Right Ventricular Function Improves After Bench Press: A Speckle Tracking Echocardiography Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Follow-Up
2.3. Candidates Included in This Study
Control Group
2.4. Weightlifters Participating in the Stress Test
2.4.1. Intervention: Study on the Cohort
2.4.2. Intervention: Exercise Stress-Echo in Weightlifters’ Group
2.4.3. Image Acquisition and Processing
2.4.4. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Physiological Parameters
Control Group (n = 60) | Before Bench Press (n = 211) | After Bench Press (n = 211) | p-Value | |
---|---|---|---|---|
Weight (Kg) | 82.43 ± 13.28 | 81.77 ± 11.44 | 0.173 | |
Height (m) | 1.77 ± 15.27 | 1.78 ± 23.54 | 0.540 | |
Body Surface (Dubois and Dubois m2) | 2.014 ± 0.32 | 2.001 ± 0.17 | 0.128 | |
Systolic blood pressure (mmHg) | 119.41 ± 18.75 | 122.38 ± 13.27 | 135.87 ± 15.48 | 0.001 |
Diastolic blood pressure (mmHg) | 81.28 ± 22.32 | 65.27 ± 16.32 | 85.88 ± 25.48 | 0.001 |
Heart rate B/min | 74.35 ± 12.10 | 58.75 ± 11.32 | 101.58 ± 24.44 | 0.001 |
Breathing frequency (B/m) | 16.22 ± 3.54 | 14.22 ± 9.22 | 24.32 ± 5.2 | 0.001 |
SpO2 | 97.12 ± 0.88 | 95.02 ± 0.12 | 94.78 ± 2.32 | 0.45 |
3.3. Echocardiography Parameters
3.4. Right Ventricular Systolic Function
Control Group (n = 60) | Before Bench Press (n = 211) | After Bench Press (n = 211) | p-Value | |
---|---|---|---|---|
3D RVEF (%) | 0.67 ± 0.06 | 0.55 ± 0.22 | 0.78 ± 0.12 | 0.001 |
IVA (m/s2) | 2.38 ± 0.22 | 3.52 ± 0.15 | 6.66 ± 0.88 | 0.001 |
S’ wave (cm/s) | 12.27 ± 1.13 | 14.52 ± 0.09 | 18.38 ± 1.21 | 0.001 |
TAPSE (mm) | 24.33 ± 3.12 | 19.08 ± 5.14 | 27.45 ± 3.21 | 0.001 |
EDRVD (mm) | 37.22 ± 0.11 | 42.13 ± 0.08 | 48.24 ± 0.92 | 0.001 |
Global RVEF 2D | 0.62 ± 0.15 | 0.49 ± 0.06 | 0.74 ± 3.21 | 0.001 |
Laterobasal RVEF | 0.65 ± 0.25 | 0.42 ± 0.02 | 0.94 ± 0.17 | 0.001 |
Lateromedial RVEF | 0.62 ± 0.12 | 0.55 ± 0.18 | 0.74 ± 0.22 | 0.001 |
Lateroapical RVEF | 0.62 ± 0.09 | 0.49 ± 0.17 | 0.95 ± 0.19 | 0.001 |
Septoapical RVEF | 0.63 ± 0.15 | 0.47 ± 0.18 | 0.95 ± 0.21 | 0.001 |
Septomedial RVEF | 0.65 ± 0.21 | 0.46± 0.22 | 0.98 ± 0.17 | 0.001 |
Septobasal RVEF | 0.58 ± 0.22 | 0.43 ± 0.02 | 0.94 ± 0.19 | 0.001 |
Control Group (n = 60) | Before Exercise. Bench Press Group (n = 211) | After Exercise. Bench Press Group (n = 211) | p-Value | |
---|---|---|---|---|
Right velocity E wave (m/s) | 0.45 ± 0.22 | 0.55 ± 0.28 | 0.94 ± 0.12 | 0.001 |
Peak velocity A wave (m/s) | 0.28 ± 0.12 | 0.32 ± 0.12 | 0.61 ± 0.32 | 0.001 |
E deceleration time (ms) | 235.44 ± 56.32 | 202.22 ± 22.55 | 213.57 ± 88.32 | 0.001 |
IVRT (ms) | 72.68 ± 11.34 | 87.24 ± 12.45 | 56.75 ± 17.78 | 0.001 |
Velocity right lateral E′ wave (m/s) | 0.017 ± 0.15 | 0.021 ± 0.02 | 0.038 ± 0.02 | 0.001 |
Right E/E′ ratio | 2.14 ± 0.28 | 2.61 ± 0.08 | 2.47 ± 0.28 | N.S. |
PCWP (Kuecherer equation mmHg) | 12.06 ± 2.2 | 8.32 ± 0.12 | 5.60 ± 0.32 | 0.001 |
Inferior cava vein (mm) * | 11.32 ± 3.36 | 7.08 ± 0.33 | 18.21 ± 3.5 | 0.001 |
Control Group (n = 60) | Before Bench Press (n = 211) | After Bench Press (n = 211) | p-Value | |
---|---|---|---|---|
Peak systolic longitudinal velocity (cm/s) | 4.98 ± 0.12 | 4.01 ± 10.21 | 9.48 ± 3.25 | 0.001 |
peak E longitudinal velocity (cm/s) | −5.6 ± 1.35 | −4.2 ± 0.87 | −7.38 ± 3.15 | 0.0001 |
peak A longitudinal velocity (cm/s) | −4.01 ± 0.74 | −3.75 ± 0.98 | −5.14 ± 1.48 | 0.0001 |
Peak systolic radial velocities (cm/s) | 4.76 ± 0.48 | 1.76 ± 0.48 | 6.17 ± 1.35 | 0.0001 |
E peak radial velocity (cm/s) | −1.75 ± 0.16 | −1.45 ± 0.54 | −2.21 ± 0.191 | 0.0001 |
