Occurrence and Properties of Thiosilvatins
Abstract
1. Introduction
2. Structures and Chemical Properties
3. Fungal Sources
4. Proposed Biosynthetic Pathways for Thiosilvatins
5. Biological Activities
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fox, E.M.; Howlett, B.J. Biosynthetic gene clusters for epipolythiodioxopiperazines in filamentous fungi. Mycol. Res. 2008, 112, 162–169. [Google Scholar] [CrossRef]
- Welch, T.R.; Williams, R.M. Epidithiodioxopiperazines. occurrence, synthesis and biogenesis. Nat. Prod. Rep. 2014, 31, 1376–1404. [Google Scholar] [CrossRef]
- Hanson, J.R.; O’Leary, M.A. New piperazinedione metabolites of Gliocladium deliquescens. J. Chem. Soc. Perkin Trans. 1 1981, 0, 218–220. [Google Scholar] [CrossRef]
- Kawahara, N.; Nozawa, K.; Nakajima, S.; Kawai, K.I. Studies on fungal products. Part 13. Studies on fungal products. Part 13. Isolation and structures of dithiosilvatin and silvathione, novel dioxopiperazine derivatives from Aspergillus silvaticus. J. Chem. Soc. Perkin Trans. 1 1987, 0, 2099–2101. [Google Scholar] [CrossRef]
- Chu, M.; Mierzwa, R.; Truumees, I.; Gentile, F.; Patel, M.; Gullo, V.; Chan, T.-M.; Puar, M.S. Two novel diketopiperazines isolated from the fungus Tolypocladium sp. Tetrahedron Lett. 1993, 34, 7537–7540. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Miao, F.P.; Fang, S.T.; Yin, X.L.; Ji, N.Y. Sulfurated diketopiperazines from an algicolous isolate of Trichoderma virens. Phytochem. Let. 2018, 27, 101–104. [Google Scholar] [CrossRef]
- He, X.; Yang, J.; Qiu, L.; Feng, D.; Ju, F.; Tan, L.; Li, Y.-Z.; Gu, Y.-C.; Zhang, Z.; Guo, D.-L.; et al. Thiodiketopiperazines produced by Penicillium crustosum and their activities to promote gastrointestinal motility. Molecules 2019, 24, 299. [Google Scholar] [CrossRef] [PubMed]
- Usami, Y.; Aoki, S.; Hara, T.; Numata, A. New dioxopiperazine metabolites from a Fusarium species separated from a marine alga. J. Antibiot. 2002, 55, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Amagata, T.; Minoura, K.; Numata, A. Cytotoxic metabolites produced by a fungal strain from a Sargassum alga. J. Antibiot. 1998, 51, 432–434. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ayer, W.A.; Altena, I.V.; Browne, L.M. Three piperazinediones and a drimane diterpenoid from Penicillium brevi-compactum. Phytochemistry 1990, 29, 1661–1665. [Google Scholar] [CrossRef]
- Kirby, G.W.; Rao, G.V.; Robins, D.J. New co-metabolites of gliotoxin in Gliocladium virens. J. Chem. Soc. Perkin Trans. 1 1988, 2, 301–304. [Google Scholar] [CrossRef]
- DeVault, R.L.; Rosenbrook, W. A novel class of diketopiperazines. J. Antibiot. 1973, 26, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Michel, K.H.; Chaney, M.O.; Jones, N.D.; Hoehn, M.M.; Nagarajan, R. Epipolythiopiperazinedione antibiotics from Penicillium turbatum. J. Antibiot. 1974, 27, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Strunz, G.M.; Kakushima, M.; Stillwell, M.A.; Heissner, C.J. Hyalodendrin: A new fungitoxic epidithiodioxopiperazine produced by a Hyalodendron species. J. Chem. Soc. Perkin Trans. 1 1973, 0, 2600–2602. [Google Scholar] [CrossRef]
