Prediction of Small for Gestational Age and Growth-Restricted Neonates at 35 to 36 Weeks of Gestation: A Multicenter Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Outcome Measures
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Model Development
3.3. External Validation
3.4. Performance of Screening for SGA Delivered Before 38 Weeks and Further Monitoring
4. Discussion
4.1. Main Findings
4.2. Comparison with Previous Studies
4.3. Strengths and Limitations
4.4. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SGA | small for gestational age |
FGR | fetal growth restriction |
EFW | estimated fetal weight |
MAP | mean arterial pressure |
PlGF | placental growth factor |
sFlt-1 | soluble fms-like tyrosine kinase-1 |
AUC | area under the curve |
DRs | detection rates |
FPRs | false-positive rates |
SPRs | screen-positive rates |
CI | confidence interval |
LGA | large for gestational age |
ISUOG | International Society of Ultrasound in Obstetrics and Gynecology |
SEGO | Spanish Society of Obstetrics and Gynecology |
SLE | systemic lupus erythematosus |
APS | antiphospholipid syndrome |
PE | preeclampsia |
PIH | pregnancy-induced hypertension |
PIs | pulsatility indices |
UtA | uterine artery |
UA | umbilical artery |
MCA | middle cerebral artery |
FMF | Fetal Medicine Foundation |
ROC | receiver operating characteristic |
References
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics and the Society forMaternal-FetalMedicin. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet. Gynecol. 2019, 133, e97–e109. [Google Scholar] [CrossRef]
- Muglu, J.; Rather, H.; Arroyo-Manzano, D.; Bhattacharya, S.; Balchin, I.; Khalil, A.; Thilaganathan, B.; Khan, K.S.; Zamora, J.; Thangaratinam, S. Risks of stillbirth and neonatal death with advancing gestation at term: A systematic review and meta-analysis of cohort studies of 15 million pregnancies. PLoS Med. 2019, 16, e1002838. [Google Scholar] [CrossRef]
- Meler, E.; Martinez-Portilla, R.J.; Caradeux, J.; Mazarico, E.; Gil-Armas, C.; Boada, D.; Martinez, J.; Carrillo, P.; Camacho, M.; Figueras, F. Severe smallness as predictor of adverse perinatal outcome in suspected late small-for-gestational-age fetuses: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2022, 60, 328–337. [Google Scholar] [CrossRef]
- Lindqvist, P.G.; Molin, J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2005, 25, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Fratelli, N.; Valcamonico, A.; Prefumo, F.; Pagani, G.; Guarneri, T.; Frusca, T. Effects of antenatal recognition and follow-up on perinatal outcomes in small-for-gestational age infants delivered after 36 weeks. Acta Obstet. Gynecol. Scand. 2013, 92, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, F.P.; Deter, R.L.; Harrist, R.B.; Park, S.K. Estimating fetal age: Computer-assisted analysis of multiple fetal growth parameters. Radiology 1984, 152, 497–501. [Google Scholar] [CrossRef] [PubMed]
- De Reu, P.A.O.M.; Smits, L.J.M.; Oosterbaan, H.P.; Nijhuis, J.G. Value of a single early third trimester fetal biometry for the prediction of birth weight deviations in a low risk population. J. Perinat. Med. 2008, 36, 324–329. [Google Scholar] [CrossRef]
- Bricker, L.; Medley, N.; Pratt, J.J. Routine ultrasound in late pregnancy (after 24 weeks’ gestation). Cochrane Database Syst. Rev. 2015, 2015, CD001451. [Google Scholar] [CrossRef]
- Monier, I.; Blondel, B.; Ego, A.; Kaminiski, M.; Goffinet, F.; Zeitlin, J. Poor effectiveness of antenatal detection of fetal growth restriction and consequences for obstetric management and neonatal outcomes: A French national study. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 518–527. [Google Scholar] [CrossRef]
- Hansen, D.N.; Odgaard, H.S.; Uldbjerg, N.; Sinding, M.; Sørensen, A. Screening for small-for-gestational-age fetuses. Acta Obstet. Gynecol. Scand. 2020, 99, 503–509. [Google Scholar] [CrossRef]
- Roma, E.; Arnau, A.; Berdala, R.; Bergos, C.; Montesinos, J.; Figueras, F. Ultrasound screening for fetal growth restriction at 36 vs 32 weeks’ gestation: A randomized trial (ROUTE). Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2015, 46, 391–397. [Google Scholar] [CrossRef]
