Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin
Abstract
:1. Introduction
2. Chitosan as a Carbon Source for Nanomaterials
3. Methods for the Synthesis of Chitosan-Based Carbon Dots
4. Applications
4.1. Biomedicine
4.2. Environmental
4.3. Food Packaging
5. Current Challenges and Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, S.; Ngashangva, L.; Goswami, P. Carbon Dots: An Emerging Smart Material for Analytical Applications. Micromachines 2021, 12, 84. [Google Scholar] [CrossRef]
- González-González, R.B.; González, L.T.; Madou, M.; Leyva-Porras, C.; Martinez-Chapa, S.O.; Mendoza, A. Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. Nanomaterials 2022, 12, 298. [Google Scholar] [CrossRef]
- González-González, R.B.; Sharma, A.; Parra-Saldívar, R.; Ramirez-Mendoza, R.A.; Bilal, M.; Iqbal, H.M.N. Decontamination of Emerging Pharmaceutical Pollutants Using Carbon-Dots as Robust Materials. J. Hazard. Mater. 2022, 423, 127145. [Google Scholar] [CrossRef]
- González-González, R.B.; Parra-Saldívar, R.; Ramirez-Mendoza, R.A.; Iqbal, H.M.N. Carbon Dots as a New Fluorescent Nanomaterial with Switchable Sensing Potential and Its Sustainable Deployment for Metal Sensing Applications. Mater. Lett. 2022, 309, 131372. [Google Scholar] [CrossRef]
- González-González, R.B.; Morales-Murillo, M.B.; Martínez-Prado, M.A.; Melchor-Martínez, E.M.; Ahmed, I.; Bilal, M.; Parra-Saldívar, R.; Iqbal, H.M.N. Carbon Dots-Based Nanomaterials for Fluorescent Sensing of Toxic Elements in Environmental Samples: Strategies for Enhanced Performance. Chemosphere 2022, 300, 134515. [Google Scholar] [CrossRef]
- Kumar, S.; Goswami, M.; Singh, N.; Sathish, N.; Reddy, M.V.; Kumar, S. Exploring Carbon Quantum Dots as an Aqueous Electrolyte for Energy Storage Devices. J. Energy Storage 2022, 55, 105522. [Google Scholar] [CrossRef]
- Lopez-Cantu, D.O.; González-González, R.B.; Melchor-Martínez, E.M.; Martínez, S.A.H.; Araújo, R.G.; Parra-Arroyo, L.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Iqbal, H.M.N. Enzyme-Mimicking Capacities of Carbon-Dots Nanozymes: Properties, Catalytic Mechanism, and Applications—A Review. Int. J. Biol. Macromol. 2022, 194, 676–687. [Google Scholar] [CrossRef]
- Hoang, V.C.; Hassan, M.; Gomes, V.G. Coal Derived Carbon Nanomaterials–Recent Advances in Synthesis and Applications. Appl. Mater. Today 2018, 12, 342–358. [Google Scholar] [CrossRef]
- González-González, R.B.; González, L.T.; Iglesias-González, S.; González-González, E.; Martinez-Chapa, S.O.; Madou, M.; Alvarez, M.M.; Mendoza, A. Characterization of Chemically Activated Pyrolytic Carbon Black Derived from Waste Tires as a Candidate for Nanomaterial Precursor. Nanomaterials 2020, 10, 2213. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Singh, D.P. Natural and Waste Hydrocarbon Precursors for the Synthesis of Carbon Based Nanomaterials: Graphene and CNTs. Renew. Sustain. Energy Rev. 2016, 58, 976–1006. [Google Scholar] [CrossRef]
- Silvestre, J.; Delattre, C.; Michaud, P.; de Baynast, H. Optimization of Chitosan Properties with the Aim of a Water Resistant Adhesive Development. Polymers 2021, 13, 4031. [Google Scholar] [CrossRef]