- Isaka, M.; Palasarn, S.; Rachtawee, P.; Vimuttipong, S.; Kongsaeree, P. Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org. Lett. 2005, 7, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Trincone, A. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar. Drugs 2016, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Rahbæk, L.; Sperry, S.; Piper, J.E.; Crews, P. Deoxynortrichoharzin, a new polyketide from the saltwater culture of a sponge-derived Paecilomyces fungus. J. Nat. Prod. 1998, 61, 1571–1573. [Google Scholar] [CrossRef]
- Rukachaisirikul, V.; Khamthong, N.; Sukpondma, Y.; Phongpaichit, S.; Hutadilok-Towatana, N.; Graidist, P.; Sakayaroj, J.; Kirtikara, K. Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi Nigrospora sp. PSU-F11 and PSU-F12. Arch. Pharm. Res. 2010, 33, 375–380. [Google Scholar] [CrossRef]
- Capon, R.J.; Stewart, M.; Ratnayake, R.; Lacey, E.; Gill, J.H. Citromycetins and bilains A–C: New aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. J. Nat. Prod. 2007, 70, 1746–1752. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Wang, Y.; Wang, H.; Li, J.; Zhuang, Y.; Zhu, W. Antimicrobial aromatic polyketides from gorgonian-associated fungus, Penicillium commune 518. Chin. J. Chem. 2012, 30, 1236–1242. [Google Scholar] [CrossRef]
- Liu, C.C.; Zhang, Z.Z.; Feng, Y.Y.; Gu, Q.Q.; Li, D.H.; Zhu, T.J. Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat. Prod. Res. 2019, 33, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.N.; Berdyshev, D.V.; Smetanina, O.F.; Ivanets, E.V.; Zhuravleva, O.I.; Rasin, A.B.; Khudyakova, Y.V.; Popov, R.S.; Dyshlovoy, S.A.; Amsberg, G.V.; et al. Citriperazines AD produced by a marine algae-derived fungus Penicillium sp. KMM 4672. Nat. Prod. Res. 2019, 1–6. [Google Scholar]
- Li, C.Y.; Ding, W.J.; Shao, C.L.; She, Z.G.; Lin, Y.C. Secondary metabolites of a marine mangrove fungus (Penicillium sp. No. 2556) from South China sea. J. Chin. Med. Mater. 2008, 31, 960–962. [Google Scholar]
- Li, F.; Guo, W.; Wu, L.; Zhu, T.; Gu, Q.; Li, D.; Che, Q. Saroclazines A–C, thio-diketopiperazines from mangrove-derived fungi Sarocladium kiliense HDN11-84. Arch. Pharm. Res. 2018, 41, 30–34. [Google Scholar] [CrossRef]
- Wang, G.-Y.-S.; Abrell, L.M.; Avelar, A.; Borgeson, B.M.; Crews, P. New hirsutane based sesquiterpenes from salt water cultures of a marine sponge-derived fungus and the terrestrial fungus Coriolus consors. Tetrahedron 1998, 54, 7335–7342. [Google Scholar] [CrossRef]
- Visagie, C.M.; Renaud, J.B.; Burgess, K.M.N.; Malloch, D.W.; Clark, D.; Ketch, L.; Urb, M.; Luis-Seize, G.; Assabguie, R.; Sumarah, M.W.; et al. Fifteen new species of Penicillium. Persoonia 2016, 36, 247–280. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, D.O.; Borges, W.S.; Vieira, N.J.; De Oliveira, L.F.; Da Silva, C.H.; Lopes, N.P.; Dias, L.G.; Durán-Patrón, R.; Collado, I.G.; Pupo, M.T. Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 2010, 71, 1423–1429. [Google Scholar] [CrossRef]
- Wang, H.; Chen, G.; Liu, Y.; Hua, H.; Bai, J.; Pei, Y.H. 1H and 13C NMR assignments of two new piperazine-trione from the fungus Penicillium crustosum YN-HT-15. Magn. Reson. Chem. 2015, 53, 620–623. [Google Scholar] [CrossRef]
- Hammerl, R.; Frank, O.; Schmittnägel, T.; Ehrmann, M.A.; Hofmann, T. Functional metabolome analysis of Penicillium roqueforti by means of differential Off-Line LC–NMR. J. Agric. Food Chem. 2019, 67, 5135–5146. [Google Scholar] [CrossRef]
- Yang, M.H.; Li, T.X.; Wang, Y.; Liu, R.H.; Luo, J.; Kong, L.Y. Antimicrobial metabolites from the plant endophytic fungus Penicillium sp. Fitoterapia 2017, 116, 72–76. [Google Scholar] [CrossRef]