- Sovio, U.; White, I.R.; Dacey, A.; Pasupathy, D.; Smith, G.C.S. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: A prospective cohort study. Lancet Lond. Engl. 2015, 386, 2089–2097. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Da Silva Costa, F.; Deter, R.L.; Figueras, F.; Ghi, T.; Glanc, P.; Khalil, A.; Lee, W.; Napolitano, R.; et al. ISUOG Practice Guidelines: Ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2019, 53, 715–723. [Google Scholar] [CrossRef]
- Ramírez, J.A.; Navarro, B.P.; Alvarado, E.A.; Bueno, J.A.S.; Ruiz, H.B.; González, C.B. Sociedad Española de Ginecología y Obstetricia. Guía de la exploración ecográfica del III trimestre 2020. Prog. Obstet. Ginecol. 2021, 64, 28–69. [Google Scholar]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of fetal weight with the use of head, body, and femur measurements--A prospective study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef]
- Leite, D.F.B.; Cecatti, J.G. Fetal Growth Restriction Prediction: How to Move beyond. Sci. World J. 2019, 2019, 1519048. [Google Scholar] [CrossRef] [PubMed]
- Hammami, A.; Mazer Zumaeta, A.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Ultrasonographic estimation of fetal weight: Development of new model and assessment of performance of previous models. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2018, 52, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Adjahou, S.; Syngelaki, A.; Nanda, M.; Papavasileiou, D.; Akolekar, R.; Nicolaides, K.H. Routine 36-week scan: Prediction of small-for-gestational-age neonate. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2025, 65, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Papastefanou, I.; Thanopoulou, V.; Dimopoulou, S.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Competing-risks model for prediction of small-for-gestational-age neonate at 36 weeks’ gestation. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2022, 60, 612–619. [Google Scholar] [CrossRef]
- Robinson, H.P.; Fleming, J.E. A critical evaluation of sonar ‘crown-rump length’ measurements. Br. J. Obstet. Gynaecol. 1975, 82, 702–710. [Google Scholar] [CrossRef]
- de Paco Matallana, C.; Rolle, V.; Fidalgo, A.M.; Sánchez-Romero, J.; Jani, J.C.; Chaveeva, P.; Delgado, J.L.; Santacruz, B.; Nicolaides, K.H.; Gil, M.M. Biparietal diameter for first-trimester pregnancy dating: Multicenter cohort study. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2025, 65, 560–566. [Google Scholar] [CrossRef]
- Martin-Alonso, R.; Prieto, P.; Fernández-Buhigas, I.; German-Fernandez, C.; Aramburu, C.; Piqueras, V.; Cuenca-Gomez, D.; Ferrer, E.; Rolle, V.; Santacruz, B.; et al. Association between Perinatal Outcomes and Maternal Risk Factors: A Cohort Study. Med. Kaunas. Lith. 2024, 60, 1071. [Google Scholar] [CrossRef]
- Döbert, M.; Varouxaki, A.N.; Mu, A.C.; Syngelaki, A.; Ciobanu, A.; Akolekar, R.; De Paco Matallana, C.; Cicero, S.; Greco, E.; Singh, M.; et al. Pravastatin Versus Placebo in Pregnancies at High Risk of Term Preeclampsia. Circulation 2021, 144, 670–679. [Google Scholar] [CrossRef]
- Poon, L.C.Y.; Zymeri, N.A.; Zamprakou, A.; Syngelaki, A.; Nicolaides, K.H. Protocol for measurement of mean arterial pressure at 11–13 weeks’ gestation. Fetal Diagn. Ther. 2012, 31, 42–48. [Google Scholar] [CrossRef]
- Tabacco, S.; Ambrosii, S.; Polsinelli, V.; Fantasia, I.; D’Alfonso, A.; Ludovisi, M.; Cecconi, S.; Guido, M. Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools-A Review of the Literature. Curr. Issues Mol. Biol. 2023, 45, 6202–6215. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, K.H.; Wright, D.; Syngelaki, A.; Wright, A.; Akolekar, R. Fetal Medicine Foundation fetal and neonatal population weight charts. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2018, 52, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Fetal Medicine Foundation. Research Tools. Calculation of MoMs [Internet]. Fetal Medicine Foundation. Research Tools. Calculation of MoMs. Available online: https://fetalmedicine.org/ (accessed on 15 January 2025).