- Hammi, N.; Chen, S.; Dumeignil, F.; Royer, S.; el Kadib, A. Chitosan as a Sustainable Precursor for Nitrogen-Containing Carbon Nanomaterials: Synthesis and Uses. Mater. Today Sustain. 2020, 10, 100053. [Google Scholar] [CrossRef]
- Khan, A.; Goepel, M.; Colmenares, J.C.; Gläser, R. Chitosan-Based N-Doped Carbon Materials for Electrocatalytic and Photocatalytic Applications. ACS Sustain. Chem. Eng. 2020, 8, 4708–4727. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Ding, Y.; Qin, C.; Song, W.; Sun, S.; Fang, K.; Li, W.; Du, J.; Wang, F. Anchoring Mn3O4 Nanoparticles onto Nitrogen-Doped Porous Carbon Spheres Derived from Carboxymethyl Chitosan as Superior Anodes for Lithium-Ion Batteries. J. Alloys Compd. 2018, 735, 209–217. [Google Scholar] [CrossRef]
- Narasimhamurthy, K.; Udayashankar, A.C.; de Britto, S.; Lavanya, S.N.; Abdelrahman, M.; Soumya, K.; Shetty, H.S.; Srinivas, C.; Jogaiah, S. Chitosan and Chitosan-Derived Nanoparticles Modulate Enhanced Immune Response in Tomato against Bacterial Wilt Disease. Int. J. Biol. Macromol. 2022, 220, 223–237. [Google Scholar] [CrossRef]
- Xi, Y.; Xiao, Z.; Lv, H.; Sun, H.; Zhai, S.; An, Q. Construction of CuO/Cu-Nanoflowers Loaded on Chitosan-Derived Porous Carbon for High Energy Density Supercapacitors. J. Colloid. Interface Sci. 2023, 630, 525–534. [Google Scholar] [CrossRef]
- Ni, Y.; Zhou, P.; Jiang, Q.; Zhang, Q.; Huang, X.; Jing, Y. Room-Temperature Phosphorescence Based on Chitosan Carbon Dots for Trace Water Detection in Organic Solvents and Anti-Counterfeiting Application. Dye. Pigment. 2022, 197, 109923. [Google Scholar] [CrossRef]
- Ababneh, H.; Hameed, B.H. Chitosan-Derived Hydrothermally Carbonized Materials and Its Applications: A Review of Recent Literature. Int. J. Biol. Macromol. 2021, 186, 314–327. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Chitosan-Based Materials: Preparation, Modification and Application. J. Clean. Prod. 2022, 355, 131825. [Google Scholar] [CrossRef]
- Villalba-Rodriguez, A.M.; Parra-Saldivar, R.; Ahmed, I.; Karthik, K.; Malik, Y.S.; Dhama, K.; Iqbal, H.M.N. Bio-Inspired Biomaterials and Their Drug Delivery Perspectives—A Review. Curr. Drug Metab. 2017, 18, 893–904. [Google Scholar] [CrossRef]
- Kertmen, A.; Dziedzic, I.; Ehrlich, H. Patentology of chitinous biomaterials. Part II: Chitosan. Carbohydr. Polym. 2022, 301, 120224. [Google Scholar] [CrossRef] [PubMed]
- Uzun, I.; Celik, O. Physicochemical Characterization and the Comparison of Chitin and Chitin Modified with Maleic Anhydride. Orient. J. Chem. 2015, 31, 619–627. [Google Scholar] [CrossRef]
- Singh, N.; Chen, J.; Koziol, K.K.; Hallam, K.R.; Janas, D.; Patil, A.J.; Strachan, A.; Hanley, J.G.; Rahatekar, S.S. Chitin and Carbon Nanotube Composites as Biocompatible Scaffolds for Neuron Growth. Nanoscale 2016, 8, 8288–8299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thandapani, G.; Supriya Prasad, P.; Sudha, P.N.; Sukumaran, A. Size Optimization and in Vitro Biocompatibility Studies of Chitosan Nanoparticles. Int. J. Biol. Macromol. 2017, 104, 1794–1806. [Google Scholar] [CrossRef]
