Next Article in Journal
iTRAQ-Based Quantitative Proteomic Analysis of a Toxigenic Dinoflagellate Alexandrium catenella at Different Stages of Toxin Biosynthesis during the Cell Cycle
Previous Article in Journal
Heteronemin Induces Anti-Proliferation in Cholangiocarcinoma Cells via Inhibiting TGF-β Pathway
Previous Article in Special Issue
Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity
Article Menu

Export Article

Open AccessArticle
Mar. Drugs 2018, 16(12), 490; https://doi.org/10.3390/md16120490

Analysis of the Transcriptome of the Red Seaweed Grateloupia imbricata with Emphasis on Reproductive Potential

1
Departamento de Biología, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, E-35017 Las Palmas, Spain
2
Biotechvana S.L., Vivero Parc Cientific Universitat de Valencia, Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
*
Author to whom correspondence should be addressed.
Received: 7 November 2018 / Revised: 3 December 2018 / Accepted: 5 December 2018 / Published: 7 December 2018
(This article belongs to the Special Issue Discovery and Application of Macroalgae-Derived Natural Products)
Full-Text   |   PDF [1323 KB, uploaded 7 December 2018]   |  

Abstract

Grateloupia imbricata is an intertidal marine seaweed and candidate model organism for both industry and academic research, owing to its ability to produce raw materials such as carrageenan. Here we report on the transcriptome of G. imbricata with the aim of providing new insights into the metabolic pathways and other functional pathways related to the reproduction of Grateloupia species. Next-generation sequencing was carried out with subsequent de novo assembly and annotation using state-of-the-art bioinformatic protocols. The results show the presence of transcripts required for the uptake of glycerol, which is a specific carbon source for in vitro culture of G. imbricata and nucleotide sequences that are involved in polyamine-based biosynthesis, polyamine degradation, and metabolism of jasmonates and ethylene. Polyamines, ethylene and methyl jasmonate are plant growth regulators that elicit the development and maturation of cystocarps and the release of spores from seaweeds. Our results will inform studies of the mechanisms that control polysaccharide accumulation, cystocarp formation and spore release. Moreover, our transcriptome information clarifies aspects of red seaweed carposporogenesis with potential benefits for enhancing reproduction. View Full-Text
Keywords: carbon sources; growth regulators; red algae; reproduction; transcriptome shotgun assembly carbon sources; growth regulators; red algae; reproduction; transcriptome shotgun assembly
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Garcia-Jimenez, P.; Llorens, C.; Roig, F.J.; Robaina, R.R. Analysis of the Transcriptome of the Red Seaweed Grateloupia imbricata with Emphasis on Reproductive Potential. Mar. Drugs 2018, 16, 490.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top