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinf. Oxf. Engl. 2005, 21, 3940–3941. [Google Scholar] [CrossRef] [PubMed]
- EPIr [Internet]. epiR: Tools for the Analysis of Epidemiological Data_. R Package Version 2.0.75. Available online: https://CRAN.R-project.org/package=epiR (accessed on 23 February 2025).
- Wanyonyi, S.Z.; Orwa, J.; Ozelle, H.; Martinez, J.; Atsali, E.; Vinayak, S.; Temmerman, M.; Figueras, F. Routine third-trimester ultrasound for the detection of small-for-gestational age in low-risk pregnancies (ROTTUS study): Randomized controlled trial. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2021, 57, 910–916. [Google Scholar] [CrossRef]
- Lopian, M.; Prasad, S.; Segal, E.; Dotan, A.; Ulusoy, C.O.; Khalil, A. Prediction of small-for-gestational age and fetal growth restriction at routine ultrasound examination at 35-37 weeks’ gestation. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2025, 65, 761–770. [Google Scholar] [CrossRef]
- Ali, A.; Williams, J.; Hakim, H.; Golob, E.; Ganapathy, R. A retrospective analysis of the accuracy of third-trimester fetal ultrasound in singleton pregnancies for the prediction of small-for-gestational-age babies in an unselected antenatal population. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2025. [Google Scholar] [CrossRef]
- Caradeux, J.; Martinez-Portilla, R.J.; Peguero, A.; Sotiriadis, A.; Figueras, F. Diagnostic performance of third-trimester ultrasound for the prediction of late-onset fetal growth restriction: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019, 220, 449–459.e19. [Google Scholar] [CrossRef]
- Ciobanu, A.; Rouvali, A.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Prediction of small for gestational age neonates: Screening by maternal factors, fetal biometry, and biomarkers at 35–37 weeks’ gestation. Am. J. Obstet. Gynecol. 2019, 220, e1–e486. [Google Scholar] [CrossRef]
- Miranda, J.; Rodriguez-Lopez, M.; Triunfo, S.; Sairanen, M.; Kouru, H.; Parra-Saavedra, M.; Crovetto, F.; Figueras, F.; Crispi, F.; Gratacós, E. Prediction of fetal growth restriction using estimated fetal weight vs a combined screening model in the third trimester. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2017, 50, 603–611. [Google Scholar] [CrossRef]
- Martín-Palumbo, G.; Atanasova, V.B.; Rego Tejeda, M.T.; Antolín Alvarado, E.; Bartha, J.L. Third trimester ultrasound estimated fetal weight for increasing prenatal prediction of small-for-gestational age newborns in low-risk pregnant women. J. Matern. Neonatal Med. 2022, 35, 6721–6726. [Google Scholar] [CrossRef]
- Mustafa, H.J.; Javinani, A.; Muralidharan, V.; Khalil, A. Diagnostic performance of 32 vs 36 weeks ultrasound in predicting late-onset fetal growth restriction and small-for-gestational-age neonates: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2024, 6, 101246. [Google Scholar] [CrossRef] [PubMed]
