Unraveling the Link Between Aortic Stenosis and Atherosclerosis: What Have We Learned?
Abstract
1. Introduction
2. Materials and Methods
3. Similarities Between Aortic Stenosis and Atherosclerosis
3.1. Risk Factors
Parameter | Effect | Reference |
---|---|---|
Age | Strongly and significantly associated with stenotic aortic valve calcification. | Boon A. et al., 1997 [17] |
Increasing prevalence with age | Chan KL et al., 2003 [20] | |
Increasing prevalence with age | Novaro GM et al., 2003 [21] | |
Increasing prevalence with age | Shavelle DM et al., 2005 [19] | |
Male gender | Associated with the progression of calcific aortic stenosis | Chan KL et al., 2003 [20] |
Associated with the progression of calcific aortic stenosis | Novaro GM et al., 2003 [21] | |
Associated with the progression of calcific aortic stenosis | Shavelle DM et al., 2005 [19] | |
Body mass index | Independent predictor of significant progression of aortic stenosis | Ngo MV; 2001 [23] |
moking | Smoking is an independent predictor of significant progression of aortic stenosis. | Ngo MV; 2001 [23] |
Risk factor associated with aortic stenosis | Chan KL et al., 2003 [20] | |
Associated with the development of aortic stenosis, together with endothelial dysfunction | Novaro GM et al., 2003 [21] | |
Associated with aortic stenosis | Sathyamurthy I et al., 2003 [43] | |
Associated with calcific aortic valve disease | Freeman RV et al., 2005 [44] | |
Associated with calcific aortic valve disease | Shavelle DM et al., 2005 [19] | |
Arterial Hypertension | Associated with stenotic aortic valve calcification | Boon A et al., 1997 [17] |
Associated with aortic stenosis | Chan KL et al., 2003 [20] | |
Associated with the progression of aortic stenosis | Novaro GM et al., 2003 [21] | |
Associated with aortic stenosis | Sathyamurthy I et al., 2003 [43] | |
Associated with aortic stenosis | Freeman RV et al., 2005 [44] | |
Associated with the progression of calcific aortic stenosis | Shavelle DM et al., 2005 [19] | |
Diabetes mellitus | May play a role in the etiology of aortic stenosis | Deutscher S et al., 1984 [22] |
Associated with aortic stenosis | Chan KL et al., 2003 [20] | |
Linked to the appearance of aortic stenosis | Novaro GM et al., 2003 [21] | |
Associated with aortic stenosis | Sathyamurthy I et al., 2003 [43] | |
Associated with aortic stenosis | Freeman RV et al., 2005 [44] | |
Associated with the progression of aortic valve disease | Shavelle DM et al., 2005 [19] | |
Diabetes mellitus negatively impacts the quality of life and longevity of patients with aortic stenosis. | Wal P et al., 2023 [45] | |
Hypercholesterolemia | Risk factors associated with aortic stenosis | Boon et al., 1997 [17] |
Increased plasma level of cholesterol is associated with degenerative aortic stenosis. | Wilmshurst et al., 1997 [16] | |
Increases the activity of caveolin and decreases nitric oxide generation | Feron O et al., 1999 [14] | |
Apoptosis induced by hypercholesterolemia may be important in the mechanism of aortic stenosis. | Rajamannsn NM et al., 2001 [15] | |
Produces changes in the aortic valves and apoptosis at that level | Rajamannan NM et al., 2002 [15] | |
Development of aortic valve sclerosis in animals | Ivert T et al., 2003 [34] | |
LDL concentration | Role in the etiology of aortic stenosis | Deutscher S et al., 1984 [22] |
Role in aortic valve calcification | Pohle K et al., 2001 [42] | |
Associated with aortic stenosis | Chan KL et al., 2003 [20] | |
Prothrombotic effects and cytotoxicity for many cells | Novaro GM et al., 2003 [21] | |
Associated with the progression of aortic valve stenosis | Shavelle DM et al., 2005 [19] | |
Low LDL cholesterol levels may prevent aortic stenosis | Allara E et al., 2019 [33] | |
Decreased HDL | Related low HDL levels were correlated with aortic sclerosis | Novaro GM et al., 2003 [21] |
Increased triglycerides | Aortic stenosis and sclerosis are associated with increased triglycerides. | Novaro GM et al., 2003 [21] |
An inflammatory mechanism; elevated triglyceride-rich remnant lipoproteins are the drivers of aortic stenosis | Kaltoft M et al., 2020 [32] | |
