Applications of Deep Learning Models in Laparoscopy for Gynecology
Abstract
1. Introduction
2. Materials and Methods
- (1)
- MEDLINE: “Laparoscopy”[Mesh] AND (“Artificial Intelligence”[Mesh] OR “Deep Learning”[Mesh]) AND (“Gynecology”[Mesh] OR “Hysterectomy”[Mesh] OR “Uterine Myomectomy”[Mesh] OR “Endometriosis”[Mesh]).
- (2)
- IEEE Xplore: Laparoscopy AND Deep learning.
- (3)
- Google scholar: intitle: Laparoscopy OR intitle: Laparoscopic AND “Deep Learning” AND (“Gynecology” OR “Hysterectomy” OR “Uterine Myomectomy” OR “Endometriosis”).
3. Results
3.1. Anatomy Classification
3.2. Anatomy Segmentation
3.3. Surgical Instruments
3.4. Surgical Action Recognition
4. Discussion
4.1. Interpretation of Results
4.2. Future Directions
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Evaluation Metrics |
---|
Accuracy = TP + TN/TP + TN + FP + FN |
Precision = TP/TP + FP |
Recall = TP/TP + FN |
spec = TN/FP + TN |
f1 = 2TP/2TP + FP + FN |
mcc = TP × TN − FP × FN/ |
Jaccard = IoU = |gt ∩ P|/|gt ∪ P| |
Dice score = 2|gt ∩ P|/|gt| + |P| |
AP50: average precision for IoU threshold of 50% |
AP50:95: precision averaged over IoU thresholds of 50% to 90% obtained in increments of 5% |
AR: average recall |
References
- St John, A.; Caturegli, I.; Kubicki, N.S.; Kavic, S.M. The Rise of Minimally Invasive Surgery: 16 Year Analysis of the Progressive Replacement of Open Surgery with Laparoscopy. JSLS 2020, 24, e2020.00076. [Google Scholar] [CrossRef]
- Bingmer, K.; Ofshteyn, A.; Stein, S.L.; Marks, J.M.; Steinhagen, E. Decline of Open Surgical Experience for General Surgery Residents. Surg. Endosc. 2020, 34, 967–972. [Google Scholar] [CrossRef]
- Bankar, G.R.; Keoliya, A. Robot-Assisted Surgery in Gynecology. Cureus 2019, 14, e29190. [Google Scholar] [CrossRef]
- Shi, J.; Cui, R.; Wang, Z.; Yan, Q.; Ping, L.; Zhou, H.; Gao, J.; Fang, C.; Han, X.; Hua, S. Deep Learning HRNet-FCN for Blood Vessel Identification in Laparoscopic Pancreatic Surgery. npj Digit. Med. 2025, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, G.H. The Pitfalls of Laparoscopic Surgery: Challenges for Robotics and Telerobotic Surgery. Surg. Laparosc. Endosc. Percutan. Tech. 2002, 12, 1–5. [Google Scholar] [CrossRef]
- Bashar, A. Survey on Evolving Deep Learning Neural Network Architectures. J. Artif. Intell. 2019, 1, 73–82. [Google Scholar]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep Learning for Visual Understanding. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Zhang, H.; Qie, Y. Applying Deep Learning to Medical Imaging: A Review. Appl. Sci. 2023, 13, 10521. [Google Scholar] [CrossRef]
- Park, S.Y.; Sargent, D. Colonoscopic Polyp Detection Using Convolutional Neural Networks. In Proceedings of the Medical Imaging 2016: Computer-Aided Diagnosis, San Diego, CA, USA, 27 February–3 March 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9785, pp. 577–582. [Google Scholar]
- Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Deepak, S.; Ameer, P.M. Brain Tumor Classification Using Deep CNN Features via Transfer Learning. Comput. Biol. Med. 2019, 111, 103345. [Google Scholar] [CrossRef]
- Burger, A.; Qian, C.; Schiele, G.; Helms, D. An Embedded CNN Implementation for On-Device ECG Analysis. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6. [Google Scholar]
- Fernandes, N.; Oliveira, E.; Rodrigues, N.F. Future Perspectives of Deep Learning in Laparoscopic Tool Detection, Classification, and Segmentation: A Systematic Review. In Proceedings of the 2023 IEEE 11th International Conference on Serious Games and Applications for Health (SeGAH), Athens, Greece, 28–30 December 2023; pp. 1–8. [Google Scholar]