- Akolekar, R.; Panaitescu, A.M.; Ciobanu, A.; Syngelaki, A.; Nicolaides, K.H. Two-stage approach for prediction of small-for-gestational-age neonate and adverse perinatal outcome by routine ultrasound examination at 35-37 weeks’ gestation. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2019, 54, 484–491. [Google Scholar] [CrossRef] [PubMed]
- van Roekel, M.; Henrichs, J.; Franx, A.; Verhoeven, C.J.; de Jonge, A. Implication of third-trimester screening accuracy for small-for-gestational age and additive value of third-trimester growth-trajectory indicators in predicting severe adverse perinatal outcome in low-risk population: Pragmatic secondary analysis of IRIS study. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2023, 62, 209–218. [Google Scholar]
- Libretti, A.; Valsecchi, L.; Zerbini, G.; Remorgida, V.; Candiani, M. Maternal plasma markers in intrauterine growth restriction and small for gestational age complicated pregnancy: The role of sFlt-1/PlGF. Minerva Obstet. Gynecol. 2023, 75, 588–589. [Google Scholar] [CrossRef]
Non-SGA (N = 3727) | SGA (N = 816) | p-Value | |
---|---|---|---|
Maternal age (years) | 34.0 (30.0; 37.0) | 34.0 (30.0; 37.0) | 0.01 |
Maternal height | 163 (160; 168) | 162 (158; 165) | <0.001 |
Maternal weight | 75.6 (68.0; 85.0) | 69.3 (61.8; 78.3) | <0.001 |
Smokers | 372 (10.0%) | 154 (18.9%) | <0.001 |
Spontaneous conception | 3511 (94.2%) | 763 (93.5%) | 0.461 |
Systemic lupus erythematosus | 6 (0.2%) | 5 (0.6%) | 0.033 |
Antiphospholipid syndrome | 7 (0.2%) | 4 (0.5%) | 0.119 |
Diabetes mellitus | 26 (0.7%) | 1 (0.1%) | 0.073 |
Chronic hypertension | 37 (1.0%) | 12 (1.5%) | 0.259 |
Family history of PE | 149 (4.0%) | 26 (3.2%) | 0.315 |
Current diagnosis of: | |||
Gestational diabetes mellitus | 153 (4.1%) | 35 (4.3%) | 0.772 |
PE | 17 (0.5%) | 15 (1.8%) | <0.001 |
Pregnancy-induced hypertension | 28 (0.8%) | 21 (2.6%) | <0.001 |
Personal obstetric history: | |||
Nulliparous | 1701 (45.6%) | 508 (62.3%) | <0.001 |
Parous—no FGR—no PE | 1856 (49.8%) | 231 (28.3%) | |
Parous—no FGR—PE | 38 (1.0%) | 6 (0.7%) | |
Parous—FGR—no PE | 120 (3.2%) | 67 (8.2%) | |
Parous—FGR—PE | 12 (0.3%) | 4 (0.5%) | |
Gestational age at ultrasound (weeks) | 35.6 (35.3; 36.1) | 35.7 (35.3; 36.1) | 0.007 |
EFW (grams) | 2720 (2540; 2910) | 2380 (2220; 2550) | <0.001 |
EFW percentile | 55.5 (27.9; 79.2) | 8.56 (1.68; 24.5) | <0.001 |
EFW z-score | 0.14 (−0.59; 0.81) | −1.37 (−2.13; −0.69) | <0.001 |
MAP MoMs | 0.98 (0.92; 1.03) | 0.99 (0.94; 1.06) | <0.001 |
UA-PI | 0.89 (0.78; 1.00) | 0.94 (0.83; 1.06) | <0.001 |
MCA-PI | 1.67 (1.45; 1.92) | 1.60 (1.40; 1.86) | <0.001 |
UtA-PI MoMs | 0.96 (0.82; 1.12) | 1.02 (0.86; 1.25) | <0.001 |