High levels of lipoprotein (a) | Lipoprotein (a) accumulates in aortic valves together with calcium deposition. | Thanassoulis G et al., 2013 [24] |
Risk factor for aortic valvular stenosis | Arsenault BJ et al., 2014 [25] | |
Implicated in the hemodynamic evolution of aortic stenosis | Kamstrup PR et al., 2017 [31] | |
Associated with calcification of the aortic valve | Despres AA et al., 2019 [26] | |
Lowering lipoprotein (a) may slow aortic stenosis progression | Zheng GH et al., 2019 [28] | |
Oxidized phospholipid apoB and elevated lipoprotein (a) are predictive of faster disease progression in patients with established aortic valvular stenosis. | Schnitzler JG et al., 2019 [29] | |
The associated risk factor is not only due to cholesterol content but could also be due to the structure of lipoprotein (a), resembling plasminogen. | Langsted A et al., 2020 [30] | |
Associated with calcification of the aortic valve | Kaiser Y et al., 2021 [27] | |
Elevated apoB/apoA-1 ratio | Associated with an increased incidence of calcific valve disease | Ivert T et al., 2021 [34] |
Chlamydia Pneumoniae infection | Increases C-reactive protein levels, which aggravate lesions from aortic valve sclerosis mediated by circulating immune complexes | Glader CA et al., 2003 [38] |
Chlamydia Pneumoniae infection is related to the pathogenesis of aortic sclerosis. | Nystrom-Rosander C et al., 2003 [37] | |
Role in the pathogenesis of aortic stenosis | Agmon Y et al., 2004 [40] | |
Hypercalcemia | Factor associated with the progression of stenosis | Novaro GM et al., 2003 [21] |
Increased creatinine | Factor associated with the progression of stenosis | Novaro GM et al., 2003 [21] |
Valvular calcification | Factor associated with progression of stenosis | Novaro GM et al., 2003 [21] |
Anatomy of the aortic valve | Role in the development of calcific aortic valve disease | Boudoulas KD et al., 2018 [46] |
Elevated levels of C-protein | Inflammation plays a role in progressive valve narrowing. | Dweck MR et al., 2012 [1] |
Plasma leptin and tissue fibrinogen inhibitors | Risk factors associated with aortic stenosis | Ridker PM et al., 2005 [39] |
Genetic predisposition | The size of the three aortic leaflets could be associated with aortic stenosis. | Boudoulas H et al., 2009 [49] |
Implicated in the etiology of aortic stenosis | Padang et al., 2012 [50] | |
Implicated in the etiology of aortic stenosis | Thanassoulis G et al., 2013 [24] | |
The size of the three aortic leaflets could be associated with aortic stenosis. | Boudoulas KD et al., 2013 [48] | |
Implicated in the anatomy and in the calcification of the aortic valve | Boudoulas KD et al., 2018 [46] |
3.2. Pathogenesis
3.3. Therapeutic Approach
Medication/Study | Effect on Aortic Stenosis | Reference |
---|---|---|
ASTRONOMER—statins | Rosuvastatin did not slow the progression of aortic stenosis | Mohler et al., 2001 [51] |
A retrospective analysis—ACE inhibitors | Calcification of the aortic valve was slowed by ACE inhibitors | Rosenhek R et al., 2004 [108] |
SALTIRE study—statins | Atorvastatin does not delay or induce regression of aortic stenosis. | Cowell SJ et al., 2005 [97] |
RAAVE study— rosuvastatin | Statins slowed the progression of aortic stenosis. | Moura LM et al., 2007 [99] |
SEAS study—Simvastatin and Ezetimibe in Aortic Stenosis | Treatment with simvastatin and ezetimibe was not more effective than placebo in reducing aortic valve-related events and cardiovascular events. | Rossebo AB et al., 2008 [96] |
Statins | Reducing plasma lipid levels by genetic methods in hypercholesterolemic mice with early aortic valve disease halts the progression of aortic valve stenosis. | Miller JD et al., 2009 [100] |
PCSK 9 inhibitors | May have a role in patients with aortic stenosis | Langsted et al., 2016 [110] |
Meta analysis—statins | Statins accelerated the calcification of atherosclerotic plaque, becoming more stable | Zhao Y et al., 2016 [101] |
Rivaroxaban | Rivaroxaban reduced valvular calcium deposits, aortic stenosis, and CRP levels. | Di Lullo et al., 2019 [118] |
FOURIER study—evolocumab | Inhibition of PCSK9 could decrease. calcific aortic valve stenosis incidence | Bergmark et al., 2020 [112] |
