Occlusion Break Surge and Anterior Chamber Stability in the Intraocular Environment of Modern Phacoemulsification: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Design
2.2. Databases and Search Strategy
2.3. Eligibility Criteria and Study Selection
2.4. Overview of Study Categories Included in the Narrative Synthesis
3. Results
3.1. Pathophysiology of Post-Occlusion Break Surge
3.1.1. Basic Mechanisms
3.1.2. Determinants of Surge Magnitude
3.1.3. Consequences on Intraocular Structures
3.1.4. Clinical Relevance
3.2. Measurement Methods for Surge
3.2.1. Historical Approaches: Pressure-Based Models
3.2.2. Collapsible Anterior Chamber Models
3.2.3. Spring-Eye Model
3.2.4. Mechanical Compliance Models
3.2.5. Ex Vivo and Cadaveric Eye Studies
3.2.6. Proposed Indicators for Surge Characterization
3.3. Evolution of Fluidics Systems
3.3.1. Gravity Fluidics
3.3.2. Hyper-Pressurized and Gas-Forced Infusion
3.3.3. Active Fluidics
3.3.4. Adaptive Fluidics
3.3.5. Handpiece-Integrated Pressure Sensors (Active Sentry)
3.4. Comparative Evidence Between Phacoemulsification Systems
3.4.1. Historical Systems
3.4.2. Intermediate Platforms
3.4.3. Modern Platforms
3.4.4. Quatera 700 (Zeiss)
3.4.5. Unity VCS (Next-Generation Predictive Infusion)
3.4.6. Comparative Perspective
3.4.7. Dedicated Analysis: Quatera 700 and Unity VCS
4. Discussion
4.1. Clinical Implications of Post-Occlusion Break Surge
4.1.1. Intraoperative Safety
4.1.2. Corneal and Endothelial Impact
4.1.3. Posterior Segment Implications
4.1.4. Patient Outcomes and Long-Term Vision
4.2. Current Strategies to Minimize Surge
4.2.1. Optimization of Fluidics Parameters
4.2.2. Vacuum Management
4.2.3. Infusion Pressure Management
4.2.4. Advanced Fluidics Platforms
4.2.5. Auxiliary Devices and Surgical Techniques
4.2.6. Intraoperative Maneuvers
4.2.7. Integrated Prevention Approach
4.3. Future Directions in Surge Prevention and Fluidics Optimization
4.3.1. Surgery at Physiologic Intraocular Pressures
4.3.2. Integration of Intraoperative Imaging
4.3.3. Improved Models of Ocular Compliance
4.3.4. Artificial Intelligence and Predictive Fluidics
4.3.5. Toward Comprehensive Intraocular Safety Platforms
- (i)
- endothelial protection modules capable of adjusting parameters when corneal stress is detected;
- (ii)
- posterior segment monitoring, providing early warnings of abnormal vitreoretinal traction; and
- (iii)
- automated device coordination, synchronizing phaco tip power, irrigation pressure, and aspiration rates in real time.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABS | Aspiration Bypass System |
| AC | Anterior chamber |
| ACV | Anterior chamber volume |
| BSS | Balanced salt solution |
| B&L | Bausch and Lomb |
| CCF | Centrally Controlled Fluidic |
| CC | Cruise Control |
| IOP | Intraocular Pressure |
| J&J | Johnson & Johnson |
| ms | milliseconds |
| µL | Micro-liters |
| OCT | Optical Coherence Tomography |
| OVDs | Ophthalmic viscosurgical devices |
| P–V | Pressure–Volume |
| PVD | posterior vitreous detachment |
| VCS | Vision Control System |
References
- Beebe, D.C.; Shui, Y.B.; Siegfried, C.J.; Holekamp, N.M.; Bai, F. Preserve the (intraocular) environment: The importance of maintaining normal oxygen gradients in the eye. Jpn. J. Ophthalmol. 2014, 58, 225–231. [Google Scholar] [CrossRef]
- Hao, C.; Fan, E.; Wei, Z.; Radeen, K.R.; Purohit, N.; Li, K.; Purohit, S.; Fan, X. Elevated Inflammatory Cytokines Persist in the Aqueous Humor Years After Cataract Surgery. Investig. Ophthalmol. Vis. Sci. 2025, 66, 12. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, S.; Zheng, Y.; Zhou, T.; Hu, L.; Xiong, L.; Li, D.W.; Liu, Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog. Retin. Eye Res. 2023, 92, 101112. [Google Scholar] [CrossRef]
- Li, M.; Hao, W.W.; Ru, L.J. The Association Between Aqueous Humor Microenvironment in Diabetic Cataract Patients and Postoperative Macular Edema and Visual Acuity Changes. Georgian Med. News 2025, 89–90. Available online: https://pubmed.ncbi.nlm.nih.gov/40305807/ (accessed on 27 January 2026).
