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Abstract: Neurotoxin receptor site 1, in the outer vestibule of the conducting pore of 

voltage-gated sodium channels (VGSCs), was first functionally defined by its ability to 

bind the guanidinium-containing agents, tetrodotoxin (TTX) and saxitoxin (STX). 

Subsequent studies showed that peptide μ-conotoxins competed for binding at site 1. All of 

these natural inhibitors block single sodium channels in an all-or-none manner on binding. 

With the discovery of an increasing variety of μ-conotoxins, and the synthesis of numerous 

derivatives, observed interactions between the channel and these different ligands have 

become more complex. Certain μ-conotoxin derivatives block single-channel currents 

partially, rather than completely, thus enabling the demonstration of interactions between 

the bound toxin and the channel’s voltage sensor. Most recently, the relatively small  

μ-conotoxin KIIIA (16 amino acids) and its variants have been shown to bind 

simultaneously with TTX and exhibit both synergistic and antagonistic interactions with 

TTX. These interactions raise new pharmacological possibilities and place new constraints 

on the possible structures of the bound complexes of VGSCs with these toxins. 
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1. Introduction 

Tetrodotoxin (TTX) was the first pharmacological agent targeted to voltage-gated sodium channels 

(VGSCs) that was characterized (see Narahashi [1] for a personal historical account). A variety of 

pharmacologically active compounds, which affected VGSC function, were subsequently 

characterized. In order to provide a rational framework for the analysis of these very different 

compounds, Catterall and co-workers [2–4] classified the known sodium channel ligands according to 

their sites of action. This has remained an important differentiating scheme in sodium channel 

pharmacology. Thus, every compound believed to act at the same pharmacological site as tetrodotoxin 

is referred to as a ligand of neurotoxin receptor site 1. Saxitoxin (STX) and its derivatives are 

associated with paralytic shellfish poisoning, which occurs during harmful algal blooms, and are 

among the most important site 1 ligands that were identified after the discovery of TTX [5]. 

From animal venoms, one family of peptides has been identified that consists of site 1 ligands: the 

μ-conotoxins expressed in the venom ducts of fish-hunting cone snails. It is noteworthy that other 

venom components, which target different physiological sites on the Na channel, are much more 

widely distributed among different venoms, but, to date, site 1 compounds have only been reported 

from cone snail venoms. These peptides are generally regarded as part of the prey-capture cocktail that 

the snails have evolved, and are considered to be part of the “motor cabal” group of peptide toxins, 

which act in a coordinated and synergistic fashion to completely inhibit neuromuscular transmission in 

the envenomated prey [6]. The archetypal μCTX GIIIA was shown to induce all-or-none block of 

single, skeletal-muscle VGSCs, and to compete for site 1 in binding assays [7,8]. Later, it was found 

that even the incompletely blocking derivative GIIIA[R13Q] competed for exclusive occupancy of  

site 1 (see Figure 1). 

In passing, we note that, in addition to -conotoxins, at least three additional families of peptides 

from cone snails have been identified that target VGSCs. Members of all three families are gating 

modifiers: O-conotoxins, which block channel activation; -conotoxins, which block channel 

inactivation; and -conotoxins (or iota-conotoxins), which promote channel activation [6,9]. Thus,  

- and O-conotoxins are channel antagonists, whereas - and -conotoxins are channel agonists.  

As the only currently known peptide ligands for site 1, the μ-conotoxins have been exploited to 

identify which amino acids on the Na channel are located around site 1 [10]. Variation in site 1 among 

Na channel subtypes from different species can, in principle, be investigated through the interactions 

between the different Na channels and μ-conotoxins or derivatives of μ-conopeptides [7,8,11]. Thus, 

μ-conopeptides are attractive probes for the exploration of the topology and three-dimensional 

structure of this pharmacologically important site [12–14]. In addition, the net positive charge on the 

peptides allows them to participate in numerous long-range electrostatic interactions, which can 

contribute to binding [15] and to the blocking of ion conduction [16,17]. Electrostatic interactions also 

modulate gating [18] and drug binding at locations other than site 1, e.g., the amine binding site that 

makes up part of the local anaesthetic receptor, site 9 [18,19]. This latter interaction may be mediated, 

at least in part, via interactions with permeant ions [20]. 

Of particular interest is recent work investigating the interaction between μ-conopeptides and 

TTX/STX, which reveals that “site 1”, as conventionally defined by pharmacological criteria, is likely 

a more complex biochemical entity than previously envisioned. TTX is thought to occupy a site within 
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the vestibule of the ion channel near the extracellular end of the channel pore, and, by binding to this 

site, to occlude the permeation pathway of sodium ions through the pore. The prevailing view is that  

μ-conopeptides, being larger than tetrodotoxin, occupy a site that spatially overlaps the TTX binding 

site, but that amino acid residues in the ion channel vestibule further out from the mouth of the pore 

can contribute to binding of the peptide ligand, even though they do not interact with TTX. In this 

view, site 1 has two sub-sites: a core that can be occupied by a guanidinium toxin or a μ-conopeptide, 

and a more peripheral zone that interacts with the peptide, but not TTX or STX.  