PCSK9 inhibitors | The PCSK9 inhibition might lower the calcification in aortic stenosis valves. | Perrot et al., 2020 [113] |
Glucagon—like peptide 1 | The glucagon-like peptide 1 -GLP 1 concentration in the calcific aortic valves is less than in the normal aortic valves. | Xiao et al., 2021 [114] |
Liraglutide | Liraglutide lowers aortic valve calcification. | Zhou et al., 2023 [115] |
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Dweck, M.R.; Boon, N.A.; Newby, D.E. Calcific aortic stenosis: A disease of the valve and the myocardium. J. Am. Coll. Cardiol. 2012, 60, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Bonow, R.O.; Otto, C.M. Aortic valve stenosis. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 12th ed.; Libby, P., Bonow, R.O., Mann, D.L., Tomaselli, G.F., Bhatt, D.L., Solomon, S.D., Braunwald, E., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2022; pp. 1399–1418. [Google Scholar]
- Nightingale, A.K.; Horowitz, J.D. Aortic sclerosis: Not an innocent murmur but a marker of increased cardiovascular risk. Heart 2005, 91, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Lind, B.K.; Kitzman, D.W.; Gersh, B.J.; Siscovick, D.S. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N. Engl. J. Med. 1999, 341, 142–147. [Google Scholar] [CrossRef]
- Freeman, R.V.; Otto, C.M. Management of asymptomatic valvular aortic stenosis. Indian Heart J. 2002, 54, 31–38. [Google Scholar]
- Coffey, S.; Cox, B.; Williams, M.J. The prevalence, incidence, progression, and risks of aortic valve sclerosis: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2014, 63, 2852–2861. [Google Scholar] [CrossRef]
- Satta, J.; Melkko, J.; Pöllänen, R.; Tuukkanen, J.; Pääkkö, P.; Ohtonen, P.; Mennander, A.; Soini, Y. Progression of human aortic valve stenosis is associated with tenascin-C expression. J. Am. Coll. Cardiol. 2002, 39, 96–101. [Google Scholar] [CrossRef]
- Wang, A.Y.M.; Woo, J.; Wang, M.; Sea, M.M.M.; Ip, R.; Li, P.K.T.; Lui, S.F.; Sanderson, J.E. Association of inflammation and malnutrition with cardiac valve calcification in continuous ambulatory peritoneal dialysis patients. J. Am. Soc. Nephrol. 2001, 12, 1927–1936. [Google Scholar] [CrossRef]
- Olsson, M.; Dalsgaard, C.J.; Haegerstrand, A.; Rosenqvist, M.; Rydén, L.; Nilsson, J. Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J. Am. Coll. Cardiol. 1994, 23, 1162–1170. [Google Scholar] [CrossRef]
- O’Brien, K.D.; Kuusisto, J.; Reichenbach, D.D.; Ferguson, M.; Giachelli, C.; Alpers, C.E.; Otto, C.M. Osteopontin is expressed in human aortic valvular lesions. Circulation 1995, 92, 2163–2168. [Google Scholar] [CrossRef]
- Otto, C.M. Aortic stenosis--listen to the patient, look at the valve. N. Engl. J. Med. 2000, 343, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Clavel, M.A.; Mathieu, P.; Iung, B.; Lancellotti, P.; Otto, C.M.; Pibarot, P. Calcific aortic stenosis. Nat. Rev. Dis. Primers 2016, 2, 16006. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The Vascular Biology of Atherosclerosis. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 12th ed.; Libby, P., Bonow, R.O., Mann, D.L., Tomaselli, G.F., Bhatt, D.L., Solomon, S.D., Braunwald, E., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2022; pp. 425–440. [Google Scholar]
- Feron, O.; Dessy, C.; Moniotte, S.; Desager, J.P.; Balligand, J.L. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J. Clin. Investig. 1999, 103, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Rajamannan, N.M.; Springett, M.J.; Pederson, L.G.; Carmichael, S.W. Localization of caveolin 1 in aortic valve endothelial cells using antigen retrieval. J. Histochem. Cytochem. 2002, 50, 617–628. [Google Scholar] [CrossRef]
- Wilmshurst, P.T.; Stevenson, R.N.; Griffiths, H.; Lord, J.R. A case-control investigation of the relation between hyperlipidaemia and calcific aortic valve stenosis. Heart 1997, 78, 475–479. [Google Scholar] [CrossRef]
- Boon, A.; Cheriex, E.; Lodder, J.; Kessels, F. Cardiac valve calcification: Characteristics of patients with calcification of the mitral annulus or aortic valve. Heart 1997, 78, 472–474. [Google Scholar] [CrossRef]
