Enhancing Phycoerythrin Production of Marine Red Microalga Porphyridium purpureum with Low Salinity and Semi-Continuous Culture Strategy
Abstract
1. Introduction
2. Results
2.1. Effect of Salinity on the Growth and Phycoerythrin Content in P. purpureum SCS-02
2.2. Semi-Continuous Culture Mode of Recycled Culture Medium
2.3. Semi-Continuous Culture Mode of Fresh Culture Medium
2.4. Comparison of Two Semi-Continuous Culture Modes
3. Discussion
4. Materials and Methods
4.1. Strain and Culture Conditions
4.2. Experimental Design
4.3. Growth Measurement
4.4. Determination of Phycobiliproteins Content
4.5. Determination of Exopolysaccharide Content
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, H.; Qi, H.; Xiong, P. Phycobiliproteins—A family of algae-derived biliproteins: Productions, characterization and pharmaceutical potentials. Mar. Drugs 2022, 20, 450. [Google Scholar] [CrossRef]
- Ashaolu, T.J. The powerful phycobiliproteins-phycocyanin and phycoerythrin: Pleiotropic applications and biofunctional uses. Algal Res. 2024, 82, 103636. [Google Scholar] [CrossRef]
- Rodas-Zuluaga, L.I.; Castillo-Zacarias, C.; Nunez-Goitia, G.; Martinez-Prado, M.A.; Rodriguez-Rodriguez, J.; Lopez-Pacheco, I.Y.; Sosa-Hernandez, J.E.; Iqbal, H.M.N.; Parra-Saldivar, R. Implementation of kLa-based strategy for scaling up Porphyridium purpureum (red marine microalga) to produce high-value phycoerythrin, fatty acids, and proteins. Mar. Drugs 2021, 19, 290. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xu, J.; Wu, H.; Jiang, P.; Chen, Z.; Xiang, W. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Mar. Drugs 2019, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, L.; Ben Hlima, H.; Elhadef, K.; Hentati, O.; Blavignac, C.; Fendri, I.; Smaoui, S.; Michaud, P.; Abdelkafi, S. B-phycoerythrin of Porphyridium cruentum UTEX 161: A multifunctional active molecule for the development of biodegradable films. Eur. Polym. J. 2024, 208, 112851. [Google Scholar] [CrossRef]
- Bermejo-Román, R.; Murillo-Cruz, M.C.; Hurtado, M.C.; Villaró-Cos, S.; Lafarga, T.; Acién, G. Simplified two-stage method for the recovery of B-phycoerythrin from Porphyridium cruentum and evaluation as a natural food grade colourant. Food Bioprocess Technol. 2025, 18, 6743–6751. [Google Scholar] [CrossRef]
- Deng, L.; Feng, Z.; Li, X.; Fan, L.; Wu, X.; Tavakoli, S.; Zhu, Y.; Ye, H.; Wu, K. Exploring the potential mechanism of B-phycoerythrin on DSS-induced colitis and colitis-associated bone loss based on network pharmacology, molecular docking, and experimental validation. Sci. Rep. 2025, 15, 5455. [Google Scholar] [CrossRef]
- Martins, V.F.R.; Lopes, A.I.; Gomes, D.; Parreira, C.; Badenes, S.M.; Costa, L.; Pintado, M.; Morais, A.M.M.B.; Morais, R.M.S.C. Unravelling the potential of seven microalgae species: Nutritional, antioxidant, and antimicrobial properties and application. Appl. Sci. 2025, 15, 6691. [Google Scholar] [CrossRef]
- Gudvilovich, I.N.; Lelekov, A.S.; Maltsev, E.I.; Kulikovskii, M.S.; Borovkov, A.B. Growth of Porphyridium purpureum (Porphyridiales, Rhodophyta) and production of B-phycoerythrin under varying illumination. Russ. J. Plant Physiol. 2021, 68, 188–196. [Google Scholar] [CrossRef]