Figure 1. Steady-state recordings from a single, rat skeletal muscle sodium channel enable 

discrete recognition and analysis of blocking events induced by derivatives of both STX 

and the conotoxin, μCTX GIIIA. The channel has been modified by batrachotoxin to 

prevent inactivation. Voltage-dependent activation gating and block by site 1 ligands are 

retained. (a) Typical all-or-none block, resulting from guanidinium toxins, such as TTX 

and STX, exemplified by the saxitoxin derivative, decarbamoyl-STX (dcSTX); (b) After 

addition of peptide μCTX GIIIA[R13Q], prominent partial blocking events are seen, 

reducing current by ~70%. The fully blocked/closed level is indicated by the solid line; the 

partially blocked level produced by R13Q is indicated by the dotted line; (c) After 

increasing the concentrations of both dcSTX and R13Q, the channel is bound most of the 

time, but in a manner consistent with simple, competitive binding, each fully blocked state 

(dcSTX-bound), and each partially blocked state (R13Q-bound), is preceded by an 

unblocked state, which is relatively brief at these high concentrations of the toxins. 

Adapted from French et al., Neuron, 1996 [18]. 

 

2. Newly Discovered Complexities of Interactions between TTX and μ-Conopeptides 

In the sections that follow, we discuss recent work that reveals that the notion of competitive 

occupancy of the site 1 core, by either a μ-conopeptide or tetrodotoxin molecule, needs to be revisited. 

In some cases, both ligands can simultaneously bind to a given channel, contradicting the expectation 

that site 1 ligands are mutually exclusive in binding to site 1. Furthermore, some experimental 

evidence indicates that even though a μ-conopeptide is bound at site 1 and attenuates channel 

conductance, it is apparently still possible for TTX to “sneak” past the conopeptide and bind to its site 

that is presumably deeper in the outer vestibule of the channel to totally occlude the pore. 

(a) 

(b) 

(c) 
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Recent investigation of potential interactions between TTX and μ-conopeptides has its origins in 

early observations with single-channel recordings [11,18]. Mutation of the critical arginine residue 

that, in μCTX GIIIA, is believed to interact directly with the pore, results in a residual Na current that 

persists when the channel is occupied by the peptide (e.g., GIIIA[R13Q]). The residual current allows 

the lifetime and function of the toxin-bound channel to be electrophysiologically monitored. Thus, it 

could be shown that bound toxin influenced the channel's voltage sensor, a reflection of the proximity 

of the latter to site 1 [18]. This influence is further illustrated by the direct effect of μCTX GIIIA on 

gating charge movement (Figure 2). A reversible, positive shift in the plot of gating charge, Q, vs. 

voltage, V, indicates an inhibition of the outward motion of the positive charges on the voltage sensor 

when the polycationic toxin (nominal net charge, +6) is bound at site 1. 

Figure 2. μCTX GIIIA, with its nominal net charge of +6, shifts voltage dependent gating 

charge movement to the right, which is consistent with the cationic peptide impeding 

outward movement of the positive charge on the channel’s voltage sensor [21]. This is 

consistent with shifts in activation of both single channels in lipid bilayers and whole-cell 

currents [18]. Recording from fused tsA-201 cells expressing rat skeletal muscle VGSCs 

(rNaV1.4) [22]. 

 

Of possible interest in this regard is the peptide Tx1 from the South American armed spider 

Phoneutria nigriventer, which has been reported to have a binding site that overlaps with that of  

-GIIIA, but not that of TTX [23]. The reported voltage dependence of sodium current block by Tx1 

could, in principle, arise either from a direct interaction with the voltage sensor, or from  

state-dependent binding, but more experiments will be needed to clarify the mechanism. 

The residual currents of GIIIA derivatives were not blocked by decarbamoyl STX [18] (also see 

Figure 1), which is consistent with the classical notion that binding of -conotoxin and guanidinium 

toxins to site 1 was mutually exclusive. Residual currents, reminiscent of those observed with GIIIA 

derivatives and NaV1.4, have recently been observed in single channel measurements of the blocking 

of brain VGSCs by the newly discovered -conotoxin KIIIA [24]. Those observations inspired us to 

see whether: (A) a corresponding residual current could be observed when macroscopic currents were 

studied, and if so, (B) if the macroscopic current were susceptible to block by TTX [25]. Indeed, for 
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NaV1.2 expressed in oocytes that are exposed to saturating concentrations of KIIIA, a residual current 

(rINa), with an amplitude of 5% of the control INa, was observed. With the mutant KIIIA[K7A], the rINa 

was 23% of the control. A key discovery was that the addition of TTX to Na channels, with already 

bound KIIIA or KIIIA[K7A], produced a complete block, and that the onset of total block was very 

slow. One possible interpretation was that the peptide dissociated from the channel and was replaced 

by TTX, thereupon resulting in a complete block of channel conductance. However, several 

observations established that the peptide did not necessarily dissociate from the channel, and that a 

ternary peptide TTX NaV complex was formed (Figure 3).  