- Pang, K.L.; Overy, D.P.; Jones, E.G.; da Luz Calado, M.; Burgaud, G.; Walker, A.K.; Johnson, J.A.; Kerr, R.G.; Cha, H.-J.; Bills, G.F. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biol. Rev. 2016, 30, 163–175. [Google Scholar] [CrossRef]
- Nicoletti, R.; Andolfi, A. The Marine-Derived Filamentous Fungi in Biotechnology. In Grand Challenges in Marine Biotechnology; Springer: Cham, Switzerland, 2018; pp. 157–189. [Google Scholar]
- Davis, C.; Carberry, S.; Schrettl, M.; Singh, I.; Stephens, J.C.; Barry, S.M.; Kavanagh, K.; Challis, G.L.; Brougham, D.; Doyle, S. The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. Chem. Biol. 2011, 18, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Stachelhaus, T.; Mootz, H.D.; Bergendahl, V.; Marahiel, M.A. Peptide bond formation in nonribosomal peptide biosynthesis catalytic role of the condensation domain. J. Biol. Chem. 1998, 273, 22773–22781. [Google Scholar] [CrossRef] [PubMed]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Khaldi, N.; Seifuddin, F.T.; Turner, G.; Haft, D.; Nierman, W.C.; Wolfe, K.H.; Fedorova, N.D. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 2010, 47, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, D.M.; Cozijnsen, A.J.; Wilson, L.M.; Pedras, M.S.C.; Howlett, B.J. The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol. Microbiol. 2004, 53, 1307–1318. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Waring, P.; Howlett, B.J. The epipolythiodioxopiperazine (ETP) class of fungal toxins: Distribution, mode of action, functions and biosynthesis. Microbiology 2005, 151, 1021–1032. [Google Scholar] [CrossRef]
- Jiang, C.S.; Guo, Y.W. Epipolythiodioxopiperazines from fungi: Chemistry and bioactivities. Mini Rev. Med. Chem. 2011, 11, 728–745. [Google Scholar] [CrossRef]
- Gu, B.; He, S.; Yan, X.; Zhang, L. Tentative biosynthetic pathways of some microbial diketopiperazines. Appl. Microbiol. Biotechnol. 2013, 97, 8439–8453. [Google Scholar] [CrossRef]
- Scharf, D.H.; Brakhage, A.A.; Mukherjee, P.K. Gliotoxin–bane or boon? Environ. Microbiol. 2016, 18, 1096–1109. [Google Scholar] [CrossRef]
- Suhadolnik, R.J.; Chenoweth, R.G. Biosynthesis of Gliotoxin. I. 1 Incorporation of Phenylalanine-1-and-2-C14. J. ACS 1958, 80, 4391–4392. [Google Scholar]
- Winstead, J.A.; Suhadolnik, R.J. Biosnthesis of gliotoxin. II. 1, 2 Further studies on the incorporation of carbon-14 and tritium-labeled precursors. J. ACS 1960, 82, 1644–1647. [Google Scholar]
- Balibar, C.J.; Walsh, C.T. GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 2006, 45, 15029–15038. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, M.A.; Magasi, L.P.; Strunz, G.M. Production, isolation, and antimicrobial activity of hyalodendrin, a new antibiotic produced by a species of Hyalodendron. Can. J. Chem. 1974, 20, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Dou, H.; Gong, W.; Liu, X.; Yu, Z.; Li, E.; Tan, R.; Hou, Y. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur. J. Pharmacol. 2013, 705, 49–60. [Google Scholar] [CrossRef]
- Hemmi, K.; Shimazaki, N.; Shima, I.; Okamoto, M.; Keizo, Y.; Hashimoto, M. Chapter 2: PAF antagonists from microbial origin: Structure-activity relationship of diketopiperazine derivatives. In Handbook of PAF and PAF Antagonists; CRC Press: Boca Raton, FL, USA, 2019; p. 51689. [Google Scholar]