- Borovkov, A.B.; Gudvilovich, I.N.; Maltseva, I.A.; Rylkova, O.A.; Maltsev, Y.I. Growth and B-phycoerythrin production of red microalga Porphyridium purpureum (Porphyridiales, Rhodophyta) under different carbon supply. Microorganisms 2022, 10, 2124. [Google Scholar] [CrossRef]
- Krishna Kumar Athilakshmi, J.; Aravind Raman, H.; Roy, U.K.; McClure, D.D. Development and optimization of a photoautotrophic phycoerythrin production process. J. Appl. Phycol. 2025, 37, 2313–2328. [Google Scholar] [CrossRef]
- Lane, T.W. Barriers to microalgal mass cultivation. Curr. Opin. Biotechnol. 2022, 73, 323–328. [Google Scholar] [CrossRef]
- Begum, H.; Yusoff, F.M.; Banerjee, S.; Khatoon, H.; Shariff, M. Availability and utilization of pigments from microalgae. Crit. Rev. Food Sci. Nutr. 2016, 56, 2209–2222. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, F.; Klähn, S.; Hagemann, M. Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential. Front. Microbiol. 2019, 10, 2139. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.; Van Der Maarel, M.J.E.C. Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express 2016, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, Y.; Liu, X.; Li, Y.; Xu, J.; Li, T.; Xiang, W.; Li, A. Effect of salinity on the biochemical characteristics and antioxidant activity of exopolysaccharide of Porphyridium purpureum FACHB 806. Front. Mar. Sci. 2023, 9, 1097200. [Google Scholar] [CrossRef]
- Marraskuranto, E.; Raharjo, T.J.; Kasiamdari, R.S.; Nuringtyas, T.R. Influence of salinity on growth and phycoerythrin production of Rhodomonas salina. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2018, 13, 109–114. [Google Scholar] [CrossRef]
- Latsos, C.; Bakratsas, G.; Moerdijk, T.; van Houcke, J.; Timmermans, K.R. Effect of salinity and pH on growth, phycoerythrin, and non-volatile umami taste active compound concentration of Rhodomonas salina using a D-optimal design approach. J. Appl. Phycol. 2021, 33, 3591–3602. [Google Scholar] [CrossRef]
- Lu, X.; Nan, F.; Feng, J.; Lv, J.; Liu, Q.; Liu, X.; Xie, S. Effects of different environmental factors on the growth and bioactive substance accumulation of Porphyridium purpureum. Int. J. Environ. Res. Public Health 2020, 17, 2221. [Google Scholar] [CrossRef]
- Henley, W.J. The past, present and future of algal continuous cultures in basic research and commercial applications. Algal Res. 2019, 43, 101636. [Google Scholar] [CrossRef]
- Han, S.I.; Jeon, M.S.; Park, Y.H.; Kim, S.; Choi, Y.E. Semi-continuous immobilized cultivation of Porphyridium cruentum for sulfated polysaccharides production. Bioresour. Technol. 2021, 341, 125816. [Google Scholar] [CrossRef]
- Farooq, W.; Suh, W.I.; Park, M.S.; Yang, J.W. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour. Technol. 2015, 184, 73–81. [Google Scholar] [CrossRef]
- Schädler, T.; Neumann-Cip, A.-C.; Wieland, K.; Glöckler, D.; Haisch, C.; Brück, T.; Weuster-Botz, D. High-density microalgae cultivation in open thin-layer cascade photobioreactors with water recycling. Appl. Sci. 2020, 10, 3883. [Google Scholar] [CrossRef]