- Du, J.; Liu, D.; Zhou, W.; Ye, T.; Zhang, C.; Qian, T.; Zhang, J.; Zhang, Z. Comparative Proteomic Analysis of Aqueous Humor Reveals Biochemical Disparities in the Eyes of High Myopic Patients. J. Proteome Res. 2024, 23, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Chychko, L.; Son, H.S.; Friedrich, M.; Khoramnia, R.; Auffarth, G.U.; Augustin, V.A. Molecular Changes in Aqueous Humor Associated with Inflammation Following Cataract Surgery in Patients with Fuchs’ Endothelial Corneal Dystrophy. Ophthalmol. Ther. 2025, 14, 197–209. [Google Scholar] [CrossRef]
- Latz, C.; Licht, A.; Mirshahi, A.; Latz, E.; Zimmer, K. Prospective Cytokine Profiling in Aqueous Humor Reveals a Proinflammatory Microenvironment in Highly Dense Nuclear Cataracts. Investig. Ophthalmol. Vis. Sci. 2024, 65, 25. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Deng, X.; Chang, P.; Hu, M.; Li, Z.; Zhang, F.; Ding, X.; Zhao, Y. Expression Profiles of Inflammatory Cytokines in the Aqueous Humor of Children after Congenital Cataract Extraction. Transl. Vis. Sci. Technol. 2020, 9, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zijlmans, B.L.; van Zijderveld, R.; Manzulli, M.; Garay-Aramburu, G.; Czapski, P.; Eter, N.; Diener, R.; Torras, J.; Tognetto, D.; Giglio, R.; et al. Global multi-site, prospective analysis of cataract surgery outcomes following ICHOM standards: The European CAT-Community. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.M.; Oetting, T.A.; Tweeten, J.P.; Carter, K.; Lee, B.S.; Lin, S.; Nanji, A.A.; Shorstein, N.H.; Musch, D.C. American Academy of Ophthalmology Preferred Practice Pattern Cataract/Anterior Segment Panel. Cataract in the Adult Eye Preferred Practice Pattern. Ophthalmology 2022, 129, P1–P126. [Google Scholar] [CrossRef]
- Han, X.; Zhang, J.; Liu, Z.; Tan, X.; Jin, G.; He, M.; Luo, L.; Liu, Y. Real-world visual outcomes of cataract surgery based on population-based studies: A systematic review. Br. J. Ophthalmol. 2023, 107, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.E.; Vahidi, R.; Kesler-Diaz, A.; Mosaed, S. Comparison of Cost-Utility, Visual Acuity, and Humanistic Outcomes of Cataract Surgery Performed in the United States Versus International Outreach Campaigns. J. Clin. Med. 2025, 14, 3037. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Fayaz, F.; Hashemi, A.; Khabazkhoob, M. Global prevalence of cataract surgery. Curr. Opin. Ophthalmol. 2025, 36, 10–17. [Google Scholar] [CrossRef]
- Malik, P.K.; Dewan, T.; Patidar, A.K.; Sain, E. Effect of IOP based infusion system with and without balanced phaco tip on cumulative dissipated energy and estimated fluid usage in comparison to gravity fed infusion in torsional phacoemulsification. Eye Vis. 2017, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, L. Fluidics and rheology in phaco surgery: What matters and what is the hype? Eye 2018, 32, 204–209. [Google Scholar] [CrossRef]
- Kuo, P.C.; Hung, J.H.; Su, Y.C.; Fang, C.J.; Lee, C.N.; Huang, Y.H.; Shao, S.C.; Lai, E.C. Comparative anatomical outcomes of high-flow vs. low-flow phacoemulsification cataract surgery: A systematic review and meta-analysis. Front. Med. 2022, 9, 1021941. [Google Scholar] [CrossRef]