A peak radial velocity (cm/s) | −0.11 ± 0.12 | −0.09 ± 1.35 | −0.6 ± 0.22 | 0.0001 |
Right ventricular longitudinal global strain (%) | −27.31 ± 1.47 | −23.55 ± 2.37 | −30.98 ± 2.12 | 0.0001 |
Right ventricular Longitudinal Strain delay (ms) | 144.88 ± 22.52 | 168.92± 29.35 | 98.27 ± 12.11 | 0.0001 |
Right ventricular longitudinal global right Strain rate (1/s) | −1.79 ± 0.078 | −1.48 ± 0.33 | −2.88 ± 0.25 | 0.0001 |
Right ventricular Longitudinal systolic displacement (mm) | 6.12 ± 1.18 | 5.09 ± 3.22 | 10.88 ± 1.25 | 0.0001 |
Right ventricular Radial systolic displacement (mm) | 1.88 ± 1.78 | 1.33 ± 1.14 | 4.57 ± 0.96 | 0.0001 |
Right ventricular Radial displacement delay (ms) | 182.14 ± 17.12 | 212.36 ± 18.96 | 124.32 ± 15.25 | 0.0001 |
3.5. Diastolic Function
3.6. Ten-Year Follow-Up
Control Group (n = 30) | 2014 (n = 30) | 2024 Before Bench Press (n = 30) | 2024 After Bench Press (n = 30) | p-Value | |
---|---|---|---|---|---|
Systolic blood pressure (mmHg) | 126.48 ± 11.107 | 120.36 ± 07.13 | 117.03 ± 10.21 | 139.22 ± 15.37 | NS |
Diastolic blood pressure (mmHg) | 84.11 ± 12.04 | 78.11 ± 02.12 | 72.11 ± 5.28 | 88.81 ± 12.26 | NS |
Heart rate B/min | 78.11 ± 15.28 | 65.18 ±09.12 | 59.88 ± 3.27 | 121.53 ± 14.39 | NS |
Breathing frequency (B/m) | 17.48.33 ± 1.28 | 15.33 ± 1.28 | 15.11 ± 1.09 | 27.48 ± 2.21 | NS |
SpO2 | 97.33 ± 0.91 | 97.33 ± 0.91 | 98.78 ± 0.57 | 96.45 ± 0.57 | NS |
3D RVEF (%) | 0.63 ± 0.12 | 0.61 ± 0.25 | 0.58 ± 0.33 | 0.76 ± 0.21 | NS |
IVA (m/s2) | 2.98 ± 1.23 | 4.88 ± 0.58 | 3.25 ± 0.87 | 6.37 ± 1.33 | 0.034 |
S’ wave (cm/s) | 12.57 ± 1.23 | 16.72 ± 0.15 | 13.12 ± 0.18 | 17.28 ± 1.44 | 0.012 |
TAPSE (mm) | 22.39 ± 5.28 | 25.27 ± 4.18 | 24.32 ± 3.23 | 28.89 ± 1.47 | NS |
Peak systolic longitudinal velocity (cm/s) | 4.14 ± 1.27 | 5.18 ± 0.27 | 4.78 ± 1.24 | 111.22 ± 3.41 | NS |
Peak systolic radial velocities (cm/s) | 4.02 ± 0.87 | 4.76 ± 0.48 | 6.87 ± 1.51 | 6.17 ± 1.35 | NS |
Right ventricular longitudinal global strain (%) | −27.87 ± 1.97 | −24.28 ± 1.32 | −25.31 ± 1.18 | −36.48 ± 2.32 | NS |
Right ventricular longitudinal global right Strain rate (1/s) | −1.57 ± 1.25 | −1.53 ± 0.11 | −1.59 ± 0.54 | −2.87 ± 0.75 | NS |
Right ventricular Longitudinal Strain delay (ms) | 119.33 ± 32.18 | 107.21 ± 27.78 | 113.41 ± 35.16 | 78.22 ± 24.38 | NS |
Right ventricular Longitudinal systolic displacement (mm) | 6.88 ± 4.51 | 6.11 ± 2.23 | 7.33 ± 4.21 | 12.28 ± 3.11 | NS |
Right ventricular Radial systolic displacement (mm) | 4.31 ± 2.13 | 4.13 ± 1.58 | 3.88 ± 0.49 | 3.48 ± 0.87 | NS |
Right ventricular Radial displacement delay (ms) | 167.23 ± 32.69 | 167.23 ± 32.69 | 152.72 ± 21.37 | 81.12 ± 11.13 | NS |
3.7. Analytical and Nutritional Data of Weightlifters
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
ASE | American society of echocardiography |
DTI | Doppler tissue imaging |
EDRVD | End-diastolic right ventricular diameter, evaluated in apical 4-chamber projection, measured at the base of the right ventricle |
ESC | European Society of Cardiology |
IVRT | Isovolumic relaxation time |
IVA | Isovolumic acceleration |
RM | Repetition maximal |
RVEDV | Right ventricular end-diastolic volume |
IPAQ | International physical activity questionnaires; https://www.juntadeandalucia.es/export/drupaljda/salud_5af95872aeaa7_cuestionario_actividad_fisica_ipaq.pdf (accessed on 1 January 2012) |
LV | Left ventricle |
RVEF | Right ventricular ejection fraction |
RVESV | Right ventricular end diastolic volume |
S | Strain |
SR | Strain rate |
SRS | Systolic strain rate |
TAPSE | Tricuspid annular plane systolic excursion |
References