- Wieczorek, N.; Kucuker, M.A.; Buscher, N.; Kuchta, K. Outdoor cultivation of Chlorella sorokiniana in third generation biorefinery: Resource savings through medium recycling. Bioresour. Technol. 2020, 310, 123403. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Grunewald, C.; Bayliss, C.; Zanain, M.; Pooley, C.; Scolamacchia, M.; Silkina, A. Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresour. Technol. 2015, 189, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, S.; Sarada, R.; Bhattacharya, S.; Ravishankar, G.A. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnol. Bioeng. 2007, 96, 456–463. [Google Scholar] [CrossRef]
- Hotos, G.N. Culture growth of the cyanobacterium Phormidium sp. In various salinity and light regimes and their influence on its phycocyanin and other pigments content. J. Mar. Sci. Eng. 2021, 9, 798. [Google Scholar] [CrossRef]
- Pagels, F.; Salvaterra, D.; Amaro, H.M.; Lopes, G.; Sousa-Pinto, I.; Vasconcelos, V.; Guedes, A.C. Factorial optimization of upstream process for Cyanobium sp. pigments production. J. Appl. Phycol. 2020, 32, 3861–3872. [Google Scholar] [CrossRef]
- Shetty, P.; Gitau, M.M.; Maróti, G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 2019, 8, 1657. [Google Scholar] [CrossRef]
- Ho, S.H.; Liao, J.F.; Chen, C.Y.; Chang, J.S. Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresour. Technol. 2018, 247, 669–675. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Iovine, A.; Casella, P.; Marino, T.; Karatza, D.; Chianese, S.; Musmarra, D. Enhancing biomass and lutein production from Scenedesmus almeriensis: Effect of carbon dioxide concentration and culture medium reuse. Front. Plant Sci. 2020, 11, 415. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, Y.; Liao, Q.; Fu, Q.; Xia, A.; Zhu, X. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling. Bioresour. Technol. 2016, 216, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Depraetere, O.; Pierre, G.; Noppe, W.; Vandamme, D.; Foubert, I.; Michaud, P.; Muylaert, K. Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Res. 2015, 10, 48–54. [Google Scholar] [CrossRef]
- Han, X.; Li, P.; Wang, D.; Wang, M.; Song, C. Inhibition mechanism and biological recycling utilization of microalgae culture aging solution. J. Environ. Chem. Eng. 2023, 11, 111490. [Google Scholar] [CrossRef]
- Borovkov, A.B.; Gudvilovich, I.N.; Lelekov, A.S.; Avsiyan, A.L. Effect of specific irradiance on productivity and pigment and protein production of Porphyridium purpureum (Rhodophyta) semi-continuous culture. Bioresour. Technol. 2023, 374, 128771. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, S.; Wang, C.; Shi, L. Effects of Renewal Regime on Consumption of Nitrogen and Phosphorus, Biomass and Polysaccharide Production by Porphyridium cruentum in Semicontinuous Culture. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–5. [Google Scholar]
- Arad, S.M.; Friedman, O.D.; Rotem, A. Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl. Environ. Microbiol. 1988, 54, 2411–2414. [Google Scholar] [CrossRef]
- Medina-Cabrera, E.V.; Gansbiller, M.; Ruhmann, B.; Schmid, J.; Sieber, V. Rheological characterization of Porphyridium sordidum and Porphyridium purpureum exopolysaccharides. Carbohydr. Polym. 2021, 253, 117237. [Google Scholar] [CrossRef]
- Mancuso Nichols, C.A.; Nairn, K.M.; Glattauer, V.; Blackburn, S.I.; Ramshaw, J.A.M.; Graham, L.D. Screening microalgal cultures in search of microbial exopolysaccharides with potential as adhesives. J. Adhes. 2009, 85, 97–125. [Google Scholar] [CrossRef]