- Han, Y.K.; Miller, K.M. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems. J. Cataract. Refract. Surg. 2009, 35, 1424–1429. [Google Scholar] [CrossRef]
- Beres, H.; de Ortueta, D.; Buehner, B.; Scharioth, G.B. Does low infusion pressure microincision cataract surgery (LIPMICS) reduce frequency of post-occlusion breaks? Rom. J. Ophthalmol. 2022, 66, 135–139. [Google Scholar] [CrossRef]
- Thorne, A.; Dyk, D.W.; Fanney, D.; Miller, K.M. Phacoemulsifier occlusion break surge volume reduction. J. Cataract. Refract. Surg. 2018, 44, 1491–1496. [Google Scholar] [CrossRef]
- Aravena, C.; Dyk, D.W.; Thorne, A.; Fanney, D.; Miller, K.M. Aqueous volume loss associated with occlusion break surge in phacoemulsifiers from 4 different manufacturers. J. Cataract. Refract. Surg. 2018, 44, 884–888. [Google Scholar] [CrossRef]
- Whitaker, T.; Nelson, T.K.; Ricks, R.G.; Klug, K.; Cardenas, I.A.; Olson, R.J.; Pettey, J.H. Comparison of Postocclusion Pressure Surge Between Pressure Sensing and Traditional Phacoemulsification Handpieces. J. Ophthalmol. 2025, 2025, 3264880. [Google Scholar] [CrossRef]
- Dyk, D.W.; Miller, K.M. Mechanical model of human eye compliance for volumetric occlusion break surge measurements. J. Cataract. Refract. Surg. 2018, 44, 231–236. [Google Scholar] [CrossRef]
- Creveling, C.J.; Colter, J.; Coats, B. Changes in Vitreoretinal Adhesion With Age and Region in Human and Sheep Eyes. Front. Bioeng. Biotechnol. 2018, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Sharif-Kashani, P.; Fanney, D.; Injev, V. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems. BMC Ophthalmol. 2014, 14, 96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agarwal, A.; Kumar, D.A.; Agarwal, A. Gas-forced infusion prevents endothelial cell loss in phacoemulsification. J. Cataract. Refract. Surg. 2013, 39, 481. [Google Scholar] [CrossRef] [PubMed]
- Slezak, F.; Thumann, G.; Kropp, M.; Cvejic, Z.; De Clerck, E.E.B.; Bravetti, G.E.; Guber, I.; Pajic, B. Comparison of Conventional and Femtosecond Laser-Assisted Cataract Surgery Regarding Macula Behavior and Thickness. Medicina 2023, 59, 639. [Google Scholar] [CrossRef]
- Giap, B.D.; Srinivasan, K.; Mahmoud, O.; Mian, S.I.; Tannen, B.L.; Nallasamy, N. Adaptive Tensor-Based Feature Extraction for Pupil Segmentation in Cataract Surgery. IEEE J. Biomed. Health Inform. 2024, 28, 1599–1610. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, G.; Li, H.; Ma, T.; Ye, Z.; Li, Z. Application of the Active-Fluidics System in Phacoemulsification: A Review. J. Clin. Med. 2023, 12, 611. [Google Scholar] [CrossRef]
- Rauen, M.P.; Joiner, H.; Kohler, R.A.; O’Connor, S. Phacoemulsification using an active fluidics system at physiologic vs high intraocular pressure: Impact on anterior and posterior segment physiology. J. Cataract. Refract. Surg. 2024, 50, 822–827. [Google Scholar] [CrossRef]
- Brézin, A.P.; Monnet, D.; Lignereux, F.; Rozot, P.; Jilet, L.; Abdoul, H. Impact of a handpiece with a built-in fluidics pressure sensor on phacoemulsification: A multicentre prospective comparative study. BMJ Open Ophthalmol. 2023, 8, e001431. [Google Scholar] [CrossRef]