- Otto, C.M.; O’Brien, K.D. Why is there discordance between calcific aortic stenosis and coronary artery disease? Heart 2001, 85, 601–602. [Google Scholar] [CrossRef]
- Shavelle, D.M. Are angiotensin converting enzyme inhibitors beneficial in patients with aortic stenosis? Heart 2005, 91, 1257–1259. [Google Scholar] [CrossRef]
- Chan, K.L. Is aortic stenosis a preventable disease? J. Am. Coll. Cardiol. 2003, 42, 593–599. [Google Scholar] [CrossRef]
- Novaro, G.M.; Griffin, B.P. Calcific aortic stenosis: Another face of atherosclerosis? Clevel. Clin. J. Med. 2003, 70, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, S.; Rockette, H.E.; Krishnaswami, V. Diabetes and hypercholesterolemia among patients with calcific aortic stenosis. J. Chronic Dis. 1984, 37, 407–415. [Google Scholar] [CrossRef]
- Ngo, M.V.; Gottdiener, J.S.; Fletcher, R.D.; Fernicola, D.J.; Gersh, B.J. Smoking and obesity are associated with the progression of aortic stenosis. Am. J. Geriatr. Cardiol. 2001, 10, 86–90. [Google Scholar] [CrossRef]
- Thanassoulis, G.; Campbell, C.Y.; Owens, D.S.; Smith, J.G.; Smith, A.V.; Peloso, G.M.; Kerr, K.F.; Pechlivanis, S.; Budoff, M.J.; Harris, T.B.; et al. CHARGE Extracoronary Calcium Working Group. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 2013, 368, 503–512. [Google Scholar]
- Arsenault, B.J.; Boekholdt, S.M.; Dubé, M.P.; Rhéaume, E.; Wareham, N.J.; Khaw, K.T.; Sandhu, M.S.; Tardif, J.C. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: A prospective Mendelian randomization study and replication in a case-control cohort. Circ. Cardiovasc. Genet. 2014, 7, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Després, A.A.; Perrot, N.; Poulin, A.; Tastet, L.; Shen, M.; Chen, H.Y.; Bourgeois, R.; Trottier, M.; Tessier, M.; Guimond, J.; et al. Lipoprotein(a), oxidized phospholipids, and aortic valve microcalcification assessed by 18F-sodium fluoride positron emission tomography and computed tomography. CJC Open 2019, 1, 131–140. [Google Scholar] [CrossRef]
- Kaiser, Y.; Nurmohamed, N.S.; Kroon, J.; Verberne, H.J.; Tzolos, E.; Dweck, M.R.; Somsen, A.G.; Arsenault, B.J.; Stroes, E.S.G.; Zheng, K.H.; et al. Lipoprotein(a) has no major impact on calcification activity in patients with mild to moderate aortic valve stenosis. Heart 2022, 108, 61–66. [Google Scholar] [CrossRef]
- Zheng, K.H.; Tsimikas, S.; Pawade, T.; Kroon, J.; Jenkins, W.S.A.; Doris, M.K.; White, A.C.; Timmers, N.K.L.M.; Hjortnaes, J.; Rogers, M.A.; et al. Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis. J. Am. Coll. Cardiol. 2019, 73, 2150–2162. [Google Scholar] [CrossRef]
- Schnitzler, J.G.; Ali, L.; Groenen, A.G.; Kaiser, Y.; Kroon, J. Lipoprotein(a) as Orchestrator of Calcific Aortic Valve Stenosis. Biomolecules 2019, 9, 760. [Google Scholar] [CrossRef]
- Langsted, A.; Nordestgaard, B.G. Lipoprotein(a): Is it more, less or equal to LDL as a causal factor for cardiovascular disease and mortality? Curr. Opin. Lipidol. 2020, 31, 125–131. [Google Scholar] [CrossRef]
- Kamstrup, P.R.; Hung, M.Y.; Witztum, J.; Tsimikas, S.; Nordestgaard, B.G. Oxidized phospholipids and risk of calcific aortic valve disease: The Copenhagen General Population Study. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Kaltoft, M.; Langsted, A.; Nordestgaard, B.G. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur. Heart J. 2020, 41, 2288–2299. [Google Scholar] [CrossRef] [PubMed]
- Allara, E.; Morani, G.; Carter, P.; Gkatzionis, A.; Zuber, V.; Foley, C.N.; Rees, J.M.B.; Mason, A.M.; Bell, S.; Gill, D.; et al. INVENT consortium. Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-Angled Mendelian Randomization Investigation. Circ. Genom. Precis. Med. 2019, 12, e002711. [Google Scholar] [CrossRef]
- Ivert, T.; Hammar, N.; Talbäck, M.; Malmström, H.; Leander, K.; Walldius, G. Elevated Apolipoprotein B/A-1 Ratio is Associated With an Increased Risk of Aortic Stenosis: Experience From the AMORIS Cohort. Heart Lung Circ. 2021, 30, 1050–1057. [Google Scholar] [CrossRef]
- Rajamannan, N.M.; Sangiorgi, G.; Springett, M.; Arnold, K.; Mohacsi, T.; Spagnoli, L.G.; Edwards, W.D.; Tajik, A.J.; Schwartz, R.S. Experimental hypercholesterolemia induces apoptosis in the aortic valve. J. Heart Valve Dis. 2001, 10, 371–374. [Google Scholar]