- Zaouk, L.; Masse, A.; Bourseau, P.; Taha, S.; Rabiller-Baudry, M.; Jubeau, S.; Teychene, B.; Pruvost, J.; Jaouen, P. Filterability of exopolysaccharides solutions from the red microalga Porphyridium cruentum by tangential filtration on a polymeric membrane. Environ. Technol. 2020, 41, 1167–1184. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Ji, L.; Chen, C.; Wu, P.; Zhang, W.; Tan, G.; Wu, H.; Fan, J. Assessment of light distribution model for marine red microalga Porphyridium purpureum for sustainable production in photobioreactor. Algal Res. 2021, 58, 102390. [Google Scholar] [CrossRef]
- Tandeau de Marsac, N.; Houmard, J. Complementary chromatic adaptation: Physiological conditions and action spectra. In Methods Enzymol; Elsevier: Amsterdam, The Netherlands, 1988; pp. 318–328. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
Biomass Yield (g) | Phycoerythrin Yield (mg) | Exopolysaccharides Yield (mg) | ||||
---|---|---|---|---|---|---|
Renewal Rate | RM | FM | RM | FM | RM | FM |
Control | 3.30 ± 0.31 b1,d2 | 169.08 ± 14.92 b3,c4 | 854.9 ± 137.09 a5,a6 | |||
10% | 3.11 ± 0.00 b1 | 6.41 ± 0.00 c2 | 202.22 ± 1.49 a3 | 412.23 ± 1.67 b4 | 955.62 ± 34.27 a5 | 586.52 ± 2.39 b6 |
30% | 3.69 ± 0.01 a1 | 7.16 ± 0.02 b2 | 195.94 ± 3.52 a3 | 641.47 ± 12.73 a4 | 816.11 ± 21.22 a5,b5 | 553.81 ± 10.05 b6 |
50% | 4.04 ± 0.02 a1 | 8.01 ± 0.01 a2 | 182.71 ± 2.34 a3,b3 | 624.05 ± 1.08 a4 | 626.73 ± 6.53 b5 | 588.95 ± 7.30 b6 |
Renewal Rate | Renewal Rate | ||||||
---|---|---|---|---|---|---|---|
Day | RM | FM | Control | Day | RM | FM | Control |
0 | NT | NT | NT | 16 | 10%, 30%, 50% | NT | NT |
1 | NT | NT | NT | 17 | NT | NT | NT |
2 | NT | NT | NT | 18 | NT | 10%, 30% | NT |
3 | NT | NT | NT | 19 | NT | 10%, 50% | NT |
4 | NT | NT | NT | 20 | NT | NT | NT |
5 | NT | NT | NT | 21 | 10%, 30%, 50% | NT | NT |
6 | NT | NT | NT | 22 | NT | 10% | NT |
7 | NT | NT | NT | 23 | NT | 10%, 30% | NT |
8 | NT | NT | NT | 24 | NT | NT | NT |
9 | NT | NT | NT | 25 | NT | NT | NT |
10 | NT | NT | NT | 26 | 10%, 30%, 50% | 10%, 50% | NT |
11 | NT | NT | NT | 27 | NT | 10%, 30% | NT |
12 | 10%, 30%, 50% | 10%, 30%, 50% | NT | 28 | NT | NT | NT |
13 | NT | NT | NT | 29 | NT | NT | NT |
14 | 10% | NT | NT | 30 | 100% | 100% | 100% |
15 | NT | 10% | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, H.; Wu, H.; Xiang, W.; Xu, J.; Li, T. Enhancing Phycoerythrin Production of Marine Red Microalga Porphyridium purpureum with Low Salinity and Semi-Continuous Culture Strategy. Mar. Drugs 2025, 23, 361. https://doi.org/10.3390/md23090361
Li C, Wu H, Wu H, Xiang W, Xu J, Li T. Enhancing Phycoerythrin Production of Marine Red Microalga Porphyridium purpureum with Low Salinity and Semi-Continuous Culture Strategy. Marine Drugs. 2025; 23(9):361. https://doi.org/10.3390/md23090361
Chicago/Turabian StyleLi, Chulin, Houbo Wu, Hualian Wu, Wenzhou Xiang, Jin Xu, and Tao Li. 2025. "Enhancing Phycoerythrin Production of Marine Red Microalga Porphyridium purpureum with Low Salinity and Semi-Continuous Culture Strategy" Marine Drugs 23, no. 9: 361. https://doi.org/10.3390/md23090361
APA StyleLi, C., Wu, H., Wu, H., Xiang, W., Xu, J., & Li, T. (2025). Enhancing Phycoerythrin Production of Marine Red Microalga Porphyridium purpureum with Low Salinity and Semi-Continuous Culture Strategy. Marine Drugs, 23(9), 361. https://doi.org/10.3390/md23090361