- Gámiz-González, M.A.; Correia, D.M.; Lanceros-Mendez, S.; Sencadas, V.; Gómez Ribelles, J.L.; Vidaurre, A. Kinetic Study of Thermal Degradation of Chitosan as a Function of Deacetylation Degree. Carbohydr. Polym. 2017, 167, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of Chitin and Chitosan Nanofibers in Bone Regenerative Engineering. Carbohydr. Polym. 2020, 230, 115658. [Google Scholar] [CrossRef]
- Roy, S.; van Hai, L.; Kim, H.C.; Zhai, L.; Kim, J. Preparation and Characterization of Synthetic Melanin-like Nanoparticles Reinforced Chitosan Nanocomposite Films. Carbohydr. Polym. 2020, 231, 115729. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-Based Nanomaterials: A State-of-the-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules 2019, 24, 1960. [Google Scholar] [CrossRef]
- Babaee, M.; Garavand, F.; Rehman, A.; Jafarazadeh, S.; Amini, E.; Cacciotti, I. Biodegradability, Physical, Mechanical and Antimicrobial Attributes of Starch Nanocomposites Containing Chitosan Nanoparticles. Int. J. Biol. Macromol. 2022, 195, 49–58. [Google Scholar] [CrossRef]
- Yeamsuksawat, T.; Zhao, H.; Liang, J. Characterization and Antimicrobial Performance of Magnetic Fe3O4@Chitosan@Ag Nanoparticles Synthesized via Suspension Technique. Mater. Today Commun. 2021, 28, 102481. [Google Scholar] [CrossRef]
- Egil, A.C.; Ozdemir, B.; Gunduz, S.K.; Altıkatoglu-Yapaoz, M.; Budama-Kilinc, Y.; Mostafavi, E. Chitosan/Calcium Nanoparticles as Advanced Antimicrobial Coating for Paper Documents. Int. J. Biol. Macromol. 2022, 215, 521–530. [Google Scholar] [CrossRef]
- Duarte, L.G.R.; Picone, C.S.F. Antimicrobial Activity of Lactoferrin-Chitosan-Gellan Nanoparticles and Their Influence on Strawberry Preservation. Food Res. Int. 2022, 159, 111586. [Google Scholar] [CrossRef]
- Zhao, A.; She, J.; Manoj, D.; Wang, T.; Sun, Y.; Zhang, Y.; Xiao, F. Functionalized Graphene Fiber Modified by Dual Nanoenzyme: Towards High-Performance Flexible Nanohybrid Microelectrode for Electrochemical Sensing in Live Cancer Cells. Sens. Actuators B Chem. 2020, 310, 127861. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Green Synthesis, Biomedical and Biotechnological Applications of Carbon and Graphene Quantum Dots. A Review. Environ. Chem. Lett. 2020, 18, 703–727. [Google Scholar] [CrossRef] [Green Version]
- Bedian, L.; Villalba-Rodríguez, A.M.; Hernández-Vargas, G.; Parra-Saldivar, R.; Iqbal, H.M.N. Bio-Based Materials with Novel Characteristics for Tissue Engineering Applications—A Review. Int. J. Biol. Macromol. 2017, 98, 837–846. [Google Scholar] [CrossRef]
- Zattar, A.P.P.; Fajardo, G.L.; de Mesquita, J.P.; Pereira, F.V. Luminescent Carbon Dots Obtained from Chitosan: A Comparison between Different Methods to Enhance the Quantum Yield. Fuller. Nanotub. Carbon Nanostructures 2021, 29, 414–422. [Google Scholar] [CrossRef]
- Ludmerczki, R.; Mura, S.; Carbonaro, C.M.; Mandity, I.M.; Carraro, M.; Senes, N.; Garroni, S.; Granozzi, G.; Calvillo, L.; Marras, S.; et al. Carbon Dots from Citric Acid and Its Intermediates Formed by Thermal Decomposition. Chem.-A Eur. J. 2019, 25, 11963–11974. [Google Scholar] [CrossRef]