- Fanney, D.; Layser, G.S.; Akhil, R.K.; Kohlhammer, S.; Kübler, C.; Seibel, B.S. Experimental study comparing 2 different phacoemulsification systems with intraocular pressure control during steady-state flow and occlusion break surge events. J. Cataract. Refract. Surg. 2023, 49, 976–981. [Google Scholar] [CrossRef]
- Wang, S.; Tao, J.; Yu, X.; Diao, W.; Bai, H.; Yao, L. Safety and prognosis of phacoemulsification using active sentry and active fluidics with different IOP settings—A randomized, controlled study. BMC Ophthalmol. 2024, 24, 350. [Google Scholar] [CrossRef]
- Alcon Vision LLC. UNITY VCS Predictive Infusion System: Technical Overview. 2025. Available online: https://www.myalcon.com/professional/surgical/unity-vcs-cs/#:~:text=The%20UNITY%C2%AE%20VCS%20console,constitute%20a%20complete%20surgical%20system (accessed on 1 December 2025).
- Carl Zeiss Meditec AG. ZEISS QUATERA 700 with QUATTRO Pump and Centrally Controlled Fluidics: Technical Overview. Available online: https://www.zeiss.com/meditec/en/products/phaco-vitrectomy-lensfragmentation/zeiss-quatera-700.html#LanguageSwitchOverlayCloseButton (accessed on 1 December 2025).
- Jirásková, N.; Stepanov, A. Our Experience with Active Sentry and Centurion Ozil Handpieces. Cesk Slov. Oftalmol. 2021, 77, 18–21. (In English) [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Lin, W.; Song, P.; Zhang, M.; Wu, J.; Su, S.; Yuan, Y.; Ji, M.; Guan, H. Effect of Anterior Chamber Instability during Phacoemulsification Combined with Intraocular Lens Implantation. J. Ophthalmol. 2022, 2022, 2848565. [Google Scholar] [CrossRef]
- Georgescu, D.; Payne, M.; Olson, R.J. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes. Am. J. Ophthalmol. 2007, 143, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, J.; Zacharias, S. Volume-based characterization of postocclusion surge. J. Cataract. Refract. Surg. 2005, 31, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H. Effect of perfusion pressure sensors on posterior capsule elevation in the porcine eye model with eyelid speculums. Sci. Rep. 2025, 15, 21908. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X. Surgical outcomes of phacoemulsification with different fluidics systems (centurion with active sentry vs. centurion gravity) in cataract patients with eye axial length above 26 mm. Front. Med. 2025, 12, 1554832. [Google Scholar] [CrossRef]
- Luo, Y.; Li, H.; Chen, W.; Gao, Y.; Ma, T.; Ye, Z.; Li, Z. A prospective randomized clinical trial of active-fluidics versus gravity-fluidics system in phacoemulsification for age-related cataract (AGSPC). Ann. Med. 2022, 54, 1977–1987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wavikar, C.M.; Tanna, M.N.; Wavikar, G.C.; Kale, C.B.; Setia, M.S. Comparison of Post-Operative Outcomes between IOP-20 and IOP-50 in Phacoemulsification with Active Fluidics System: Randomized Single Blinded Trial. Clin. Ophthalmol. 2025, 19, 3573–3582. [Google Scholar] [CrossRef]
- Kuzmanović Elabjer, B.; Štrbac, T.; Ćubela, I.; Bušić, M.; Bjeloš, M. Enhancing phacoemulsification safety: How low fluidic settings influence active surge mitigation actuation. Clin. Ophthalmol. 2025, 19, 3331–3338. [Google Scholar] [CrossRef]