- Kletz, S.; Schoeffmann, K.; Husslein, H. Learning the Representation of Instrument Images in Laparoscopy Videos. Healthc. Technol. Lett. 2019, 6, 197–203. [Google Scholar] [CrossRef]
- Madad Zadeh, S.; Francois, T.; Calvet, L.; Chauvet, P.; Canis, M.; Bartoli, A.; Bourdel, N. SurgAI: Deep Learning for Computerized Laparoscopic Image Understanding in Gynaecology. Surg. Endosc. 2020, 34, 5377–5383. [Google Scholar] [CrossRef]
- Madad Zadeh, S.; François, T.; Comptour, A.; Canis, M.; Bourdel, N.; Bartoli, A. SurgAI3.8K: A Labeled Dataset of Gynecologic Organs in Laparoscopy with Application to Automatic Augmented Reality Surgical Guidance. J. Minim. Invasive Gynecol. 2023, 30, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Serban, N.; Kupas, D.; Hajdu, A.; Török, P.; Harangi, B. Distinguishing the Uterine Artery, the Ureter, and Nerves in Laparoscopic Surgical Images Using Ensembles of Binary Semantic Segmentation Networks. Sensors 2024, 24, 2926. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, C.; Zhang, Z.; Deng, Y.; Xiao, M.; Zhang, Z.; Dekker, A.; Wang, S.; Liu, Y.; Qian, L.; et al. Real-time Auto-segmentation of the Ureter in Video Sequences of Gynaecological Laparoscopic Surgery. Int. J. Med. Robot. 2024, 20, e2604. [Google Scholar] [CrossRef] [PubMed]
- Leibetseder, A.; Petscharnig, S.; Primus, M.J.; Kletz, S.; Münzer, B.; Schoeffmann, K.; Keckstein, J. Lapgyn4: A Dataset for 4 Automatic Content Analysis Problems in the Domain of Laparoscopic Gynecology. In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12–15 June 2018; ACM: New York, NY, USA, 2018; pp. 357–362. [Google Scholar]
- Petscharnig, S.; Schöffmann, K. Learning Laparoscopic Video Shot Classification for Gynecological Surgery. Multimed. Tools Appl. 2018, 77, 8061–8079. [Google Scholar] [CrossRef]
- Konduri, P.S.; Rao, G.S.N. Full Resolution Convolutional Neural Network Based Organ and Surgical Instrument Classification on Laparoscopic Image Data. Biomed. Signal Process. Control 2024, 87, 105533. [Google Scholar] [CrossRef]
- Kletz, S.; Schoeffmann, K.; Benois-Pineau, J.; Husslein, H. Identifying Surgical Instruments in Laparoscopy Using Deep Learning Instance Segmentation. In Proceedings of the 2019 International Conference on Content-Based Multimedia Indexing (CBMI), Dublin, Ireland, 4–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Nifora, C.; Chasapi, L.; Chasapi, M.-K.; Koutsojannis, C. Deep Learning Improves Accuracy of Laparoscopic Imaging Classification for Endometriosis Diagnosis. J. Clin. Med. Surg. 2024, 4, 1137. [Google Scholar]
- Visalaxi, S.; Muthu, T.S. Automated Prediction of Endometriosis Using Deep Learning. Int. J. Nonlinear Anal. Appl. 2021, 12, 2403–2416. [Google Scholar]
- Acharya, D.; Guda, R.K.S.; Raovenkatajammalamadaka, K. Enhanced Efficientnet Network for Classifying Laparoscopy Videos Using Transfer Learning Technique. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–9. [Google Scholar]
- Leibetseder, A.; Schoeffmann, K.; Keckstein, J.; Keckstein, S. Endometriosis Detection and Localization in Laparoscopic Gynecology. Multimed. Tools Appl. 2022, 81, 6191–6215. [Google Scholar] [CrossRef]
- Petscharnig, S.; Schöffmann, K.; Benois-Pineau, J.; Chaabouni, S.; Keckstein, J. Early and Late Fusion of Temporal Information for Classification of Surgical Actions in Laparoscopic Gynecology. In Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 18–21 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 369–374. [Google Scholar]