- Drolet, M.C.; Arsenault, M.; Couet, J. Experimental aortic valve stenosis in rabbits. J. Am. Coll. Cardiol. 2003, 41, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Nyström-Rosander, C.; Lindh, U.; Ilbäck, N.G.; Hjelm, E.; Thelin, S.; Lindqvist, O.; Friman, G. Interactions between Chlamydia pneumoniae and trace elements: A possible link to aortic valve sclerosis. Biol. Trace Elem. Res. 2003, 91, 97–110. [Google Scholar] [CrossRef]
- Glader, C.A.; Birgander, L.S.; Söderberg, S.; Ildgruben, H.P.; Saikku, P.; Waldenström, A.; Dahlén, G.H. Lipoprotein(a), Chlamydia pneumoniae, leptin and tissue plasminogen activator as risk markers for valvular aortic stenosis. Eur. Heart J. 2003, 24, 198–208. [Google Scholar] [CrossRef]
- Ridker, P.M.; Libby, P. Risk Factors for Atherothrombotic Disease. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 12th ed.; Libby, P., Bonow, R.O., Mann, D.L., Tomaselli, G.F., Bhatt, D.L., Solomon, S.D., Braunwald, E., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2005; pp. 939–954. [Google Scholar]
- Agmon, Y.; Khandheria, B.K.; Jamil, T.A.; Seward, J.B.; Sicks, J.D.; Fought, A.J.; O’Fallon, W.M.; Smith, T.F.; Wiebers, D.O.; Meissner, I. Inflammation, infection, and aortic valve sclerosis; Insights from the Olmsted County (Minnesota) population. Atherosclerosis 2004, 174, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ortlepp, J.R.; Schmitz, F.; Bozoglu, T.; Hanrath, P.; Hoffmann, R. Cardiovascular risk factors in patients with aortic stenosis predict prevalence of coronary artery disease but not of aortic stenosis: An angiographic pair matched case-control study. Heart 2003, 89, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Pohle, K.; Mäffert, R.; Ropers, D.; Moshage, W.; Stilianakis, N.; Daniel, W.G.; Achenbach, S. Progression of aortic valve calcification: Association with coronary atherosclerosis and cardiovascular risk factors. Circulation 2001, 104, 1927–1932. [Google Scholar] [CrossRef]
- Sathyamurthy, I.; Alex, S. Calcific aortic valve disease: Is it another face of atherosclerosis? Indian Heart J. 2015, 67, 503–506. [Google Scholar] [CrossRef]
- Freeman, R.V.; Otto, C.M. Spectrum of calcific aortic valve disease: Pathogenesis, disease progression and treatment strategies. Circulation 2005, 111, 3316–3326. [Google Scholar] [CrossRef]
- Wal, P.; Rathore, S.; Aziz, N.; Singh, Y.K.; Gupta, A. Aortic stenosis: A review on acquired pathogenesis and ominous combination with diabetes mellitus. Egypt Heart J. 2023, 75, 26. [Google Scholar] [CrossRef] [PubMed]
- Boudoulas, K.D.; Triposkiadis, F.; Boudoulas, H. The aortic stenosis complex. Cardiology 2018, 140, 194–198. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Prevalence of coronary heart disease—United States 2006–2010. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1377–1381. [Google Scholar]
- Boudoulas, K.D.; Borer, J.S.; Boudoulas, H. Etiology of valvular heart disease in the 21st century. Cardiology 2013, 126, 139–152. [Google Scholar] [CrossRef]
- Boudoulas, H. Valve disease. In ACCSAP Version 7: Adult Clinical Cardiology Self-Assessment Program; American College of Cardiology Foundation: Washington, DC, USA, 2009; Chapter 19. [Google Scholar]
- Padang, R.; Bagnall, R.D.; Semsarian, C. Genetic basis of familial valvular heart disease. Circ. Cardiovasc. Genet. 2012, 5, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Mohler, E.R., 3rd; Adam, L.P.; McClelland, P.; Graham, L.; Hathaway, D.R. Detection of osteopontin in calcified human aortic valves. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 547–552. [Google Scholar] [CrossRef]
- O’Brien, K.D.; Zhao, X.Q.; Shavelle, D.M.; Caulfield, M.T.; Letterer, R.A.; Kapadia, S.R.; Probstfield, J.L.; Otto, C.M. Hemodynamic effects of the angiotensin-converting enzyme inhibitor, ramipril, in patients with mild to moderate aortic stenosis and preserved left ventricular function. J. Investig. Med. 2004, 52, 185–191. [Google Scholar] [CrossRef]