- Fitzpatrick, D.A. Horizontal gene transfer in fungi. FEMS Microbiol. Lett. 2012, 329, 1–8. [Google Scholar] [CrossRef]
- Manganiello, G.; Marra, R.; Staropoli, A.; Lombardi, N.; Vinale, F.; Nicoletti, R. The shifting mycotoxin profiles of endophytic Fusarium strains: A case study. Agriculture 2019, 9, 143. [Google Scholar] [CrossRef]
- Gardiner, D.; Howlett, B. Bioinformatic and expression analysis of the putative gliotoxin gene cluster of Aspergillus fumigatus. FEMS Microbiol. Lett. 2005, 248, 241–248. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, P.; Pan, Y.; Zhu, Y.; Liu, X.; Che, Y.; Liu, G. Identification and characterization of the verticillin biosynthetic gene cluster in Clonostachys rogersoniana. Fungal Genet. Biol. 2017, 103, 25–33. [Google Scholar] [CrossRef]
- Cairns, T.; Meyer, V. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. BMC Genomics 2017, 18, 631. [Google Scholar] [CrossRef]
- Bolognesi, M.L.; Ai Tran, H.N.; Staderini, M.; Monaco, A.; López-Cobeñas, A.; Bongarzone, S.; Biarnés, X.; López-Alvarado, P.; Cabezas, N.; Caramelli, M.; et al. Discovery of a class of diketopiperazines as antiprion compounds. Chem. Med. Chem. 2010, 5, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, K.; Mounier, J.; Coton, E.; Hymery, N. Individual and combined effects of roquefortine C and mycophenolic acid on human monocytic and intestinal cells. World Mycot. J. 2016, 9, 51–62. [Google Scholar] [CrossRef]
- Hymery, N.; Mounier, J.; Coton, E. Effect of Penicillium roqueforti mycotoxins on Caco-2 cells: Acute and chronic exposure. Toxicol. Vitr. 2018, 48, 188–194. [Google Scholar] [CrossRef] [PubMed]
Code | Compound | Structure | Formula, Nominal Mass (U) |
---|---|---|---|
N-Demethyl analogues | |||
4 | Sch 54794; cis-dinor-bis(methylthio)silvatin | C18H24N2O3S2 380 | |
5 | Sch 54796; trans-dinor-bis(methylthio)silvatin | C18H24N2O3S2 380 | |
6 | Saroclazine A | C19H26N2O3S2 394 | |
7 | Saroclazine B | C19H26N2O3S2 394 | |
Dethio analogues | |||
8 | Silvathione | C18H22N2O3S 346 | |
9 | 3-(4-(3-Methyl-2-butenyloxy)benzyl)-3-(methylthio)-2,5-piperazinedione; dinor-methylthiosilvatin | C17H22N2O3S 334 | |
10 | 6-Hydroxy-3-(4-(3-methyl-2-butenyloxy)benzyl)-3-(methylthio)piperazine-2,5-dione; dinor-hydroxy-methylthiosilvatin | C17H22N2O4S 350 | |
11 | Fusaperazine B (relative stereochemistry) | C18H24N2O4S 364 | |
12 | 1,4-Dimethyl-6-(4-(3-methyl-2-butenyloxy)benzyl)-6-methylsulfanyl-piperazine-2,3,5-trione; 6-oxo-methylthiosilvatin | C19H24N2O4S 376 | |
13 | 6-(4-(3-Methyl-2-butenyloxy)benzyl)-6-methylsulfanyl-piperazine-2,3,5-trione; dinor-6-oxo-methylthiosilvatin | C17H20N2O4S 348 | |
14 | Fusaperazine E | C19H24N2O3S 360 | |
15 | Fusaperazine F | C19H24N2O3S 360 | |
Deprenyl analogues | |||
16 | cis-3-(4-Hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)-2,5-piperazinedione; cis-deprenyl-bis(methylthio)silvatin | C15H20N2O3S2 340 | |
17 | trans-6-(4-Hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dione; trans-deprenyl-bis(methylthio)silvatin | C15H20N2O3S2 340 | |
18 | Fusaperazine A | C13H16N2O3S2 312 | |
19 | Citriperazine A | C13H16N2O2S2 296 | |
20 | Citriperazine B | C13H16N2O2S2 296 | |
Prenyl chain modified analogues | |||