- Yalamanchili, S.; Aboughaida, A.; Rohani, O.S.; Dyk, D.W. Evaluation of the Occlusion Break Surge Volume in Five Different Phacoemulsification Systems. Clin. Ophthalmol. 2025, 19, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, R.; Sow, K.; Peto, T.; Wride, N.; Habib, M.S.; Sproule, A.; Muldrew, A.K.; Quinn, M.; Steel, D.H. The effect of intraocular pressure during phacoemulsification in patients with either diabetic retinopathy or glaucoma; a randomized controlled feasibility trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2025, 263, 2277–2288. [Google Scholar] [CrossRef]
- Lai, T.Y. Machines and Cutters: Stellaris PC. Dev. Ophthalmol. 2014, 54, 8–16. [Google Scholar] [CrossRef]
- Su, Y.C.; Lee, Y.Y.; Su, Y.C. Active-fluidics versus gravity-fluidics in lens extraction: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Ophthalmol. 2023, 33, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.G.; Chung, S.H.; Joo, C.K. Comparison of microcoaxial with standard clear corneal incisions in torsional handpiece cataract surgery. Ophthalmologica 2012, 227, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Angmo, D.; Khokhar, S.K.; Ganguly, A. Intraoperative fracture of phacoemulsification tip. Middle East Afr. J. Ophthalmol. 2014, 21, 86–88. [Google Scholar] [CrossRef]
- Escaf-Jaraba, L.; Escobar-DiazGranados, J.; Valdemarín, B. Comparing surgical efficiencies between phacoemulsification systems: A single surgeon retrospective study of 2000 eyes. Int. J. Ophthalmol. 2022, 15, 581–585. [Google Scholar] [CrossRef]
- Floyd, M.S.; Valentine, J.R.; Olson, R.J. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical op-tics sovereign phacoemulsification systems. Am. J. Ophthalmol. 2006, 142, 387–392. [Google Scholar] [CrossRef]
- Hida, W.T.; de Medeiros, A.L.; de Araújo Rolim, A.G.; Motta, A.F.P.; Kniggendorf, D.V.; de Queiroz, R.L.F.; Chaves, M.A.P.D.; Carricondo, P.C.; Nakano, C.T.; Nosé, W. Prospective randomized comparative study between venturi and peristaltic pumps in WhiteStar Signature® phacoemulsification machine. Clin. Ophthalmol. 2018, 13, 49–52. [Google Scholar] [CrossRef]
- Ibarz-Barberá, M.; Orts-Vila, P.; Martínez-Galdón, F.; Martín-García, N.; Tañá-Rivero, P. Surgical Efficiency Comparison Between Two Phacoemulsification Systems. Clin. Ophthalmol. 2024, 18, 1095–1102. [Google Scholar] [CrossRef]
- Elabjer, B.K.; Štrbac, T.; Ćubela, I.; Rak, B.; Martinčević, D.; Bušić, M.; Bjeloš, M. Unraveling Active Surge Mitigation Actuation: Optimizing Phacoemulsification with Active Sentry Handpiece. Korean J. Ophthalmol. 2025, 39, 392–398. [Google Scholar] [CrossRef]
- Peter, S. Clinical trial to test the safety of the EVA Nexus surgical platform. Int. J. Retin. Vitr. 2024, 10, 45. [Google Scholar] [CrossRef]
- Ganesh, S.; Brar, S.; Sriganesh, S.; Bhavsar, H.D. Comparative Clinical Study of Surgical Performance of Quatera 700 versus Centurion and Signature Pro Phacoemulsification Systems. Clin. Ophthalmol. 2024, 18, 2685–2695. [Google Scholar] [CrossRef]
- Sun, Y.X.; Cao, R.; Liu, Z.Y.; Xia, H.Q.; Cen, Y.J.; Gao, L.; Shi, D.D. Comparisons of the energy efficiency and intraocular safety of two torsional phacoemulsification tips. BMC Ophthalmol. 2022, 22, 392. [Google Scholar] [CrossRef]