- Edep, M.E.; Shirani, J.; Wolf, P.; Brown, D.L. Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc. Pathol. 2000, 9, 281–286. [Google Scholar] [CrossRef]
- Fondard, O.; Detaint, D.; Iung, B.; Choqueux, C.; Adle-Biassette, H.; Jarraya, M.; Hvass, U.; Couetil, J.P.; Henin, D.; Michel, J.B.; et al. Extracellular matrix remodelling in human aortic valve disease: The role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 2005, 26, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Jian, B.; Jones, P.L.; Li, Q.; Mohler, E.R., 3rd; Schoen, F.J.; Levy, R.J. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am. J. Pathol. 2001, 159, 321–327. [Google Scholar] [CrossRef]
- Mohler, E.R., 3rd; Gannon, F.; Reynolds, C.; Zimmerman, R.; Keane, M.G.; Kaplan, F.S. Bone formation and inflammation in cardiac valves. Circulation 2001, 103, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Novaro, G.M. Electron beam computed tomography: The latest “stethoscope” for calcific aortic valve disease. Mayo Clin. Proc. 2004, 79, 1239–1241. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.D.; Probstfield, J.L.; Caulfield, M.T.; Nasir, K.; Takasu, J.; Shavelle, D.M.; Wu, A.H.; Zhao, X.Q.; Budoff, M.J. Angiotensin-converting enzyme inhibitors and change in aortic valve calcium. Arch Intern Med. 2005, 165, 858–862. [Google Scholar] [CrossRef]
- Helske, S.; Lindstedt, K.A.; Laine, M.; Mäyränpää, M.; Werkkala, K.; Lommi, J.; Turto, H.; Kupari, M.; Kovanen, P.T. Induction of local angiotensin II-producing systems in stenotic aortic valves. J. Am. Coll. Cardiol. 2004, 44, 1859–1866. [Google Scholar] [CrossRef]
- O’Brien, K.D.; Shavelle, D.M.; Caulfield, M.T.; McDonald, T.O.; Olin-Lewis, K.; Otto, C.M.; Probstfield, J.L. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 2002, 106, 2224–2230. [Google Scholar] [CrossRef]
- Otto, C.M.; Kuusisto, J.; Reichenbach, D.D.; Gown, A.M.; O’Brien, K.D. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 1994, 90, 844–853. [Google Scholar]
- Kuusisto, J.; Räsänen, K.; Särkioja, T.; Alarakkola, E.; Kosma, V.M. Atherosclerosis-like lesions of the aortic valve are common in adults of all ages: A necropsy study. Heart 2005, 91, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Carabello, B.A.; Paulus, W.J. Aortic stenosis. Lancet 2009, 373, 956–966. [Google Scholar] [CrossRef]
- Poggianti, E.; Venneri, L.; Chubuchny, V.; Jambrik, Z.; Baroncini, L.A.; Picano, E. Aortic valve sclerosis is associated with systemic endothelial dysfunction. J. Am. Coll. Cardiol. 2003, 41, 136–141. [Google Scholar] [CrossRef]
- Adler, Y.; Vaturi, M.; Wiser, I.; Shapira, Y.; Herz, I.; Weisenberg, D.; Sela, N.; Battler, A.; Sagie, A. Nonobstructive aortic valve calcium as a window to atherosclerosis of the aorta. Am. J. Cardiol. 2000, 86, 68–71. [Google Scholar] [CrossRef]
- Walsh, C.R.; Larson, M.G.; Kupka, M.J.; Levy, D.; Vasan, R.S.; Benjamin, E.J.; Manning, W.J.; Clouse, M.E.; O’Donnell, C.J. Association of aortic valve calcium detected by electron beam computed tomography with echocardiographic aortic valve disease and with calcium deposits in the coronary arteries and thoracic aorta. Am. J. Cardiol. 2004, 93, 421–425. [Google Scholar] [CrossRef]
- Carabello, B.A. Aortic sclerosis—A window to the coronary arteries? N. Engl. J. Med. 1999, 341, 193–195. [Google Scholar] [CrossRef]
- Rossi, A.; Bertagnolli, G.; Cicoira, M.; Golia, G.; Zanolla, L.; Santini, F.; Cemin, C.; Ferrario, G.; Zardini, P. Association of aortic valve sclerosis and coronary artery disease in patients with severe nonischemic mitral regurgitation. Clin. Cardiol. 2003, 26, 579–582. [Google Scholar] [CrossRef]
- Fox, E.; Harkins, D.; Taylor, H.; McMullan, M.; Han, H.; Samdarshi, T.; Garrison, R.; Skelton, T. Epidemiology of mitral annular calcification and its predictive value for coronary events in African Americans: The Jackson Cohort of the Atherosclerotic Risk in Communities Study. Am. Heart J. 2004, 148, 979–984. [Google Scholar] [CrossRef]
- Fox, C.S.; Vasan, R.S.; Parise, H.; Levy, D.; O’Donnell, C.J.; D’Agostino, R.B.; Benjamin, E.J. Mitral annular calcification predicts cardiovascular morbidity and mortality: The Framingham Heart Study. Circulation 2003, 107, 1492–1496. [Google Scholar] [CrossRef]