21 | cis-3-(4-(4-Hydroxy-3-methyl-2-butenyl)oxy)benzyl)-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dione; bis-(methylthio)silvatinol | C20H28N2O4S2 424 | |
22 | Bilain A | C20H26N2O5S2 438 | |
23 | Bilain B | C20H30N2O5S2 442 | |
24 | Bilain C | C23H31N3O6S2 509 | |
25 | Bilain D | C20H30N2O5S2 442 | |
26 | Bilain E | C21H32N2O5S2 456 | |
27 | Bilain F | C21H32N2O5S2 456 |
Species (Strain) | Source | Geographic Origin | Compound Code | Ref. |
---|---|---|---|---|
Cordyceps javanicus1 (961331) | Jaspis cf. coriacea (sponge) | Fiji | 1, 3 | [17] |
Fusarium chlamydosporum (OUPS-N124) | Carpopeltis affinis (red alga) | Japan | 1, 4, 5, 11, 16, 18 | [8] |
Nigrospora sp. (PSU-F12) | Annella sp. (gorgonian) | Similan Islands (Thailand) | 5 | [18] |
Penicillium bilaiae (MST-MF667) | Boat ramp | Huon estuary, Tasmania (Australia) | 1, 22, 23, 24 | [19] |
Penicillium commune (518) | Muricella abnormalis (gorgonian) | Danzhou, Hainan (China) | 1 | [20] |
Penicillium crustosum (HDN153086) | Sediment | Prydz Bay (Antarctica) | 1, 3, 15 | [21] |
Penicillium sp. (KMM 4672) | Padina sp. (brown alga) | Vietnam | 19, 20 | [22] |
Penicillium sp. (2556) | Mangrove plant | China | 4, 5 | [23] |
Penicillium waksmanii (OUPS-N133) | Sargassum ringgoldianum (brown alga) | Japan | 1, 16, 21 | [9] |
Sarocladium kiliense (HDN11-84) | Rhizosphere soil of Thespesia populnea (mangrove) | Guangxi (China) | 1, 6, 7, 12 | [24] |
Trichoderma virens (Y13-3) | Gracilaria vermiculophylla (red alga) | Yangma Island (China) | 16, 17 | [6] |
Species (Strain) | Source | Geographic Origin | Compound Code | Ref. |
---|---|---|---|---|
Aspergillus silvaticus (IFO8173) | Soil | Tafo (Ghana) | 8, 2 | [4] |
Coriolus (=Irpex) consors (ATCC11574) | ATCC collection | 1, 3 | [25] | |
Penicillium amphipolaria (DAOM695760) | Soil | Quartermain Mountains (Antarctica) | 14 | [26] |
Penicillium brevicompactum | Contaminant in culture of Ceratocystis ulmi (plant pathogenic fungus) | Edmonton (Canada) | 1, 9, 10, 16 | [10] |
Penicillium crustosum (VR4) | Viguiera robusta (plant) | Brazil | 1, 3, 14 | [27] |
Penicillium crustosum (MK285663) | Fruiting body of Isaria cicadae (entomopathogenic fungus) | Sichuan province (China) | 1, 13, 25, 26, 27 | [7] |
Penicillium crustosum (YN-HT-15) | Red soil | Yunnan (China) | 12, 13 | [28] |
Penicillium roqueforti (ATCC10110) | Blue cheese | USA | 1 | [29] |
Penicillium sp. | Endophytic in Pinellia ternata (plant) | Nanjing (China) | 1 | [30] |
Tolypocladium sp. | Quercus virginiana (plant) | Tamalupas (Mexico) | 1, 4, 5, 9 | [5] |
Trichoderma virens1 (CMI101525) | Soil | California, USA | 1, 16 | [3,11] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvatore, M.M.; Nicoletti, R.; DellaGreca, M.; Andolfi, A. Occurrence and Properties of Thiosilvatins. Mar. Drugs 2019, 17, 664. https://doi.org/10.3390/md17120664
Salvatore MM, Nicoletti R, DellaGreca M, Andolfi A. Occurrence and Properties of Thiosilvatins. Marine Drugs. 2019; 17(12):664. https://doi.org/10.3390/md17120664
Chicago/Turabian StyleSalvatore, Maria Michela, Rosario Nicoletti, Marina DellaGreca, and Anna Andolfi. 2019. "Occurrence and Properties of Thiosilvatins" Marine Drugs 17, no. 12: 664. https://doi.org/10.3390/md17120664
APA StyleSalvatore, M. M., Nicoletti, R., DellaGreca, M., & Andolfi, A. (2019). Occurrence and Properties of Thiosilvatins. Marine Drugs, 17(12), 664. https://doi.org/10.3390/md17120664