- Stutz, L.A.; Heczko, J.B.; Bird, B.A.; Thomson, R.S.; Bernhisel, A.A.; Barlow, W.R.; Zaugg, B.; Olson, R.J.; Pettey, J.H. Optimization of the Oertli CataRhex 3® phacoemulsification machine. Clin. Ophthalmol. 2019, 13, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.S.; Christensen, M.R.; Cooper, C.; Mamalis, C.; Bernhisel, A.A.; Zaugg, B.; Barlow, W.R.; Ungricht, E.; Olson, R.J.; Pettey, J.H. Optimization of Phacoemulsification Tip Gauge on the Oertli CataRhex3 in an in vitro Setting. Clin. Ophthalmol. 2022, 16, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.S.; Cooper, C.; Ungricht, E.L.; Mamalis, C.; Barlow, W.; Zaugg, B.; Bernhisel, A.A.; Olson, R.J.; Pettey, J.H. Measurement of Phacoemulsification Vacuum Pressure in the Oertli CataRhex3. Clin. Ophthalmol. 2022, 16, 1731–1737. [Google Scholar] [CrossRef]
- Scarfone, H.A.; Rodriguez, E.C.; Rufiner, M.G.; Riera, J.J.; Fanego, S.E.; Charles, M.; Albano, R. Vitreous-lens interface changes after cataract surgery using active fluidics and active sentry with high and low infusion pressure settings. J. Cataract. Refract. Surg. 2024, 50, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Miraftab, A.; Ghiasian, L.; Naseripour, M. Visual and health-related quality of life in cataract patients versus healthy controls. Int. J. Ophthalmol. 2025, 18, 1880–1887. [Google Scholar] [CrossRef]
- Borkenstein, A.F.; Packard, R.; Dhubhghaill, S.N.; Lockington, D.; Donnenfeld, E.D.; Borkenstein, E.M. Clear corneal incision, an important step in modern cataract surgery: A review. Eye 2023, 37, 2864–2876. [Google Scholar] [CrossRef]
- Spaulding, J.; Hall, B. The Cutting Efficiency of a Hybrid Phacoemulsification Tip Using High and Low Intraocular Pressure Settings in Different Grades of Cataract. Clin. Ophthalmol. 2024, 18, 3271–3276. [Google Scholar] [CrossRef]
- Kaup, S.; Kondal, D.; Shivalli, S.; Buchan, J. Statistical analysis plan for the phaco TIp position during clear corneal Phacoemulsification Surgery (TIPS) randomized controlled trial. Trials 2024, 25, 138. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Bano, S.; Li, S. Phacoemulsification in vitrectomized eyes: Maintaining the stability of the anterior chamber via a new technique. Eur. J. Ophthalmol. 2021, 31, 1492–1496. [Google Scholar] [CrossRef]
- Suzuki, H.; Igarashi, T.; Takahashi, H. Effect of a new phacoemulsification and aspiration handpiece on anterior chamber stability. J. Cataract. Refract. Surg. 2023, 49, 91–96. [Google Scholar] [CrossRef]
- Vasavada, V.; Vasavada, A.R.; Vasavada, V.A.; Vasavada, S.A.; Bhojwani, D. Real-time dynamic changes in intraocular pressure after occlusion break: Comparing 2 phacoemulsification systems. J. Cataract. Refract. Surg. 2021, 47, 1205–1209. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, H.; Jun, I.; Kim, T.I.; Seo, K.Y. Effect and Safety of Pressure Sensor-equipped Handpiece in Phacoemulsification System. Korean J. Ophthalmol. 2023, 37, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Savastano, A.; Ripa, M.; Savastano, M.C.; De Vico, U.; Caporossi, T.; Kilian, R.; Rizzo, S. Comparison of novel digital microscope using integrated intraoperative OCT with Ngenuity 3D visualization system in phacoemulsification. Can. J. Ophthalmol. 2023, 58, 162–167. [Google Scholar] [CrossRef]