- Nasirihaghighi, S.; Ghamsarian, N.; Stefanics, D.; Schoeffmann, K.; Husslein, H. Action Recognition in Video Recordings from Gynecologic Laparoscopy. In Proceedings of the 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), L’Aquila, Italy, 22–24 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 29–34. [Google Scholar]
- Müenzer, B.; Primus, M.J.; Kletz, S.; Petscharnig, S.; Schoeffmann, K. Static vs. Dynamic Content Descriptors for Video Retrieval in Laparoscopy. In Proceedings of the 2017 IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan, 11–13 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 216–223. [Google Scholar]
- Leibetseder, A.; Kletz, S.; Schoeffmann, K.; Keckstein, S.; Keckstein, J. GLENDA: Gynecologic Laparoscopy Endometriosis Dataset. In International Conference on Multimedia Modeling; Springer International Publishing: Cham, Switzerland, 2019; pp. 439–450. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
Author | Year | Dataset | Basic Algorithm | Application | Evaluation Metrics |
---|---|---|---|---|---|
Madad Zadeh S. [16] | 2020 | SurgAI-Proprietary | Mask R-CNN | (1) Anatomy segmentation (2) Surgical tool segmentation | Mean IoU, Precision 1, Recall 1 |
Madad Zadeh S. [17] | 2023 | SurgAI3.8K-Proprietary | U-Net | Anatomy segmentation | IoU |
Serban N. [18] | 2024 | Proprietary | U-Net | Anatomy segmentation | IoU, Dice score |
Wang Z. [19] | 2024 | Proprietary | U-Net | Anatomy segmentation | Dice score, Hausdorff 95 distance |
Leibetseder A. [20] | 2018 | LapGyn4-Proprietary | GoogleNet | (1) Anatomy classification (2) Instrument count (3) Surgical action and actions on anatomy classification | jacc, rec, prec, spec, mcc, f1 |
Petscharning S. [21] | 2018 | Proprietary | GoogleNet, AlexNet | (1) Anatomy classification (2) Surgical action classification | rec, prec, f1, rec@3 |
Konduri P.S. [22] | 2024 | LapGyn4 | FrCNN | (1) Anatomy classification (2) Surgical instrument classification | acc, pre, rec, f1 |
Kletz S. [23] | 2019 | Proprietary | Mask R-CNN | Surgical tool segmentation, bounding boxes | AP 50:95, AP50, AR |
Kletz S. [15] | 2019 | LapGyn4 + Cholec80 | GoogleNet | Instrument presence or absence | rec, prec, f1 |
Nifora C. [24] | 2023 | GLENDA | ResNet50 | Endometriosis or healthy classification | prec, rec, f1, acc |
Visalaxi S. [25] | 2021 | GLENDA | ResnNet50 | Endometriosis or healthy classification | prec, rec, f1, acc |
Acharya D. [26] | 2022 | GLENDA | eENet | Endometriosis or healthy classification | prec, rec |
Leibetseder A. [27] | 2022 | GLENDA | Faster R-CNN, Mask R-CNN | Specific endometriosis lesion segmentation | mAP50:95, mAP50, mAP75 |
Petscharing S. [28] | 2018 | Proprietary | GoogleNet, AlexNet | Surgical action classification—method comparison | jacc, rec, prec, spec, acc, mcc, f1 |
Nasirihaghighi S. [29] | 2023 | Proprietary | CNN-RNN | Surgical action classification | acc |
Müenzer B. [30] | 2017 | SurgicalActions160-Proprietary | HOG, HOF, HMG, AlexNet, GoogleNet | Surgical action classification | prec |
Author | Year | Dataset | Basic Algorithm | Application | Evaluation Metrics |
---|---|---|---|---|---|
Leibetseder A. [20] | 2018 | LapGyn4-Proprietary | GoogleNet | Anatomy classification | jacc, rec, prec, spec, acc, mcc, f1 |
Petscharning S. [21] | 2018 | Proprietary | GoogleNet, AlexNet | Anatomy classification | rec, prec, f1, rec@3 |
Konduri P.S. [22] | 2024 | LapGyn4 | FrCNN | Anatomy classification | acc, pre, rec, f1 |