sFlt-1 MoMs | 0.98 (0.70; 1.37) | 1.05 (0.72; 1.66) | <0.001 |
PlGF MoMs | 0.99 (0.53; 1.78) | 0.61 (0.34; 1.24) | <0.001 |
Gestational age at delivery (weeks) | 39.9 (39.0; 40.7) | 39.3 (38.1; 40.3) | <0.001 |
Birthweight (grams) | 3380 (3150; 3640) | 2680 (2460; 2840) | <0.001 |
Birthweight percentile | 46.1 (26.6; 69.2) | 3.43 (1.32; 6.60) | <0.001 |
Development Cohort | Validation Cohort | p-Value | |
---|---|---|---|
(N = 3992) | (N = 551) | ||
Maternal age (years) | 33.0 (30.0; 37.0) | 36.0 (32.0; 39.0) | <0.001 |
Maternal height | 163 (159; 167) | 162 (158; 166) | <0.001 |
Maternal weight | 75.5 (68.2; 84.5) | 65.0 (58.0; 75.6) | <0.001 |
Smokers | 448 (11.2%) | 78 (14.2%) | 0.047 |
Spontaneous conception | 3804 (95.3%) | 470 (85.3%) | <0.001 |
Systemic lupus erythematosus | 10 (0.3%) | 1 (0.2%) | 1 |
Antiphospholipid syndrome | 10 (0.3%) | 1 (0.2%) | 1 |
Diabetes mellitus | 16 (0.4%) | 11 (2.0%) | <0.001 |
Chronic hypertension | 26 (0.7%) | 23 (4.2%) | <0.001 |
Family history of PE | 166 (4.2%) | 9 (1.6%) | 0.003 |
Current diagnosis of: | |||
Gestational diabetes mellitus | 161 (4.0%) | 27 (4.9%) | 0.360 |
PE | 18 (0.5%) | 14 (2.5%) | <0.001 |
Pregnancy-induced hypertension | 23 (0.6%) | 26 (4.7%) | <0.001 |
Personal obstetric history: | |||
Nulliparous | 1875 (47.0%) | 334 (60.6%) | <0.001 |
Parous—no FGR—no PE | 1909 (47.8%) | 178 (32.3%) | |
Parous—no FGR—PE | 38 (1.0%) | 6 (1.1%) | |
Parous—FGR—no PE | 159 (4.0%) | 28 (5.1%) | |
Parous—FGR—PE | 11 (0.3%) | 5 (0.9%) | |
Gestational age at ultrasound (weeks) | 35.6 (35.3; 36.1) | 35.7 (35.3; 36.1) | <0.001 |
EFW (grams) | 2670 (2478; 2867) | 2620 (2357; 2881) | 0.001 |
EFW percentile | 47.5 (20.7; 74.6) | 37.2 (4.81; 75.5) | <0.001 |
EFW z-score | −0.06 (−0.82; 0.66) | −0.33 (−1.66; 0.69) | <0.001 |
Fetuses EFW < 10th percentile | 546 (13.7%) | 166 (30.1%) | <0.001 |
Fetuses EFW < 5th percentile | 338 (8.5%) | 140 (25.4%) | <0.001 |
Gestational age at delivery (weeks) | 39.9 (38.9; 40.7) | 39.1 (38.2, 40.0) | <0.001 |
Birthweight (grams) | 3290 (3010; 3580) | 3080 (2675; 3420) | <0.001 |
Birthweight percentile | 39.0 (16.8; 64.8) | 24.2 (3.81; 54.2) | <0.001 |
Neonates born < 10th percentile | 630 (15.8%) | 186 (33.8%) | <0.001 |
Neonates born < 5th percentile | 364 (9.1%) | 150 (27.2%) | <0.001 |
Model | At 10% FPR | At 20% FPR | At 30% FPR | At 40% FPR | AUC (95% CI) | |
---|---|---|---|---|---|---|
Maternal factors + EFW | DR (95% CI) | 57.0 (53.0 to 60.9) | 72.2 (68.6 to 75.7) | 83.0 (79.9 to 85.9) | 88.4 (85.7 to 90.8) | 0.851 (0.835 to 0.867) |
SPR (%) | 17.4 | 28.2 | 38.4 | 47.6 | ||
Maternal factors + EFW + MAP | DR (95% CI) | 58.1 (54.1 to 62.0) | 71.9 (68.2 to 75.4) | 83.0 (79.9 to 85.9) | 90.0 (87.4 to 92.2) | 0.852 (0.837 to 0.868) |