- La Gerche, A.; Heidbüchel, H.; Burns, A.T.; Mooney, D.J.; Taylor, A.J.; Pfluger, H.B.; Inder, W.J.; Macisaac, A.I.; Prior, D.L. Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med. Sci. Sports Exerc. 2011, 43, 974–981. [Google Scholar] [CrossRef] [PubMed]
- D’aScenzi, F.; Anselmi, F.; Piu, P.; Fiorentini, C.; Carbone, S.F.; Volterrani, L.; Focardi, M.; Bonifazi, M.; Mondillo, S. Cardiac Magnetic Resonance Normal Reference Values of Biventricular Size and Function in Male Athlete’s Heart. JACC Cardiovasc. Imaging 2019, 12, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-S.; Ao, Y.-W.; Zhu, D.-Y.; Zhang, L.; Yang, R.-J.; Zhao, Y.-L.; Zha, Y.-F. Reduced myocardial strain of interventricular septum among male amateur marathon runners: A cardiac magnetic resonance study. J. Sci. Med. Sport 2023, 26, 506–513. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A.; Burns, A.T.; D’hOoge, J.; MacIsaac, A.I.; Heidbüchel, H.; Prior, D.L. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J. Am. Soc. Echocardiogr. 2012, 25, 253–262.e1. [Google Scholar] [CrossRef]
- Knackstedt, C.; Hildebrandt, U.; Schmidt, K.; Syrocki, L.; Lang, A.; Bjarnason-Wehrens, B.; Schummers, G.; Stapf, D.; Becker, M.; Predel, H.G. Analysis of right and left ventricular deformation in former world class swimmers: Evaluation using speckle tracking. J. Sports Med. Phys. Fit. 2014, 55, 978–987. [Google Scholar] [PubMed]
- Leischik, R.; Spelsberg, N. Endurance sport and “cardiac injury”: A prospective study of recreational ironman athletes. Int. J. Environ. Res. Public Health 2014, 11, 9082–9100. [Google Scholar] [CrossRef] [PubMed]
- Trivax, J.E.; Franklin, B.A.; Goldstein, J.A.; Chinnaiyan, K.M.; Gallagher, M.J.; Dejong, A.T.; Colar, J.M.; Haines, D.E.; McCullough, P.A. Acute cardiac effects of marathon running. J. Appl. Physiol. 2010, 108, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Braschler, L.; Nikolaidis, P.T.; Thuany, M.; Chlíbková, D.; Rosemann, T.; Weiss, K.; Wilhelm, M.; Knechtle, B. Physiology and Pathophysiology of Marathon Running: A narrative Review. Sports Med.-Open 2025, 11, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neilan, T.G.; Januzzi, J.L.; Lee-Lewandrowski, E.; Ton-Nu, T.-T.; Yoerger, D.M.; Jassal, D.S.; Lewandrowski, K.B.; Siegel, A.J.; Marshall, J.E.; Douglas, P.S.; et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 2006, 114, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Jagminas, R.; Šerpytis, R.; Šerpytis, P.; Glaveckaitė, S. Left Ventricular Hypertrabeculation (LVHT) in Athletes: A Negligible Finding? Medicina 2024, 61, 32. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, A.; Toncelli, L.; Vanni, S.; Modesti, A.; Pedrizzetti, G.; Modesti, P.A. Structural and functional remodeling for elite cyclists during exercise; pressure-volume loops and hemodynamic forces analysis. Am. J. Physiol.-Heart Circ. Physiol. 2025, 328, H393–H400. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.T.; Dweck, M.R.; Prasher, S.; Shah, A.; Humphries, S.E.; Pennell, D.J.; Montgomery, H.E.; Payne, J.R. Left ventricular wall thickness and the presence of asymmetric hypertrophy in healthy young army recruits: Data from the LARGE heart study. Circ. Cardiovasc. Imaging 2013, 6, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Stanton, K.M.; Wylie, L.; Kotchetkova, I.; Coy, A.; Carroll, G.; LA Gerche, A.; Celermajer, D.S. Soldiers’ Heart: A Prospective Study of Cardiac Remodeling in Soldiers Undergoing Progressive Intensity Exercise Training. Med. Sci. Sports Exerc. 