Figure 3. Reaction scheme showing simultaneous binding of TTX and μCTX KIIIA. 

Reproduced by permission from Zhang et al. 2009, Channels [25]. 

 

Most notably, there was a dramatic change in the time course of recovery when both TTX and the 

μ-conopeptide under these conditions were washed out. The rate of recovery was slower than that of 

following exposure to TTX alone, and faster than that of following exposure to peptide alone. The 

most straightforward explanation for this result is that both ligands were simultaneously bound to the 

outer vestibule of the channel, but that TTX was “trapped” at its site by the binding of the peptide, and, 

as a consequence, TTX could not dissociate with its usual rapid kinetics. However, binding of TTX 

also affected μ-conopeptide dissociation, because the off-rate for the peptide under these conditions 

was significantly faster than that which was observed in the absence of TTX. Reciprocally, the rate of 

dissociation of the peptide limited the off-rates for TTX, and these off-rates (C→A and C→B, 

respectively, Figure 3) differed from those observed for either the peptide (A→R) or TTX (B→R) 

alone. Also, the results suggested that the extremely slow on-rate for TTX (A→C) was not limited by 

dissociation of the peptide, but rather, reflected the slow rate of access by TTX to its binding site, 

when the peptide was bound to the channel.  

The rate of conversion from a partially blocked to a totally blocked channel, and the rate of 

functional recovery, after complete block had occurred and both toxins were washed out, therefore 

provide a measurable set of parameters that could be monitored using different μ-conopeptides and 

analogs of μ-conopeptides. One could also compare the effect of replacing TTX by STX, or various 

analogs of guanidinium toxins [26]. The net result is a coherent picture of interactions between 

guanidinium toxins and μ-conopeptides (and their analogs) at site 1.  
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Both the on-rate of the guanidinium toxin in the presence of μ-conopeptide and the off-rate of the 

toxin in the presence of TTX or STX are dependent on which specific μ-conopeptide (or analog) and 

which guanidinium toxin is being examined. In some cases, the guanidinium toxin cannot “sneak” past 

a μ-conopeptide at all. The interaction is determined in part by the charge of the guanidinium toxin and 

the placement of these charges; these factors influence the effect occupancy that the guanidinium toxin 

site has on the rate of μ-conopeptide dissociation, and can be rationalized by a charge repulsion model.  

3. Potential Applications of Double Occupancy of Site 1 

The possibility that the guanidinium toxins and certain μ-conopeptides or analogs of μ-conopeptides 

can simultaneously occupy site 1 raises some interesting pharmacological opportunities. At this time, 

these are only conceptual constructs, and proof-of-principle for real-world application needs to be 

worked out. However, since some unusual prospects are raised, especially with regard to modulating 

the pharmacology of channel block, we present some of the possibilities. 

3.1. Syntoxins 

When co-occupancy by peptide and guanidinium toxin of site 1 occurs, the two partners that occupy 

the site necessarily interact with each other. Thus, a selective alteration of one of the partners can 

cause a change in the interaction with the other partner. Thus, a μ-conopeptide that can sit in site 1 

simultaneously with TTX is what we regard as a syntoxin of TTX. When the μ-conopeptide is bound, 

the dissociation rate of TTX is slowed; thus, one can imagine having a series of μ-conopeptide 

syntoxins resulting in a range of off times for TTX, depending on which μ-conopeptide syntoxin is  

co-occupying site 1.  

3.2. Contratoxins 

In principle, as the co-occupancy of site 1 by TTX/STX and μ-conopeptides is better understood, it 

should be possible to design analogs of μ-conopeptides that inhibit TTX, STX, and their analogs from 

bypassing the peptide to cause complete inhibition of channel conductance. One might imagine a 

tightly bound μ-conopeptide analog that prevented any guanidinium toxins from reaching their 

pharmacological site. -Conopeptides with such properties could be used as a contratoxin, or antidote, 

to a red-tide poisoning. Administration of a contratoxin that has a significant residual current could, in 

principle, partially reverse the more life-threatening effects of the binding of the guanidinium toxins to 

VGSCs. Thus, by designing a μ-conopeptide derivative with a large residual current and yet very high 

affinity for site 1, an antidote for red tide poisoning might be produced. 

4. Recent Results 

Since submission of the current manuscript, two papers, which provide additional insight into the 

complexity of interactions between the µ-conotoxins and derivatives of TTX and STX, have been 

published online [26,27]. 
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