Nifora C. [24] | 2023 | GLENDA | ResNet50 | Endometriosis or healthy classification | prec, rec, f1, acc |
Visalaxi S. [25] | 2021 | GLENDA | ResnNet50 | Endometriosis or healthy classification | prec, rec, f1, acc |
Acharya D. [26] | 2022 | GLENDA | eENet | Endometriosis or healthy classification | prec, rec |
Author | Year | Dataset | Basic Algorithm | Application | Evaluation Metrics |
---|---|---|---|---|---|
Madad Zadeh S. [16] | 2020 | SurgAI-Proprietary | Mask R-CNN | Uterus, ovary segmentation | Mean IoU, Precision 1, Recall 1 |
Madad Zadeh S. [17] | 2023 | SurgAI3.8K-Proprietary | U-Net | Uterus segmentation | IoU |
Serban N. [18] | 2024 | Proprietary | U-Net | Uterine artery, ureter, nerve segmentation | IoU, Dice score |
Wang Z. [19] | 2024 | Proprietary | U-Net | Ureter segmentation | Dice score, Hausdorff 95 distance |
Leibetseder A. [27] | 2022 | GLENDA | Faster R-CNN, Mask R-CNN | Specific endometriosis lesion segmentation | mAP50:95, mAP50, mAP75 |
Author | Year | Dataset | Basic Algorithm | Application | Evaluation Metrics |
---|---|---|---|---|---|
Madad Zadeh S. [16] | 2020 | SurgAI-Proprietary | Mask R-CNN | Surgical tool segmentation | Mean IoU, AP50, AR |
Kletz S. [23] | 2019 | Proprietary | Mask R-CNN | Surgical tool segmentation, bounding boxes | AP50:95, AP50, AR |
Konduri P.S. [22] | 2024 | LapGyn4 | FrCNN | Surgical instrument classification | acc, pre, rec, f1 |
Leibetseder A. [20] | 2018 | LapGyn4-Proprietary + Cholec80 | GoogleNet | Instrument count | jacc, rec, prec, spec, acc, mcc, f1 |
Kletz S. [15] | 2019 | LapGyn4 + Cholec80 | GoogleNet | Instrument presence or absence | rec, prec, f1 |
Author | Year | Dataset | Basic Algorithm | Application | Evaluation Metrics |
---|---|---|---|---|---|
Leibetseder A. [20] | 2018 | LapGyn4-Proprietary | GoogleNet | Surgical action and actions on anatomy classification | jacc, rec, prec, spec, acc, mcc, f1 |
Petscharning S. [21] | 2018 | Proprietary | GoogleNet, AlexNet | Surgical action classification | rec, prec, f1, rec@3 |
Petscharing S. [28] | 2018 | Proprietary | GoogleNet, AlexNet | Surgical action classification—method comparison | jacc, rec, prec, spec, acc, mcc, f1 |
Nasirihaghighi S. [29] | 2023 | Proprietary | CNN-RNN | Surgical action classification | acc |
Müenzer B. [30] | 2017 | SurgicalActions160-Proprietary | HOG, HOF, HMG, AlexNet, GoogleNet | Surgical action classification | prec |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkrozou, F.; Bais, V.; Skentou, C.; Kalaitzopoulos, D.R.; Grigoriadis, G.; Vatopoulou, A.; Paschopoulos, M.; Daniilidis, A. Applications of Deep Learning Models in Laparoscopy for Gynecology. Medicina 2025, 61, 1460. https://doi.org/10.3390/medicina61081460
Gkrozou F, Bais V, Skentou C, Kalaitzopoulos DR, Grigoriadis G, Vatopoulou A, Paschopoulos M, Daniilidis A. Applications of Deep Learning Models in Laparoscopy for Gynecology. Medicina. 2025; 61(8):1460. https://doi.org/10.3390/medicina61081460
Chicago/Turabian StyleGkrozou, Fani, Vasileios Bais, Charikleia Skentou, Dimitrios Rafail Kalaitzopoulos, Georgios Grigoriadis, Anastasia Vatopoulou, Minas Paschopoulos, and Angelos Daniilidis. 2025. "Applications of Deep Learning Models in Laparoscopy for Gynecology" Medicina 61, no. 8: 1460. https://doi.org/10.3390/medicina61081460
APA StyleGkrozou, F., Bais, V., Skentou, C., Kalaitzopoulos, D. R., Grigoriadis, G., Vatopoulou, A., Paschopoulos, M., & Daniilidis, A. (2025). Applications of Deep Learning Models in Laparoscopy for Gynecology. Medicina, 61(8), 1460. https://doi.org/10.3390/medicina61081460