2022, 54, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Stanković, N.; Stupar, D.; Ignjatović, A.; Milošević, N.; Trajković, N. Stable or Unstable? Evaluating the Strength Outcomes of 12-Week Resistance Training in Youth Judo Athletes. Sports 2024, 12, 352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Y.; Wu, T.; Wu, M.; Liu, S.; Chen, X.; Wu, J.; Guo, X.; Yang, L. Evidence map of traditional Chinese exercises. Front. Public Health 2024, 12, 1347201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Gioia, G.; Ferrera, A.; Maestrini, V.; Monosilio, S.; Squeo, M.R.; Lemme, E.; Nenna, A.; Clarich, S.C.; Crotta, S.; Pelliccia, A. Cardiac Adaptation in Power Athletes: Differential Impact of Judo and Weightlifting. J. Clin. Med. 2024, 13, 3336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Charton, M.; Kervio, G.; Matelot, D.; Lachard, T.; Galli, E.; Donal, E.; Carré, F.; Le Douairon Lahaye, S.; Schnell, F. Exercise-Induced Cardiac Fatigue in Soldiers Assessed by Echocardiography. Front. Cardiovasc. Med. 2021, 8, 785869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sejersen, C.; Volianitis, S.; Secher, N.H. The athlete’s heart: Allometric considerations on published papers and relation to cardiovascular variables. Eur. J. Appl. Physiol. 2024, 124, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Aaron, C.P.; Tandri, H.; Barr, R.G.; Johnson, W.C.; Bagiella, E.; Chahal, H.; Jain, A.; Kizer, J.R.; Bertoni, A.G.; Lima, J.A.C.; et al. Physical activity and right ventricular structure and function. The MESA-Right Ventricle Study. Am. J. Respir. Crit. Care Med. 2011, 183, 396–404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- La Gerche, A.; A Connelly, K.; Mooney, D.J.; I MacIsaac, A.; Prior, D.L. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 2008, 94, 860–866. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A.; Claessen, G.; Dymarkowski, S.; Voigt, J.-U.; De Buck, F.; Vanhees, L.; Droogne, W.; Van Cleemput, J.; Claus, P.; Heidbuchel, H. Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur. Heart J. 2015, 36, 1998–2010. [Google Scholar] [CrossRef] [PubMed]
- D’aMbrosio, P.; Claessen, G.; Kistler, P.M.; Heidbuchel, H.; Kalman, J.M.; La Gerche, A. Ventricular arrhythmias in association with athletic cardiac remodelling. Europace 2024, 26, euae279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dawkins, T.G.; Curry, B.A.; Wright, S.P.; Meah, V.L.; Yousef, Z.; Eves, N.D.; Shave, R.E.; Stembridge, M. Right Ventricular Function and Region-Specific Adaptation in Athletes Engaged in High-Dynamic Sports: A Meta-Analysis. Circ. Cardiovasc. Imaging 2021, 14, e012315. [Google Scholar] [CrossRef] [PubMed]
- Kleinnibbelink, G.; Panhuyzen-Goedkoop, N.; Hulshof, H.; van Dijk, A.; George, K.; Somauroo, J.; Oxborough, D.; Thijssen, D.H.J. Exercise Training Induces Left- but not Right-sided Cardiac Remodelling in Olympic Rowers. Int. J. Sports Med. 2022, 43, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.; Oláh, A.; Lux, Á.; Mátyás, C.; Németh, B.T.; Kellermayer, D.; Ruppert, M.; Török, M.; Szabó, L.; Meltzer, A.; et al. Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete’s heart. Am. J. Physiol. Circ. Physiol. 2015, 308, H743–H748. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Tengku Kamalde, T.F.; Zhu, X.; Xiang, C.; Nasharuddin, N.A. Advantages of different dietary supplements for elite combat sports athletes: A systematic review and Bayesian network meta-analysis. Sci. Rep. 2025, 15, 271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gruson, D.; Pouleur, A.-C.; Makris, K.; Chrysohoou, C. Systematic vitamin D supplementation and monitoring: Improving outcomes in heart failure? Eur. J. Heart Fail. 2017, 19, 686–687. [Google Scholar] [CrossRef] [PubMed]