- Mintz, K.J.; Zhou, Y.; Leblanc, R.M. Recent Development of Carbon Quantum Dots Regarding Their Optical Properties, Photoluminescence Mechanism, and Core Structure. Nanoscale 2019, 11, 4634–4652. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Z.; Zhang, X.; Shi, Y.; Zhou, N. Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for Sensitive and Selective Detection of Nitrite. Molecules 2017, 22, 2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chahal, S.; Yousefi, N.; Tufenkji, N. Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustain. Chem. Eng. 2020, 8, 5566–5575. [Google Scholar] [CrossRef]
- Stachowska, J.D.; Murphy, A.; Mellor, C.; Fernandes, D.; Gibbons, E.N.; Krysmann, M.J.; Kelarakis, A.; Burgaz, E.; Moore, J.; Yeates, S.G. A Rich Gallery of Carbon Dots Based Photoluminescent Suspensions and Powders Derived by Citric Acid/Urea. Sci. Rep. 2021, 11, 10554. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, L.; Pang, X.; Zhang, Y.; Zhang, Y.; Dong, W.F.; Yan, R. Chitosan-Based Carbon Nanoparticles as a Heavy Metal Indicator and for Wastewater Treatment. RSC Adv. 2021, 11, 12015–12021. [Google Scholar] [CrossRef]
- Moradi, S.; Sadrjavadi, K.; Farhadian, N.; Hosseinzadeh, L.; Shahlaei, M. Easy Synthesis, Characterization and Cell Cytotoxicity of Green Nano Carbon Dots Using Hydrothermal Carbonization of Gum Tragacanth and Chitosan Bio-Polymers for Bioimaging. J. Mol. Liq. 2018, 259, 284–290. [Google Scholar] [CrossRef]
- Ni, J.; Huang, X.; Bai, Y.; Zhao, B.; Han, Y.; Han, S.; Xu, T.; Si, C.; Zhang, C. Resistance to Aggregation-Caused Quenching: Chitosan-Based Solid Carbon Dots for White Light-Emitting Diode and 3D Printing. Adv. Compos. Hybrid Mater. 2022, 5, 1865–1875. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Park, D.; Lee, Y.-C. Influence of Chitosan-Based Carbon Dots on Astaxanthin Production of Green Alga Tetraselmis sp. J. Nanosci. Nanotechnol. 2021, 21, 3689–3696. [Google Scholar] [CrossRef]
- Dutta, P.; Ghosh, T.; Kumar, H.; Jain, T.; Singh, Y. Hydrothermal and Solvothermal Synthesis of Carbon Dots from Chitosan-Ethanol System. Asian Chitin J. 2015, 11, 1–4. [Google Scholar]
- Zhang, Y.; Dong, Y.; Zheng, H.; Yang, X.; Yao, C. High Quantum Yield Fluorescent Chitosan-Based Carbon Dots for the Turn-On-Off-On Detection of Cr(VI) and H2O2. Nano 2021, 16, 2150103. [Google Scholar] [CrossRef]
- Gogoi, N.; Barooah, M.; Majumdar, G.; Chowdhury, D. Carbon Dots Rooted Agarose Hydrogel Hybrid Platform for Optical Detection and Separation of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2015, 7, 3058–3067. [Google Scholar] [CrossRef]
- Shekarbeygi, Z.; Farhadian, N.; Ansari, M.; Shahlaei, M.; Moradi, S. An Innovative Green Sensing Strategy Based on Cu-Doped Tragacanth/Chitosan Nano Carbon Dots for Isoniazid Detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117848. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, H.; Wang, Y.; Xiong, Z.; Zhao, X.; Xia, Y. Chitosan-Derived N-Doped Carbon Dots for Fluorescent Determination of Nitrite and Bacteria Imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119468. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Togiti, U.K.; Bhattacharya, A.; Nag, A. Functionalized Chitosan-Carbon Dots: A Fluorescent Probe for Detecting Trace Amount of Water in Organic Solvents. ACS Omega 2019, 4, 11301–11311. [Google Scholar] [CrossRef]