- Shetty, N.; Patel, Y.; Ranade, R.; Jain, A.; Narasimhan, R.; Bansod, A.; Nuijts, R. Evaluation of change in the contact of IOL with the posterior capsule with respect to the orientation of haptics of the IOL using intraoperative spectral domain optical coherence tomography. Indian J. Ophthalmol. 2025, 73, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Y.; Wang, D.; Zhang, R.; Wang, Z.; Zhang, G.; Huang, J.; Ye, X. Overcoming Corneal Opacity Challenges: Visualization Assessment of 3D System with Coaxial Illumination in Cataract Surgery. Am. J. Ophthalmol. 2025, 280, 71–78. [Google Scholar] [CrossRef] [PubMed]
| Category | Sample/Model | Representative References | Study Type | Key Outcomes |
|---|---|---|---|---|
| Mechanical modeling | Artificial chambers | Thorne et al. [19]; Dyk et al. [22] | Experimental | ΔVmax, recovery time |
| Fluidics comparison | Various phaco systems | Aravena et al. [20]; Fanney et al. [31] | Bench/Cadaveric | Surge volume, duration |
| Active/adaptive systems | Centurion (Alcon; Fort Worth, TX, USA), Stellaris (Bausch & Lomb, Bridgewater, NJ, USA) | Luo et al. [28]; Wang et al. [32] | Clinical/lab | IOP stability |
| Predictive fluidics | Unity VCS (Alcon; Fort Worth, TX, USA), Quatera 700 (Carl Zeiss Meditec AG, Jena, Germany) | Alcon [33] and Zeiss [34] technical information, | Prototype | Predictive IOP control |
| Posterior biomechanics | Human eye models | Creveling et al. [23] | Finite element | Pressure–traction transfer |
| Method | Main Advantages | Main Limitations | Measured Parameters |
|---|---|---|---|
| Rigid chamber (non-collapsible) [37,38] | High reproducibility; simple experimental setup | Does not reproduce real ocular compliance; overestimates negative pressures | Pressure drop; recovery time |
| Collapsible artificial chamber [17,31,38] | More realistic simulation of anterior chamber biomechanics | Higher technical complexity; lower reproducibility than rigid systems | Displaced volume; pressure; recovery time |
| Spring-eye model [22] | Direct measurement of displaced volume using calibrated springs; enables inter-platform comparisons | Artificial model; does not fully reproduce biological tissue behavior | Surge volume; surge duration (ms) |
| Mechanical model of ocular compliance [14,22] | Mathematical simulation of human pressure–volume relationships; highly repeatable | Lacks biological variability; relies on modeled assumptions | Exact volume as a function of pressure (P–V curves) |
| Ex vivo (donor or banked eyes) [23,27,39] | Highest anatomical and tissue realism | Limited availability; inter-eye variability; tissue fatigue with repeated testing | Anterior chamber depth; lost aqueous volume |
| System | Surge Duration (Reported or Inferred from Experimental/Bench Data) | Surge Volume/Aqueous Loss * | Notes |
|---|---|---|---|
| Legacy (Alcon) | Not reported | Higher than Infiniti [51] | Early gravity-based system; high surge with 19G tip and high flow |
| Infiniti (Alcon) | Qualitative only (shorter than Legacy) [51] | ~18% lower than Legacy [51] | ABS and low-compliance tubing reduce surge |
| Millennium (B&L) | Qualitative only (variable, mode-dependent) [51] | Lower in peristaltic mode [51] | Venturi mode associated with maximum surge |