- Saunders, A.M.; Jones, R.L.; Richards, J. Cardiac structure and function in resistance-trained and untrained adults: A systematic review and meta-analysis. J. Sports Sci. 2022, 40, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Bailen, M.; Cobo Molinos, J.; Espada-Fuentes, J.C.; Castillo-Rivera, A.M.; Martinez Amat, A.; Martínez Ramírez, M.J.; Pola-Gallego-de-Guzmán, M.D.; Sánchez Ramos, S.; Ramos-Cuadra, J.Á. Left Ventricular Function Improve After Bench Press: A Speckle Tracking and 3D Echocardiography Study. J. Sports Med. Doping Stud. 2017, 7, 1. [Google Scholar] [CrossRef]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography: Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef] [PubMed]
- Jainandunsing, J.S.; Matyal, R.; Shahul, S.S.; Wang, A.; Woltersom, B.; Mahmood, F. 3-dimensional right ventricular volume assessment. J. Cardiothorac. Vasc. Anesth. 2013, 27, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.T.; Cordovil, A.; Monaco, C.; Guimarães, L.; Cury, A.; Naccarato, G.A.F.; Lira-Filho, E.; Fischer, C.H.; Vieira, M.L.C.; Morhy, S. Right ventricular assessment by tissue-Doppler echocardiography in acute pulmonary embolism. Arq. Bras. Cardiol. 2013, 100, 524–530. [Google Scholar] [CrossRef]
- Selcuk, M.; Sayar, N.; Demir, S.; Rodi Tosua, A.; Aslan, V. The value of isovolumic acceleration for the assessment of right ventricular function in acute pulmonary embolism. Rev. Port. Cardiol. 2014, 33, 591–633. [Google Scholar] [CrossRef] [PubMed]
- Cetiner, M.A.; Sayin, M.R.; Yildirim, N.; Karabag, T.; Dogan, S.M.; Kucuk, E.; Aydin, M. Right ventricular isovolumic acceleration in acute pulmonary embolism. Echocardiography 2014, 31, 1253–1258. [Google Scholar] [CrossRef]
- Lundgren, K.M.; Langlo, K.A.R.; Salvesen, Ø.; Aspvik, N.P.; Mo, R.; Ellingsen, Ø.; Vesterbekkmo, E.; Zanaboni, P.; Dalen, H.; Aksetøy, I.-L.A. Exercise-Based Telerehabilitation for Heart Failure Patients Declining Outpatient Rehabilitation—A Randomized Controlled Trial. Med. Sci. Sports Exerc. 2025, 57, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.G.; Reis, C.H.O.; dos Santos, L.; Neto, W.K.; Lima-Leopoldo, A.P.; Baker, J.S.; Leopoldo, A.S.; Bocalini, D.S. Strength training improves heart function, collagen and strength in rats with heart failure. J. Physiol. Sci. 2024, 74, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pamart, N.; Drigny, J.; Azambourg, H.; Remilly, M.; Macquart, M.; Lefèvre, A.; Lahjaily, K.; Parienti, J.J.; Rocamora, A.; Guermont, H.; et al. Effects of a 20-Week High-Intensity Strength Training Program on Muscle Strength Gain and Cardiac Adaptation in Untrained Men: Preliminary Results of a Prospective Longitudinal Study. JMIR Form. Res. 2023, 7, e47876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreno, A.C.R.; Nai, G.A.; Laurindo, C.P.; Gregorio, K.C.R.; Olean-Oliveira, T.; Teixeira, M.F.S.; Seraphim, P.M.; Glantz, S.A. Resistance training prevents right ventricle hypertrophy in rats exposed to secondhand cigarette smoke. PLoS ONE 2020, 15, e0236988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dalsgaard, M.; Snyder, E.M.; Kjaergaard, J.; Johnson, B.D.; Hassager, C.; Oh, J.K. Isovolumic acceleration measured by tissue Doppler echocardiography is preload independent in healthy subjects. Echocardiography 2007, 24, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Starekova, J.; Thottakara, T.; Lund, G.K.; Welsch, G.H.; Brunner, F.J.; Muellerleile, K.; Adam, G.; Regier, M.; Tahir, E. Increased