.10 ns | −0.19 ** | −0.05 ns | −0.31 ** | 0.15 ** | 0.09 ns | - | ||
9. Nutrition | 20.58 (0.84) | −0.18 ** | −0.14 * | −0.29 ** | −0.02 ns | −0.28 ** | 0.21 ** | 0.16 ** | 0.51 ** | - | |
10. Readiness to Improve Health | 30.80 (10.00) | −0.17 ** | −0.14 ** | −0.27 ** | −0.04 ns | −0.24 ** | 0.28 ** | 0.26 ** | 0.44 ** | 0.49 ** | - |
Outcome Variables | At Worst Scenario | At Best Scenario |
---|---|---|
Exercise Limit | Low (Bottom 20 percentile) = 20% | Low (Bottom 20 percentile) = 49% |
Workability | High (Top 40 percentile) = 1% | High (Top 40 percentile) = 89% |
Stress | Low (Bottom 20 percentile) = 3% | Low (Bottom 20 percentile) = 52% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Henning, R.; Cherniack, M. Correction Workers’ Burnout and Outcomes: A Bayesian Network Approach. Int. J. Environ. Res. Public Health 2019, 16, 282. https://doi.org/10.3390/ijerph16020282
Lee J, Henning R, Cherniack M. Correction Workers’ Burnout and Outcomes: A Bayesian Network Approach. International Journal of Environmental Research and Public Health. 2019; 16(2):282. https://doi.org/10.3390/ijerph16020282
Chicago/Turabian StyleLee, Jin, Robert Henning, and Martin Cherniack. 2019. "Correction Workers’ Burnout and Outcomes: A Bayesian Network Approach" International Journal of Environmental Research and Public Health 16, no. 2: 282. https://doi.org/10.3390/ijerph16020282
APA StyleLee, J., Henning, R., & Cherniack, M. (2019). Correction Workers’ Burnout and Outcomes: A Bayesian Network Approach. International Journal of Environmental Research and Public Health, 16(2), 282. https://doi.org/10.3390/ijerph16020282