| Sovereign (AMO) | Qualitative only (shorter with Cruise Control) [51] | Reduced with Cruise Control [51] | ABS + CC improve safety |
| Constellation (Alcon) | Qualitative only (variable) [55] | Higher than Centurion; comparable to Stellaris/EVA [55] | Designed primarily for vitreoretinal surgery; less efficient in surge control |
| Stellaris PC (B&L) | Not reported | 67–163 µL (27–65% of AC volume) [46,47] | Higher surge among modern platforms |
| Whitestar Signature (J&J) | Not reported | 30–103 µL (12–41% of AC volume) [52] | Intermediate performance; better than Stellaris |
| EVA (DORC) | Not reported. | 47–165 µL (19–66% of AC volume) [55] | High system compliance; large surge values |
| Oertli OS4 | Qualitative only (variable) | Intermediate values; higher than Centurion but lower than older systems [56,57] | No Active/Adaptive fluidics; stable at mid-range settings |
| Oertli Faros | Not reported | Surge dependent on aspiration mode [58,59,60] | Compact system; lacks advanced surge mitigation |
| Oertli CataRhex 3 | Not reported | Higher than OS4/Faros [40,44] | Portable platform; limited surge control |
| Centurion (Alcon) | Reported (bench model; 268–1590 ms; IOP-dependent) [40]. | 17–77 µL (7–31% of AC volume) [40,44] | Active Fluidics improves chamber stability |
| Centurion + Active Sentry (Alcon) | Qualitative only (shorter; rapid recovery) [40,56]. | ≤74.7 µL; (≤30% of AC volume) [40,56] | Handpiece-integrated sensor vents vacuum before collapse |
| Quatera 700 (Zeiss) | Reported (221–471 ms) [56]. | Slightly higher peak volume than Centurion (spring-eye model) [22] | Excellent pressure recovery; efficient leak compensation |
| Legion (Alcon) | Reported (70–90 ms [33] | ≈70 µL (similar to Signature Pro) [33] | New-generation system; comparable to modern platforms |
| Unity VCS (next generation) | Reported (bench/preliminary; ~200–300 ms) [33] | <60 µL (<20% of AC volume) preliminary (manufacturer technical data) [33] | Predictive infusion; physiologic IOP operation; pending independent validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Scarfone, H.; Rodríguez, E.C.; Diez, J.; Scarfone, A.; Scarfone, F. Occlusion Break Surge and Anterior Chamber Stability in the Intraocular Environment of Modern Phacoemulsification: A Narrative Review. Medicina 2026, 62, 298. https://doi.org/10.3390/medicina62020298
Scarfone H, Rodríguez EC, Diez J, Scarfone A, Scarfone F. Occlusion Break Surge and Anterior Chamber Stability in the Intraocular Environment of Modern Phacoemulsification: A Narrative Review. Medicina. 2026; 62(2):298. https://doi.org/10.3390/medicina62020298
Chicago/Turabian StyleScarfone, Hugo, Emilia Carolina Rodríguez, Javier Diez, Ana Scarfone, and Franco Scarfone. 2026. "Occlusion Break Surge and Anterior Chamber Stability in the Intraocular Environment of Modern Phacoemulsification: A Narrative Review" Medicina 62, no. 2: 298. https://doi.org/10.3390/medicina62020298
APA StyleScarfone, H., Rodríguez, E. C., Diez, J., Scarfone, A., & Scarfone, F. (2026). Occlusion Break Surge and Anterior Chamber Stability in the Intraocular Environment of Modern Phacoemulsification: A Narrative Review. Medicina, 62(2), 298. https://doi.org/10.3390/medicina62020298