myocardial mass and attenuation of myocardial strain in professional male soccer players and competitive male triathletes. Int. J. Cardiovasc. Imaging 2020, 36, 2187–2197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- King, G.; Almuntaser, I.; Murphy, R.T.; La Gerche, A.; Mahoney, N.; Bennet, K.; Clarke, J.; Brown, A. Reduced right ventricular myocardial strain in the elite athlete may not be a con-sequence of myocardial damage. “Cream masquerades as skimmed milk”. Echocardiography 2013, 30, 929–935. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.; Yang, C.; Hu, P.; Ma, H.; Ma, Y.; Gao, F. Right ventricular function in athletes engaged in endurance exercise using speckle tracking echocardiography: A meta-analysis. BMC Cardiovasc. Disord. 2025, 25, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, Z.; Dai, L.; Song, Y.; Ma, X.; Wang, J.; Yu, S.; Yang, S.; Yang, K.; Zhao, K.; Lu, M.; et al. Right Ventricular Strain Derived from Cardiac MRI Feature Tracking for the Diagnosis and Prognosis of Arrhythmogenic Right Ventricular Cardiomyopathy. Radiol. Cardiothorac. Imaging 2024, 6, e230292. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, S.; Xia, C.; Meng, X.; Li, Y.; Weng, S.; Xu, T.; Wang, Y.; Kong, Y.; Lang, X.; et al. Exercise-induced cardiac troponin elevations and cardiac ventricular dysfunction assessed by tissue Doppler echocardiography and speckle tracking among non-elite runners in Beijing marathon. J. Sci. Med. Sport 2024, 27, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhang, H.; Ma, H.; Yang, C.; Hu, P.; Gao, F. Assessment of right ventricular structure and systolic function in amateur marathon runners using three-dimensional speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2023, 39, 1473–1482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shima, H.; Tsujino, I.; Nakamura, J.; Nakaya, T.; Sugimoto, A.; Sato, T.; Watanabe, T.; Ohira, H.; Suzuki, M.; Tsuneta, S.; et al. Exploratory analysis of the accuracy of echocardiographic parameters for the assessment of right ventricular function and right ventricular–pulmonary artery coupling. Pulm. Circ. 2024, 14, e12368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chycki, J.; Krzysztofik, M.; Sadowska-Krępa, E.; Baron-Kaczmarek, D.; Zając, A.; Poprzęcki, S.; Petr, M. Acute Hormonal and Inflammatory Responses following Lower and Upper Body Resistance Exercises Performed to Volitional Failure. Int. J. Mol. Sci. 2024, 25, 7455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alessandria, M.; Angilletta, S.; Pivetta, I.; Annone, B.; Cravanzola, S.; De Giorgio, A. 4-week stretching program after submaximal strength exercise affects performance but not heart rate variability and lactate clearance. An exploratory study. Front. Sports Act. Living 2024, 6, 1424756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buckberg, G.D.; Clemente, C.; Cox, J.L.; Coghlan, H.C.; Castella, M.; Torrent-Guasp, F.; Gharib, M. The structure and function of the helical heart and its buttress wrapping. IV. Concepts of dynamic function from the normal macroscopic helical structure. Semin. Thorac. Cardiovasc. Surg. 2001, 13, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Kocica, M.J.; Corno, A.F.; Carreras-Costa, F.; Ballester-Rodes, M.; Moghbel, M.C.; Cueva, C.N.; Lackovic, V.; Kanjuh, V.I.; Torrent-Guasp, F. The helical ventricular myocardial band: Global, three-dimensional, functional architecture of the ventricular myocardium. Eur. J. Cardiothorac Surg. 2006, 29 (Suppl. S1), S21–S40. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Nienhuis, M.; Biagioli, B.; De Pauw, K.; Meeusen, R. Supplementation Strategies for Strength and Power Athletes: Carbohydrate, Protein, and Amino Acid Ingestion. Nutrients 2024, 16, 1886. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lundstrom, E.A.; De Souza, M.J.; Khen, K.M.; Williams, N.I. Elite collegiate swimmers do not meet sport nutrition recommendations during heavy training: Effects of sex and within-day nutrient timing. J. Int. Soc. Sports Nutr. 2025, 22, 2494846. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.E.; Seleem, H.A.I.; Elsayed, G.M.Y.; Kholif, M.A.F.; Abduljawad, R.M.; Housen, N.T.E.; Sofy, N.M.R.; Hady, H.A. Effect of increased protein intake before pre-event on muscle fatigue development and recovery in female athletes. J. Educ. Health Promot. 2025, 14, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosbrook, P.; Looney, D.P.; Margolis, L.M.; Yudin, S.P.; Hostler, D.; Pryor, R.R.; Pryor, J.L. Dietary Carbohydrates Influence the Performance Outcomes of Short-Term Heat Acclimation. Med. Sci. Sports Exerc. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D.; Arribalzaga, S.; Gutiérrez-Abejón, E.; Azarbayjani, M.A.; Mielgo-Ayuso, J.; Roche, E. Omega-3 Fatty Acid Supplementation on Post-Exercise Inflammation, Muscle Damage, Oxidative Response, and Sports Performance in Physically Healthy Adults—A Systematic Review of Randomized Controlled Trials. Nutrients 2024, 16, 2044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larrosa, M.; Gil-Izquierdo, A.; González-Rodríguez, L.G.; Alférez, M.J.M.; Juan, A.F.S.; Sánchez-Gómez, Á.; Calvo-Ayuso, N.; Ramos-Álvarez, J.J.; Fernández-Lázaro, D.; Lopez-Grueso, R.; et al. Nutritional Strategies for Optimizing Health, Sports Performance, and Recovery for Female Athletes and Other Physically Active Women: A Systematic Review. Nutr. Rev. 2024, 83, e1068–e1089. [Google Scholar] [CrossRef] [PubMed]
- Cullen, T.; Thomas, A.W.; Webb, R.; Hughes, M.G. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: The effect of exercise intensity and volume. Appl. Physiol. Nutr. Metab. 2016, 41, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Lithgow, H.; Gibson, L.; Wilson, R.; Guthrie, N.; Ingram-Sills, L.; Clifford, T.; Ross, M. An ultra-endurance event leads to changes in circulating regulatory T-cells, CD4+ naïve and CD8+ effector memory T-cells in the 48 h post-race recovery period. Eur. J. Appl. Physiol. 2025, 125, 1129–1138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guertin, P.A. Cardiovascular Diseases, Vital Organ Fibrosis, and Chronic Inflammation Associated with High-Intensity and/or High-Volume Exercise Training: Double-Edged Sword Effects of Vigorous Physical Activity in Elderly People and/or in Middle-Age Cancer-Therapy-Treated Patients. J. Funct. Morphol. Kinesiol. 2025, 10, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter | Result | Reference Range |
---|---|---|
Red blood cells (count) | 4.93 ± 02.12 × 106/μL | 3.50–5.00 |
Hemoglobin | 14.9 ± 02.21 g/dL | 12.0–16.0 |
Hematocrit | 48.7 ± 3.15% | 36.0–48.0 |
Mean corpuscular volume | 96.7 ± 09.47 fL | 82.0–95.0 |
Mean corpuscular hemoglobin | 30.3 ± 09.31 pg | 27.0–32.0 |
Mean corpuscular hemoglobin concentration | 33.4 ± 2.21 g/dL | 32.0–36.0 |
Red blood cell distribution width (volume) | 13.0 ± 01.37% | 11.0–16.0 |
Platelets (count) | 271 ± 45.38 × 103/μL | 130–450 |
Mean platelet volume | 8.2 ± 0.37 fL | 7.0–11.0 |
Leukocytes (count) | 8.23 ± 0.41 × 103/μL | 3.90–11.70 |
Neutrophils (percentage) | 61.80 ± 3.27% | 40.00–75.00 |