SPR (%) | 17.6 | 28.2 | 38.4 | 47.9 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI | DR (95% CI) | 58.4 (54.5 to 62.3) | 72.7 (69.0 to 76.1) | 82.7 (79.5 to 85.6) | 89.1 (86.3 to 91.4) | 0.855 (0.839 to 0.870) |
SPR (%) | 17.6 | 28.3 | 38.3 | 47.7 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI + PlGF + sFlt-1 | DR (95% CI) | 60.2 (56.2 to 64.0) | 73.3 (69.7 to 76.8) | 82.7 (79.5 to 85.6) | 89.1 (86.3 to 91.4) | 0.857 (0.842 to 0.873) |
SPR (%) | 17.9 | 28.4 | 38.3 | 47.7 |
Model | At 10% FPR | At 20% FPR | At 30% FPR | At 40% FPR | AUC (95% CI) | |
---|---|---|---|---|---|---|
Maternal factors + EFW | DR (95% CI) | 65.7 (60.5 to 70.5) | 80.5 (76.0 to 84.4) | 88.2 (84.4 to 91.3) | 92.3 (89.1 to 94.8) | 0.882 (0.864 to 0.900) |
SPR | 15.1 | 25.5 | 35.3 | 44.7 | ||
Maternal factors + EFW + MAP | DR (95% CI) | 67.0 (61.9 to 71.8) | 81.3 (76.9 to 85.2) | 89.3 (85.7 to 92.3) | 92.3 (89.1 to 94.8) | 0.883 (0.865 to 0.901) |
SPR | 15.2 | 25.6 | 35.4 | 44.7 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI | DR (95% CI) | 68.4 (63.4 to 73.2) | 80.8 (76.3 to 84.7) | 88.4 (84.7 to 91.6) | 92.9 (89.7 to 95.3) | 0.885 (0.867 to 0.902) |
SPR | 15.3 | 25.5 | 35.3 | 44.8 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI + PlGF + sFlt-1 | DR (95% CI) | 69.2 (64.2 to 73.9) | 80.8 (76.3 to 84.7) | 87.4 (83.5 to 90.6) | 91.5 (88.1 to 94.1) | 0.885 (0.868 to 0.903) |
SPR | 15.4 | 25.5 | 35.2 | 44.7 |
Model | ||||||
---|---|---|---|---|---|---|
Prediction of BW < 10th | 10% FPR | At 20% FPR | At 30% FPR | At 40% FPR | AUC (95% CI) | |
Maternal factors + EFW | DR (95% CI) | 77.5 (68.6 to 84.9) | 90.1 (83.0 to 95.0) | 93.7 (87.4 to 97.4) | 96.4 (91.0 to 99.0) | 0.921 (0.87 to 0.96) |
SPR | 29.0 | 39.7 | 47.9 | 55.9 | ||
Maternal factors + EFW + MAP | DR (95% CI) | 82.0 (73.6 to 88.6) | 90.1 (83.0 to 95.0) | 93.7 (87.4 to 97.4) | 98.2 (93.6 to 99.8) | 0.922 (0.88 to 0.96) |
SPR | 30.3 | 39.7 | 47.9 | 56.4 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI | DR (95% CI) | 81.1 (72.6 to 87.9) | 89.2 (81.9 to 94.3) | 95.5 (89.8 to 98.5) | 96.4 (91.0 to 99.0) | 0.926 (0.90 to 0.96) |
SPR | 30.0 | 39.5 | 48.5 | 55.9 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI + PlGF + sFlt-1 | DR (95% CI) | 82.0 (73.6 to 88.6) | 91.0 (84.1 to 95.6) | 95.5 (89.8 to 98.5) | 97.3 (92.3 to 99.4) | 0.927 (0.89 to 0.96) |
SPR | 30.3 | 40.0 | 48.5 | 56.2 | ||
Prediction of BW < 5th | 10% FPR | At 20% FPR | At 30% FPR | At 40% FPR | AUC (95% CI) | |
Maternal factors + EFW | DR (95% CI) | 74.7 (64.3 to 83.4) | 90.8 (82.7 to 96.0) | 93.1 (85.6 to 97.4) | 95.4 (88.6 to 98.7) | 0.92 (0.891 to 0.95) |
SPR | 24.1 | 35.6 | 43.8 | 52.1 | ||
Maternal factors + EFW + MAP | DR (95% CI) | 75.9 (65.5 to 84.4) | 90.8 (82.7 to 96.0) | 94.3 (8.1 to 98.1) | 97.7 (91.9 to 99.7) | 0.921 (0.891 to 0.95) |