- Tian, H.; Dai, Y.; Fu, W.; Liu, H.; Li, M.; Lv, M.; Yin, X. Dansyl-Modified Carbon Dots with Dual-Emission for PH Sensing, Fe3+ Ion Detection and Fluorescent Ink. RSC Adv. 2020, 10, 36971–36979. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N.; Wu, H.F. Selective Biosensing of Staphylococcus Aureus Using Chitosan Quantum Dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 50–56. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; El-Bery, H.M.; Metwally, A.A.; Elshazly, M.; Hathout, R.M. Synthesis of CdS-Modified Chitosan Quantum Dots for the Drug Delivery of Sesamol. Carbohydr. Polym. 2019, 214, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhao, L.; Wang, Y.; Xue, Y.; Deng, Y.; Zhao, X.; Li, Q. Carbon Quantum Dots Prepared with Chitosan for Synthesis of CQDs/AuNPs for Iodine Ions Detection. Nanomaterials 2018, 8, 1043. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y. One-Step Synthesis of Amino-Functionalized Fluorescent Carbon Nanoparticles by Hydrothermal Carbonization of Chitosan. Chem. Commun. 2011, 48, 380–382. [Google Scholar] [CrossRef]
- Zhan, J.; Peng, R.; Wei, S.; Chen, J.; Peng, X.; Xiao, B. Ethanol-Precipitation-Assisted Highly Efficient Synthesis of Nitrogen-Doped Carbon Quantum Dots from Chitosan. ACS Omega 2019, 4, 22574–22580. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, F.; Tajfar, N.; Mohammadnejad, M. The Synthesis and Efficiency Investigation of a Boronic Acid-Modified Magnetic Chitosan Quantum Dot Nanocomposite in the Detection of Cu2+ Ions. Int. J. Biol. Macromol. 2021, 189, 477–482. [Google Scholar] [CrossRef]
- Chagas, J.A.O.; Crispim, G.O.; Pinto, B.P.; San Gil, R.A.S.; Mota, C.J.A. Synthesis, Characterization, and CO2 Uptake of Adsorbents Prepared by Hydrothermal Carbonization of Chitosan. ACS Omega 2020, 5, 29520–29529. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Kang, M.; Payne, G.F.; Wang, X.; Sun, R. Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 17478–17488. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, A.K.; Ashraf, P.M. Carbon Nanodots Synthesized from Chitosan and Its Application as a Corrosion Inhibitor in Boat-Building Carbon Steel BIS2062. Appl. Nanosci. 2020, 10, 1061–1071. [Google Scholar] [CrossRef]
- Janus, Ł.; Piatkowski˛, M.; Radwan-Pragłowska, J.; Bogdał, D.; Matysek, D. Chitosan-Based Carbon Quantum Dots for Biomedical Applications: Synthesis and Characterization. Nanomaterials 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Gao, Y.; Jiao, Y.; Shuang, S.; Li, C.; Dong, C. Carbon Nano-Dots as a Fluorescent and Colorimetric Dual-Readout Probe for the Detection of Arginine and Cu2+ and Its Logic Gate Operation. Nanoscale 2017, 9, 11545–11552. [Google Scholar] [CrossRef]
- Jiang, Q.; Jing, Y.; Ni, Y.; Gao, R.; Zhou, P. Potentiality of Carbon Quantum Dots Derived from Chitin as a Fluorescent Sensor for Detection of ClO−. Microchem. J. 2020, 157, 105111. [Google Scholar] [CrossRef]
- Xiao, D.; Yuan, D.; He, H.; Lu, J. Microwave-Assisted One-Step Green Synthesis of Amino-Functionalized Fluorescent Carbon Nitride Dots from Chitosan. Luminescence 2013, 28, 612–615. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Zhao, X.; Deng, Y.; Xia, Y. Facile Synthesis of Nitrogen-Doped Carbon Quantum Dots with Chitosan for Fluorescent Detection of Fe3+. Polymers 2019, 11, 1731. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Pathan, S.H.; Mitra, S.; Modha, B.H.; Goswami, A.; Pramanik, P. Tuning of Photoluminescence on Different Surface Functionalized Carbon Quantum Dots. RSC Adv. 2012, 2, 3602–3606. [Google Scholar] [CrossRef]