Lymphocytes (percentage) | 28.90 ± 01.49% | 20.00–45.00 |
Monocytes (percentage) | 7.50 ± 1.19% | 2.00–10.00 |
Eosinophils (percentage) | 1.60 ± 0.07% | 0.00–6.00 |
Basophils (percentage) | 0.20 ± 0.02% | 0.00–1.00 |
Neutrophils (count) | 5.09 ± 0.13 × 103/μL | 1.50–8.00 |
Lymphocytes (count) | 2.38 ± 00.27 × 103/μL | 1.00–4.00 |
Monocytes (count) | 0.62 ± 0.15 × 103/μL | 0.00–1.00 |
Eosinophils (count) | 0.13 ± 0.01 × 103/μL | 0.00–0.30 |
Basophils (count) | 0.02 ± 0.01 × 103/μL | 0.00–0.10 |
PUFA | 9.8 ± 0.34 g/24 h | 3–6 |
Glucose | 73.3 ± 08.45 mg/dL | 70–99 |
Urea | 21.57 ± 03.27 mg/dL | 10–50 |
Creatinine | 0.82 ± 0.02 mg/dL | 0.50–0.90 |
Uric Acid | 3.50 ± 0.15 mg/dL | 2.4–5.7 |
Glucose | 73.28 ± 1.33 mg/dL | 70–99 |
Lactate Dehydrogenase | 157.15 ± 25.48 U/L | 0–250 |
Sodium | 143.09 ± 13.37 mEq/L | 136–145 |
Potassium | 4.41 ± 0.15 mEq/L | 3.5–5.1 |
Creatine kinase | 60.21 ± 1.32 U/L | 26–192 |
Alkaline phosphatase | 49.48 ± 2.28 U/L | 35–104 |
Aspartate transaminase | 13.74 ± 02.116 U/L | 0–32 |
Alanine transaminase | 9.32 ± 1.16 U/L | 0–33 |
Gamma glutamyl transferase | 10.57 ± 0.37 U/L | 5–36 |
Calcium | 9.71 ± 0.41 mg/dL | 8.5–10.2 |
Phosphorus | 3.62 ± 0.41 mg/dL | 2.7–4.5 |
Iron | 142.88 ± 1.49 μg/dL | 37–145 |
Phosphorus | 4.21 ± 0.38 mg/dL | 2.7–4.5 |
Magnesium | 3.01 ± 0.27 mg/dL | 1.70–2.55 |
Copper | 112.17 ± 0.61 μg/dL | 70–140 |
Selenium | 103.23 ± 0.32 mcg/L | 60–120 |
PUFA | 9.81 ± 2.62 g/24 h | 3–6 |
Total proteins | 7.92 ± 3.24 g/dL | 6.4–8.3 |
Albumin | 6.84 ± 0.23 g/dL | 4–44 |
Cholesterol | 155 ± 15.61 mg/dL | 00–200 |
Triglycerides | 63 ± 1.47 mg/dL | 30–150 |
Thyrotropin | 0.97 ± 0.18 μUI/mL | 0.27–4.20 |
Thyroxine (free) | 1.38 ± 0.03 ng/dL | 0.93–1.90 |
Vitamin B1 | 6.60 ± 0.12 mcg/dL | 2.8–8.5 |
Vitamin B2 | 269.0 ± 0.74 ng/mL | 125–300 |
Vitamin B6 | 36.87 ± 1.27 ng/mL | 5.68–42.60 |
Vitamin B12 | 469 ± 10.37 pg/mL | 197–771 |
Vitamin C | 1.07 ± 0.02 mg/L | 4–20 |
Vitamin A | 54.21 ± 0.03 μg/dL | 30–100 |
Vitamin D (25 OH) | 24.7 ± 0.10 ng/mL | 20–100 |
Vitamin E | 11.32 ± 0.14 μg/mL | 5–20 |
Vitamin K1 | 0.59 ± 0.02 μg/mL | 0.13–1.50 |
Folic Acid | 24.57 ± 0.03 ng/mL | 3.9–26.8 |
Brain Natriuretic Pro-peptide | 56.23 ± 2.18 pg/mL | <100 |
Erythrocyte Sedimentation Rate | 19.33 ± 1.23 mm/h | 2–10 |
Troponin T, High Sensitivity | 10.11 ± 0.15 ng/L | 0.0–14 |
Interleukin 6 | 5.63 ± 1.29 pg/mL | <2 |
Testosterone (free) | 47.77 ± 2.27 pg/mL | 15.00–50.00 |
Cortisol | 9.31 ± 1.22 μg/dL | 4.8–19.5 |
Aldosterone | 17.24 ± 1.35 ng/dL | 3–30 |
Renin | 2.12 ± 0.42 pg/mL | 2.0–26.0 |
Renin (activity) | 0.27 ± 0.04 pg/mL | 0.28–3.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Lechuga, M.B.; Hidalgo-Martín, J.; Ruiz-Bailén, M. Right Ventricular Function Improves After Bench Press: A Speckle Tracking Echocardiography Study. Medicina 2025, 61, 1469. https://doi.org/10.3390/medicina61081469
Martínez-Lechuga MB, Hidalgo-Martín J, Ruiz-Bailén M. Right Ventricular Function Improves After Bench Press: A Speckle Tracking Echocardiography Study. Medicina. 2025; 61(8):1469. https://doi.org/10.3390/medicina61081469
Chicago/Turabian StyleMartínez-Lechuga, María Belén, Javier Hidalgo-Martín, and Manuel Ruiz-Bailén. 2025. "Right Ventricular Function Improves After Bench Press: A Speckle Tracking Echocardiography Study" Medicina 61, no. 8: 1469. https://doi.org/10.3390/medicina61081469
APA StyleMartínez-Lechuga, M. B., Hidalgo-Martín, J., & Ruiz-Bailén, M. (2025). Right Ventricular Function Improves After Bench Press: A Speckle Tracking Echocardiography Study. Medicina, 61(8), 1469. https://doi.org/10.3390/medicina61081469