- Nair, C.K.; Aronow, W.S.; Stokke, K.; Mohiuddin, S.M.; Thomson, W.; Sketch, M.H. Cardiac conduction defects in patients older than 60 years with aortic stenosis with and without mitral anular calcium. Am. J. Cardiol. 1984, 53, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Nair, C.K.; Sketch, M.H.; Ahmed, I.; Thomson, W.; Ryschon, K.; Woodruff, M.P.; Runco, V. Calcific valvular aortic stenosis with and without mitral anular calcium. Am. J. Cardiol. 1987, 60, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Witteman, J.C.; Kok, F.J.; van Saase, J.L.; Valkenburg, H.A. Aortic calcification as a predictor of cardiovascular mortality. Lancet 1986, 2, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Adler, Y.; Levinger, U.; Koren, A.; Tanne, D.; Fink, N.; Vaturi, M.; Iakobishvili, Z.; Battler, A.; Zelikovski, A.; Sagie, A. Relation of nonobstructive aortic valve calcium to carotid arterial atherosclerosis. Am. J. Cardiol. 2000, 86, 1102–1105. [Google Scholar] [CrossRef]
- Sgorbini, L.; Scuteri, A.; Leggio, M.; Leggio, F. Association of mitral annulus calcification, aortic valve calcification with carotid intima media thickness. Cardiovasc. Ultrasound 2004, 2, 19. [Google Scholar] [CrossRef]
- Yamaura, Y.; Nishida, T.; Watanabe, N.; Akasaka, T.; Yoshida, K. Relation of aortic valve sclerosis to carotid artery intima-media thickening in healthy subjects. Am. J. Cardiol. 2004, 94, 837–839. [Google Scholar] [CrossRef]
- Kablak-Ziembicka, A.; Przewlocki, T.; Tracz, W.; Podolec, P.; Stopa, I.; Kostkiewicz, M.; Sadowski, J.; Mura, A.; Kopeć, G. Prognostic value of carotid intima-media thickness in detection of coronary atherosclerosis in patients with calcified aortic valve stenosis. J. Ultrasound Med. 2005, 24, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Nikić, P.; Savić, M.; Zarić, N.; Durić, D. Debljina intima-medija kompleksa zajednicke karotidne arterije, karotidna ateroskleroza i suptipovi ishemicnog mozdanog udara Common carotid artery intima-media thickness, carotid atherosclerosis and subtypes of ischemic cerebral disease. Med. Pregl. 2003, 56 Suppl. S1, 85–91. (In Serbian) [Google Scholar] [PubMed]
- Otto, C.M. Why is aortic sclerosis associated with adverse clinical outcomes? J. Am. Coll. Cardiol. 2004, 43, 176–178. [Google Scholar] [CrossRef]
- Miller, J.D.; Chu, Y.; Brooks, R.M.; Richenbacher, W.E.; Peña-Silva, R.; Heistad, D.D. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J. Am. Coll. Cardiol. 2008, 52, 843–850. [Google Scholar] [CrossRef]
- Dweck, M.R.; Khaw, H.J.; Sng, G.K.; Luo, E.L.; Baird, A.; Williams, M.C.; Makiello, P.; Mirsadraee, S.; Joshi, N.V.; van Beek, E.J.; et al. Aortic stenosis, atherosclerosis, and skeletal bone: Is there a common link with calcification and inflammation? Eur. Heart J. 2013, 34, 1567–1574. [Google Scholar] [CrossRef]
- Rajamannan, N.M.; Evans, F.J.; Aikawa, E. Calcific aortic valve disease: Not simply a degenerative process. Circulation 2011, 124, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Rajamannan, N.M. Osteocardiology: Defining the go/no-go time point for therapy. Cardiology 2018, 139, 175–183. [Google Scholar] [CrossRef]
- Lee, S.E.; Sung, J.M.; Andreini, D.; Al-Mallah, M.H.; Budoff, M.J.; Cademartiri, F.; Chinnaiyan, K.; Choi, J.H.; Chun, E.J.; Conte, E.; et al. Association between Aortic Valve Calcification Progression and Coronary Atherosclerotic Plaque Volume Progression in the PARADIGM Registry. Radiology 2021, 300, 79–86. [Google Scholar] [CrossRef]
- Rajamannan, N.M.; Otto, C.M. Targeted therapy to prevent progression of calcific aortic stenosis. Circulation 2004, 110, 1180–1182. [Google Scholar] [CrossRef]
- Chui, M.C.; Newby, D.E.; Panarelli, M.; Bloomfield, P.; Boon, N.A. Association between calcific aortic stenosis and hypercholesterolemia: Is there a need for a randomized controlled trial of cholesterol-lowering therapy? Clin. Cardiol. 2001, 24, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Novaro, G.M.; Tiong, I.Y.; Pearce, G.L.; Lauer, M.S.; Sprecher, D.L.; Griffin, B.P. Effect of hydroxymethylglutaryl coenzyme a reductase inhibitors on the progression of calcific aortic stenosis. Circulation 2001, 104, 2205–2209. [Google Scholar] [CrossRef]