- Feng, Z.; Hakkarainen, M.; Grützmacher, H.; Chiappone, A.; Sangermano, M. Photocrosslinked Chitosan Hydrogels Reinforced with Chitosan-Derived Nano-Graphene Oxide. Macromol. Chem. Phys. 2019, 220, 1900174. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Li, S.; Yan, Y.; Yu, S.; Zhao, R.; Huang, L. Chitosan-Based Carbon Dots with Multi-Color-Emissive Tunable Fluorescence and Visible Light Catalytic Enhancement Properties. Nano Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Riahi, Z.; Rhim, J.W.; Bagheri, R.; Pircheraghi, G.; Lotfali, E. Carboxymethyl Cellulose-Based Functional Film Integrated with Chitosan-Based Carbon Quantum Dots for Active Food Packaging Applications. Prog. Org. Coat. 2022, 166, 106794. [Google Scholar] [CrossRef]
- Lin, X.; Xiong, M.; Zhang, J.; He, C.; Ma, X.; Zhang, H.; Kuang, Y.; Yang, M.; Huang, Q. Carbon Dots Based on Natural Resources: Synthesis and Applications in Sensors. Microchem. J. 2021, 160, 105604. [Google Scholar] [CrossRef]
- Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020, 10, 2316. [Google Scholar] [CrossRef]
- Feng, Y.; Li, R.; Zhou, P.; Duan, C. Non-Toxic Carbon Dots Fluorescence Sensor Based on Chitosan for Sensitive and Selective Detection of Cr (VI) in Water. Microchem. J. 2022, 180, 107627. [Google Scholar] [CrossRef]
- Atchudan, R.; Jebakumar Immanuel Edison, T.N.; Shanmugam, M.; Perumal, S.; Somanathan, T.; Lee, Y.R. Sustainable Synthesis of Carbon Quantum Dots from Banana Peel Waste Using Hydrothermal Process for in Vivo Bioimaging. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 126, 114417. [Google Scholar] [CrossRef]
- Xu, J.; Qi, Q.; Sun, L.; Guo, X.; Zhang, H.; Zhao, X. Green Fluorescent Carbon Dots from Chitosan as Selective and Sensitive “off-on” Probes for Nitrite and “on-off-on” Probes for Enrofloxacin Detection. J. Alloys Compd. 2022, 908, 164519. [Google Scholar] [CrossRef]
- Liu, G.; Li, B.; Liu, Y.; Feng, Y.; Jia, D.; Zhou, Y. Rapid and High Yield Synthesis of Carbon Dots with Chelating Ability Derived from Acrylamide/Chitosan for Selective Detection of Ferrous Ions. Appl. Surf. Sci. 2019, 487, 1167–1175. [Google Scholar] [CrossRef]
- Perumal, S.; Atchudan, R.; Edison, T.N.J.I.; Lee, Y.R. Sustainable Synthesis of Multifunctional Carbon Dots Using Biomass and Their Applications: A Mini-Review. J. Environ. Chem. Eng. 2021, 9, 105802. [Google Scholar] [CrossRef]
- Horo, H.; Saha, M.; Das, H.; Mandal, B.; Kundu, L.M. Synthesis of Highly Fluorescent, Amine-Functionalized Carbon Dots from Biotin-Modified Chitosan and Silk-Fibroin Blend for Target-Specific Delivery of Antitumor Agents. Carbohydr. Polym. 2022, 277, 118862. [Google Scholar] [CrossRef]
- Liu, X.; Pang, J.; Xu, F.; Zhang, X. Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Sci. Rep. 2016, 6, 31100. [Google Scholar] [CrossRef] [PubMed]
- Trung, L.G.; Subedi, S.; Dahal, B.; Truong, P.L.; Gwag, J.S.; Tran, N.T.; Nguyen, M.K. Highly Efficient Fluorescent Probes from Chitosan-Based Amino-Functional Carbon Dots for the Selective Detection of Cu2+ Traces. Mater. Chem. Phys. 2022, 291, 126772. [Google Scholar] [CrossRef]
