Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula
Abstract
:1. Introduction
2. Results
2.1. Astaxanthin Concentration in Eggs
2.2. Radical Scavenging Activity
3. Discussion
4. Materials and Methods
4.1. Culture System
4.2. Feeding Practice
4.3. Collection of Gametes
4.4. Experimental Design and Statistical Analysis
4.5. Chemical Extraction from Eggs
4.6. HPLC Analysis
4.7. DPPH-Assay
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shalaby, E.A. Algae as promising organisms for environment and health. Plant Signal. Behav. 2011, 6, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Hou, L.; Dong, M.; Shi, J.; Huang, X.; Ding, Y.; Cong, X.; Zhang, F.; Zhang, X.; Zang, X. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2+. Int. J. Mol. Sci. 2018, 19, 175. [Google Scholar] [CrossRef]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Ye, V.M.; Bhatia, S.K. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol. Lett. 2012, 34, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J.S.; Lee, D.J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol. Adv. 2018, 36, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Panis, G.; Rosales Carreon, J. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Res. 2016, 18, 175–190. [Google Scholar] [CrossRef]
- Mann, V.; Harker, M.; Pecker, I.; Hirschberg, J. Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 2000, 18, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Astaxanthin Market Analysis by Source (Natural [Yeast, Krill/Shrimp, Microalgae] And Synthetic), by Product (Dried Biomass/Powder, Oil, Soft gels, Liquid), by Application, And Segment Forecasts, 2018–2025. In Base Year for Estimate: 2016; Report ID: GVR-1-68038-957-9; Business Wire, Inc.: San Francisco, CA, USA, 2018.
- Barredo, J.L.; García-Estrada, C.; Kosalkova, K.; Barreiro, C. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous. J. Fungi (Basel) 2017, 3, 44. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Bu, Y.-F.; Liu, J.-Z. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid. Mar. Drugs 2017, 15, 296. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.P.; Ye, L.D.; Xie, W.P.; Lv, X.M.; Yu, H.W. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Appl. Microbiol. Biotechnol. 2015, 99, 8419–8428. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.P.; Xie, W.P.; Li, A.P.; Wang, F.; Yao, Z.; Bian, Q.; Zhu, Y.Q.; Yu, H.W.; Ye, L.D. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzym. Microb. Technol. 2017, 100, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Henke, N.A.; Heider, S.A.E.; Peters-Wendisch, P.; Wendisch, V.F. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar. Drugs 2016, 14, 124. [Google Scholar] [CrossRef] [PubMed]
- Garama, D.; Bremer, P.; Carne, A. Extraction and analysis of carotenoids from the New Zealand sea urchin Evechinus chloroticus gonads. Acta Biochim. Pol. 2012, 59, 83–85. [Google Scholar] [PubMed]
- Mamelona, J.; Pelletier, E.; Girard-Lalancette, K.; Legault, J.; Karboune, S.; Kermasha, S. Antioxidants in digestive tracts and gonads of green urchin (Strongylocentrotus droebachiensis). J. Food Compos. Anal. 2011, 24, 179–183. [Google Scholar] [CrossRef]
- Cirino, P.; Brunet, C.; Ciaravolo, M.; Galasso, C.; Musco, L.; Vega Fernández, T.; Sansone, C.; Toscano, A. The Sea Urchin Arbacia lixula: A Novel Natural Source of Astaxanthin. Mar. Drugs 2017, 15, 187. [Google Scholar] [CrossRef] [PubMed]
- Miki, W.; Yamaguchi, K.; Konosu, S.; Watanabe, T. Metabolism of dietary carotenoids in eggs of red sea bream. Comp. Biochem. Physiol. Part B Comp. Biochem. 1984, 77, 665–668. [Google Scholar] [CrossRef]
- Shah, M.M.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Moaka, T. Carotenoids in Marine Animals. Mar. Drugs 2011, 9, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.S.; Lignell, A.; Pettersson, A.; Elfving, E.; Soni, M.G. Safety assessment of astaxanthin rich microalgae biomass: Acute and subchronic toxicity studies in rats. Food Chem. Toxicol. 2008, 46, 3030–3036. [Google Scholar] [CrossRef] [PubMed]
- Lederer, E.; Moore, T. Echinenone as a Provitamin A. Nature 1936, 137, 996. [Google Scholar] [CrossRef]
- Martin, J.F.; Gudina, E.; Barredo, J.L. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb. Cell Fact. 2008, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jesus Raposo, M.F.; de Morais, R.M.; de Morais, A.M. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013, 93, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Galasso, C.; Orefice, I.; Nuzzo, G.; Luongo, E.; Cutignano, A.; Romano, G.; Brunet, C.; Fontana, A.; Esposito, F.; et al. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Sci. Rep. 2017, 7, 41215. [Google Scholar] [CrossRef] [PubMed]
- Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar. Drugs 2015, 13, 5128–5155. [Google Scholar] [CrossRef] [PubMed]
- Examine. Available online: https://examine.com/supplements/astaxanthin/ (accessed on 13 April 2018).