SPR | 24.4 | 35.6 | 44.1 | 52.6 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI | DR (95% CI) | 73.6 (63.0 to 82.5) | 92.0 (84.1 to 96.7) | 93.1 (85.6 to 97.4) | 97.7 (91.9 to 99.7) | 0.924 (0.894 to 0.954) |
SPR | 23.8 | 35.9 | 43.8 | 52.6 | ||
Maternal factors + EFW + MAP + UA-PI + MCA-PI + UtA-PI + PlGF + sFlt-1 | DR (95% CI) | 77.01 (66.8 to 85.4) | 93.1 (85.6 to 97.4) | 94.3 (87.1 to 98.1) | 96.6 (90.3 to 99.3) | 0.923 (0.892 to 0.954) |
SPR | 24.6 | 36.2 | 44.1 | 52.3 |
Model | Percentage (%) of Women Undelivered at 40 Weeks | |||
---|---|---|---|---|
Prediction BW < 10th | If FPR 10% | If FPR 20% | If FPR 30% | If FPR 40% |
Maternal factors + EFW | 35.16 | 38.45 | 39.19 | 40.45 |
Maternal factors + EFW + MAP | 32.95 | 37.37 | 38.60 | 40.19 |
Maternal factors + EFW + MAP + UA-PI/+ MCA-PI/+ UtA-PI | 33.14 | 37.02 | 38.98 | 39.42 |
Maternal factors + EFW + MAP + UA-PI/+ MCA-PI/+ UtA-PI + PlGF/sFlt-1 | 30.81 | 35.30 | 37.74 | 38.32 |
Prediction BW < 5th | ||||
Maternal factors + EFW | 33.11 | 37.62 | 39.42 | 39.87 |
Maternal factors + EFW + MAP | 32.51 | 37.41 | 38.60 | 39.25 |
Maternal factors + EFW + MAP + UA-PI/+ MCA-PI/+ UtA-PI | 30.77 | 36.11 | 38.89 | 39.15 |
Maternal factors + EFW + MAP + UA-PI/+ MCA-PI/+ UtA-PI + PlGF/sFlt-1 | 28.66 | 34.35 | 36.87 | 37.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Alonso, R.; de Paco Matallana, C.; Valiño, N.; Chaveeva, P.; Dagklis, T.; Siargkas, A.; Wright, A.; Camacho, M.; Rolle, V.; Santacruz, B.; et al. Prediction of Small for Gestational Age and Growth-Restricted Neonates at 35 to 36 Weeks of Gestation: A Multicenter Cohort Study. Medicina 2025, 61, 1626. https://doi.org/10.3390/medicina61091626
Martin-Alonso R, de Paco Matallana C, Valiño N, Chaveeva P, Dagklis T, Siargkas A, Wright A, Camacho M, Rolle V, Santacruz B, et al. Prediction of Small for Gestational Age and Growth-Restricted Neonates at 35 to 36 Weeks of Gestation: A Multicenter Cohort Study. Medicina. 2025; 61(9):1626. https://doi.org/10.3390/medicina61091626
Chicago/Turabian StyleMartin-Alonso, Raquel, Catalina de Paco Matallana, Nuria Valiño, Petya Chaveeva, Themistoklis Dagklis, Antonios Siargkas, Alan Wright, Mario Camacho, Valeria Rolle, Belén Santacruz, and et al. 2025. "Prediction of Small for Gestational Age and Growth-Restricted Neonates at 35 to 36 Weeks of Gestation: A Multicenter Cohort Study" Medicina 61, no. 9: 1626. https://doi.org/10.3390/medicina61091626
APA StyleMartin-Alonso, R., de Paco Matallana, C., Valiño, N., Chaveeva, P., Dagklis, T., Siargkas, A., Wright, A., Camacho, M., Rolle, V., Santacruz, B., & Gil, M. M. (2025). Prediction of Small for Gestational Age and Growth-Restricted Neonates at 35 to 36 Weeks of Gestation: A Multicenter Cohort Study. Medicina, 61(9), 1626. https://doi.org/10.3390/medicina61091626