- Pan, T.; Chen, H.; Gao, X.; Wu, Z.; Ye, Y.; Shen, Y. Engineering Efficient Artificial Nanozyme Based on Chitosan Grafted Fe-Doped-Carbon Dots for Bacteria Biofilm Eradication. J. Hazard. Mater. 2022, 435, 128996. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, Y.; Sun, L.; Qi, Q.; Zhao, X. Chitosan and κ-Carrageenan-Derived Nitrogen and Sulfur Co-Doped Carbon Dots “on-off-on” Fluorescent Probe for Sequential Detection of Fe3+ and Ascorbic Acid. Int. J. Biol. Macromol. 2021, 191, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, C.; Wang, Y.; Rao, H.; Lu, Z.; Lu, C.; Shan, Z.; Ren, B.; Wu, W.; Wang, X. Green and High-Yield Synthesis of Carbon Dots for Ratiometric Fluorescent Determination of PH and Enzyme Reactions. Mater. Sci. Eng. C 2020, 117, 111264. [Google Scholar] [CrossRef]
- Lv, X.; Man, H.; Dong, L.; Huang, J.; Wang, X. Preparation of Highly Crystalline Nitrogen-Doped Carbon Dots and Their Application in Sequential Fluorescent Detection of Fe3+ and Ascorbic Acid. Food Chem. 2020, 326, 126935. [Google Scholar] [CrossRef]
- Shen, L.; Chen, M.; Hu, L.; Chen, X.; Wang, J. Growth and Stabilization of Silver Nanoparticles on Carbon Dots and Sensing Application. Langmuir 2013, 29, 16135–16140. [Google Scholar] [CrossRef]
- Younis, M.R.; He, G.; Lin, J.; Huang, P. Recent Advances on Graphene Quantum Dots for Bioimaging Applications. Front. Chem. 2020, 8, 424. [Google Scholar] [CrossRef]
- Del Carpio-Perochena, A.; Bramante, C.M.; Duarte, M.A.H.; Moura, M.R.d.; Aouada, F.A.; Kishen, A. Chelating and Antibacterial Properties of Chitosan Nanoparticles on Dentin. Restor. Dent. Endod. 2015, 40, 195–201. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Guo, C.; Dan, W.; Devahastin, S. Laser-Induced Microporous Modified Atmosphere Packaging and Chitosan Carbon-Dot Coating as a Novel Combined Preservation Method for Fresh-Cut Cucumber. Food Bioprocess Technol. 2021, 14, 968–983. [Google Scholar] [CrossRef]
Medium | Method | Application | Analyte | Reference |
---|---|---|---|---|
Water | Hydrothermal | Water remediation | Heavy metal ions | [44] |
Water | Hydrothermal | Imaging | Endothelial cells | [45] |
Epoxy resin | Hydrothermal | WLED; 3D Printing | None | [46] |
Water | Hydrothermal | Algal growth | Astaxanthine | [47] |
Ethanol | Hydrothermal | Bioimaging | A549 Cells | [48] |
Water | Hydrothermal | Biosensing | Cr(VI) and H2O2 | [49] |
Agarose Hydrogel | Microwave | Water remediation | Heavy metal ions | [50] |
Dry | Hydrothermal | Drug detection | Isoniazid | [51] |
Water | Hydrothermal | Imaging | Nitrite; E. coli and B. subtilis | [52] |
Water | Microwave | Detection | 4-(pyridine-2-yl)-3H-pyrrolo[2,3-c]quinoline (PPQ) | [53] |
Dansyl chloride | Hydrothermal | Sensing | Heavy metal ions | [54] |
Hydrogen peroxide | Chemical reaction | Biosensing | S. aureus | [55] |
Cadmium sulfide | Chemical reaction | Drug delivery | Sesamol | [56] |
Water | Hydrothermal | Detection | Iodine ions | [57] |
Water | Hydrothermal | Bioimaging | A549 cells | [58] |
Ethanol | Hydrothermal | Detection | Heavy metal ions | [59] |
Water | Hydrothermal | Sensing | Cu2+ | [60] |