- Huguenin, J.E.; Colt, J. Design and Operating Guide for Aquaculture Seawater Systems; Elsevier Science Publishers: Amsterdam, The Netherlands, 2002; 264p. [Google Scholar]
- Winer, B.J.; Brown, D.R.; Michels, K.R. Statistical Principles in Experimental Design; McGraw-Hill: Boston, MA, USA, 1991; 928p. [Google Scholar]
- Ruxton, G.D.; Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 2008, 19, 690–693. [Google Scholar] [CrossRef]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; McGraw-Hill: Boston, MA, USA, 1996; 1408p. [Google Scholar]
- Cutignano, A.; Nuzzo, G.; Ianora, A.; Luongo, E.; Romano, G.; Gallo, C.; Sansone, C.; Aprea, S.; Mancini, F.; D’Oro, U.; et al. Development and Application of a Novel SPE-Method for Bioassay-Guided Fractionation of Marine Extracts. Mar. Drugs 2015, 13, 5736–5749. [Google Scholar] [CrossRef] [PubMed]
- Orefice, I.; Chandrasekaran, R.; Smerilli, A.; Corato, F.; Carillo, S.; Caruso, T.; Corsaro, M.M.; Dal Piaz, F.; Ruban, A.; Brunet, C. Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res. 2016, 17, 1–13. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Wright, S.W. Qualitative and quantitative HPLC analysis of SCOR reference algal cultures. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods; Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W., Eds.; UNESCO Publishing: Paris, France, 1997; pp. 343–360. [Google Scholar]
- Scanu, S.; Soetebier, S.; Piazzolla, D.; Tiralongo, F.; Mancini, E.; Romano, N.; Marcelli, M. Concentrations of As, Cd, Cr, Ni and Pb in the echinoid Paracentrotus lividus on the coast of Civitavecchia, northern Tyrrhenian Sea, Italy. Reg. Stud. Mar. Sci. 2015, 1, 7–17. [Google Scholar] [CrossRef]
- Pinto, E.; Carvalho, A.P.; Cardozo, K.H.M.; Malcata, X.; dos Anjos, F.M.; Colepicolo, P. Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (var. liui Zhang & Xia). Rev. Bras. Farmacogn. 2011, 21, 349–354. [Google Scholar] [CrossRef]
Source of Variation | SS | d.f. | MS | F | p |
---|---|---|---|---|---|
Intercept | <0.01 | 1 | <0.01 | <0.01 | 0.9636 |
Diameter | 0.18 | 1 | 0.18 | 2.54 | 0.1276 |
Experimental group | 2.45 | 4 | 0.61 | 8.71 | 0.0004 |
L1: (C+ vs. R) | 0.08 | 1 | 0.08 | 1.14 | 0.3000 |
L2: (S+ vs. R) | 0.34 | 1 | 0.34 | 4.87 | 0.0399 |
L3: (Wt1 vs. R) | 0.38 | 1 | 0.38 | 5.40 | 0.0313 |
L4: (Wt1 vs. Wt0) | 0.01 | 1 | 0.01 | 0.08 | 0.7832 |
Error | 1.34 | 19 | 0.07 |
Concentration Tested | |||
---|---|---|---|
0.1 μg mL−1 | 1 μg mL−1 | 10 μg mL−1 | |
Sea urchin eggs | |||
Wt0 | 15.6 ± 13.9 | 22.0 ± 11.2 | 32.6 ± 24.9 |
Wt1 | 14.1 ± 3.5 | 26.1 ± 18.3 | 33.0 ± 1.9 |
C₊ | 22.8 ± 12.4 | 61.3 ± 9.9 | 75.7 ± 21.7 |
S₊ | 36.9 ± 13.9 | 78.5 ± 3.1 | 94.7 ± 19.5 |
R | 15.4 ± 4.3 | 75.0 ± 14.2 | 86.3 ± 7.5 |
Food Formulations | |||
RBF S₊ | 7.9 ± 2.6 | 3.9 ± 3.25 | 4.2 ± 0.56 |
RBF C₊ | 7.9 ± 1.25 | 7.6 ± 1.78 | 13.3 ± 0.9 |
RBF R | 14.5 ± 1.5 | 6.1 ± 3.5 | 1.5 ± 1.45 |
Group | Food Items and Formulations |
---|---|
RBF-R | Standard Ration Blocks of Food with mussels, macroalgae (U. lactuca), S. platensis and corn |
RBF-S+ | Ration Blocks of Food with mussels and macroalgae (U. lactuca), reinforced in S. platensis and deprived of corn |
RBF-C+ | Ration Blocks of Food with mussels and macroalgae (U. lactuca), reinforced in corn content and deprived of S. platensis |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galasso, C.; Orefice, I.; Toscano, A.; Vega Fernández, T.; Musco, L.; Brunet, C.; Sansone, C.; Cirino, P. Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula. Mar. Drugs 2018, 16, 186. https://doi.org/10.3390/md16060186
Galasso C, Orefice I, Toscano A, Vega Fernández T, Musco L, Brunet C, Sansone C, Cirino P. Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula. Marine Drugs. 2018; 16(6):186. https://doi.org/10.3390/md16060186
Chicago/Turabian StyleGalasso, Christian, Ida Orefice, Alfonso Toscano, Tomás Vega Fernández, Luigi Musco, Christophe Brunet, Clementina Sansone, and Paola Cirino. 2018. "Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula" Marine Drugs 16, no. 6: 186. https://doi.org/10.3390/md16060186
APA StyleGalasso, C., Orefice, I., Toscano, A., Vega Fernández, T., Musco, L., Brunet, C., Sansone, C., & Cirino, P. (2018). Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula. Marine Drugs, 16(6), 186. https://doi.org/10.3390/md16060186