Water | Hydrothermal | Remediation | CO2 | [61] |
Water and alcohol | Hydrothermal | Imaging and sensing | Electron transfer | [62] |
Glassy carbon electrode | Hydrothermal | Corrosion inhibitor | BIS 2062 carbon steel | [63] |
Water | Microwave | Cell labeling and drug delivery | Human dermal fibroblasts | [64] |
Dry | Microwave | Cellular imaging | Human liver cancer HepG 2 cells | [65] |
Water | Hydrothermal | Detection | ClO− | [66] |
Dry | Microwave | Labeling and biosensors | None tested | [67] |
Water | Microwave | Bioimaging | S. aureus | [68] |
Water | Hydrothermal | Detection | Fe3+ | [69] |
Photocross-linked chitosan matrix | Microwave | Tissue engineering | None | [70] |
CDs’ Type | Precursors | Hydrothermal Parameters | PS (nm) | QY (%) | Application | Reference |
---|---|---|---|---|---|---|
CDs | Chitosan and urea | 190 °C, 15 h | 7.1 | 16.81 | Detection of Cr (VI) in water | [75] |
CDs | Chitosan and p-phenylenediamine | 220 °C, 18 h | 3 | 19 | Detection of nitrite and enrofloxacin in water | [77] |
CQDs | Chitosan | 180 °C, 12 h | 7.8 | NR | Active food packaging | [72] |
Fe-CDs | Chitosan, citric acid, FeSO4.7H2O and ethylenediamine | 180 °C, 6 h | 15.69 | 28.09 | Peroxidase-like nanozyme for managing bacterial biofilms fouling in environmental protection and food safety | [83] |
CDs | Chitosan | 200 °C, 10 h | 2.13 | 38 | Detection of trace water in organic solvents | [17] |
N-CQDs | Chitosan | 180 °C, 24 h | 2 | NR | Detection of Fe3+ in water | [68] |
N,S-CDs | Chitosan and κ-carrageenan | 220 °C, 18 h | 8 | 59.31 | Detection of Fe3+ and ascorbic acid | [84] |
CDs | Chitosan | 180 °C, 5 h | 2.36–3.65 | 18.9 | Ratiometric fluorescent determination of pH and enzyme reactions | [85] |
CDs | Chitosan and tartaric acid | 200 °C, 5 h | 20 | 5.2 | Detection of Fe3+ and ascorbic acid | [86] |
N-CDs | Chitosan | 180 °C, 12 h | 2.8 | 35 | Detection of nitrite and bacteria imaging | [52] |
CDs | Chitosan | 180 °C, 12 h | 29.4 | NR | Direct reduction of Ag+ to Ag0 | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalba-Rodríguez, A.M.; González-González, R.B.; Martínez-Ruiz, M.; Flores-Contreras, E.A.; Cárdenas-Alcaide, M.F.; Iqbal, H.M.N.; Parra-Saldívar, R. Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin. Mar. Drugs 2022, 20, 782. https://doi.org/10.3390/md20120782
Villalba-Rodríguez AM, González-González RB, Martínez-Ruiz M, Flores-Contreras EA, Cárdenas-Alcaide MF, Iqbal HMN, Parra-Saldívar R. Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin. Marine Drugs. 2022; 20(12):782. https://doi.org/10.3390/md20120782
Chicago/Turabian StyleVillalba-Rodríguez, Angel M., Reyna Berenice González-González, Manuel Martínez-Ruiz, Elda A. Flores-Contreras, María Fernanda Cárdenas-Alcaide, Hafiz M. N. Iqbal, and Roberto Parra-Saldívar. 2022. "Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin" Marine Drugs 20, no. 12: 782. https://doi.org/10.3390/md20120782
APA StyleVillalba-Rodríguez, A. M., González-González, R. B., Martínez-Ruiz, M., Flores-Contreras, E. A., Cárdenas-Alcaide, M. F., Iqbal, H. M. N., & Parra-Saldívar, R. (2022). Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin. Marine Drugs, 20(12), 782. https://doi.org/10.3390/md20120782