- Pate, G.E.; Tahir, M.N.; Murphy, R.T.; Foley, J.B. Anti-inflammatory effects of statins in patients with aortic stenosis. J. Cardiovasc. Pharmacol. Ther. 2003, 8, 201–206. [Google Scholar] [CrossRef]
- Antonini-Canterin, F.; Popescu, B.A.; Huang, G.; Korcova-Miertusova, R.; Rivaben, D.; Faggiano, P.; Pavan, D.; Piazza, R.; Bolis, A.; Ciavattone, A.; et al. Progression of aortic valve sclerosis and aortic valve stenosis: What is the role of statin treatment? Ital. Heart J. 2005, 6, 119–124. [Google Scholar]
- Shavelle, D.M.; Takasu, J.; Budoff, M.J.; Mao, S.; Zhao, X.Q.; O’Brien, K.D. HMG CoA reductase inhibitor (statin) and aortic valve calcium. Lancet 2002, 359, 1125–1126. [Google Scholar] [CrossRef]
- Bellamy, M.F.; Pellikka, P.A.; Klarich, K.W.; Tajik, A.J.; Enriquez-Sarano, M. Association of cholesterol levels, hydroxymethylglutaryl coenzyme-A reductase inhibitor treatment, and progression of aortic stenosis in the community. J. Am. Coll. Cardiol. 2002, 40, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, A.S. Medical treatment of aortic stenosis: Promising, or wishful thinking? J. Am. Coll. Cardiol. 2002, 40, 1731–1734. [Google Scholar] [CrossRef] [PubMed]
- Rajamannan, N.M.; Subramaniam, M.; Stock, S.R.; Stone, N.J.; Springett, M.; Ignatiev, K.I.; McConnell, J.P.; Singh, R.J.; Bonow, R.O.; Spelsberg, T.C. Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve. Heart 2005, 91, 806–810. [Google Scholar] [CrossRef]
- Chan, K.L.; Teo, K. Lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 2005, 353, 1066–1067. [Google Scholar]
- Skowasch, D.; Schrempf, S.; Preusse, C.J.; Likungu, J.A.; Welz, A.; Lüderitz, B.; Bauriedel, G. Tissue resident C reactive protein in degenerative aortic valves: Correlation with serum C reactive protein concentrations and modification by statins. Heart 2006, 92, 495–498. [Google Scholar] [CrossRef]
- Rossebø, A.B.; Pedersen, T.R.; Boman, K.; Brudi, P.; Chambers, J.B.; Egstrup, K.; Gerdts, E.; Gohlke-Bärwolf, C.; Holme, I.; Kesäniemi, Y.A.; et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 2008, 359, 1343–1356. [Google Scholar] [CrossRef]
- Cowell, S.J.; Newby, D.E.; Prescott, R.J.; Bloomfield, P.; Reid, J.; Northridge, D.B.; Boon, N.A. Scottish Aortic Stenosis and Lipid Lowering Trial, Impact on Regression (SALTIRE) Investigators: A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 2005, 352, 2389–2397. [Google Scholar] [PubMed]
- Rosenhek, R. Statins for aortic stenosis. N. Engl. J. Med. 2005, 352, 2441–2443. [Google Scholar] [CrossRef] [PubMed]
- Moura, L.M.; Ramos, S.F.; Zamorano, J.L.; Barros, I.M.; Azevedo, L.F.; Rocha-Gonçalves, F.; Rajamannan, N.M. Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J. Am. Coll. Cardiol. 2007, 49, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Weiss, R.M.; Serrano, K.M. Lowering plasma cholesterol levels halts progression of aortic valve disease in mice. Circulation 2009, 119, 2693–2701. [Google Scholar] [CrossRef]
- Zhao, Y.; Nicoll, R.; He, Y.H.; Henein, M.Y. The effect of statins on valve function and calcification in aortic stenosis: A meta-analysis. Atherosclerosis 2016, 246, 318–324. [Google Scholar] [CrossRef]
- Lee, S.E.; Chang, H.J.; Sung, J.M.; Park, H.B.; Heo, R.; Rizvi, A.; Lin, F.Y.; Kumar, A.; Hadamitzky, M.; Kim, Y.J.; et al. Effects of Statins on Coronary Atherosclerotic Plaques: The PARADIGM Study. JACC Cardiovasc. Imaging 2018, 11, 1475–1484. [Google Scholar] [CrossRef]
- Puri, R.; Nicholls, S.J.; Shao, M.; Kataoka, Y.; Uno, K.; Kapadia, S.R.; Tuzcu, E.M.; Nissen, S.E. Impact of statins on serial coronary calcification during atheroma progression and regression. J. Am. Coll. Cardiol. 2015, 65, 1273–1282. [Google Scholar] [CrossRef]
- Diet, F.; Pratt, R.E.; Berry, G.J.; Momose, N.; Gibbons, G.H.; Dzau, V.J. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996, 94, 2756–2767. [Google Scholar] [CrossRef]
- Potter, D.D.; Sobey, C.G.; Tompkins, P.K.; Rossen, J.D.; Heistad, D.D. Evidence that macrophages in atherosclerotic lesions contain angiotensin, II. Circulation 1998, 98, 800–807. [Google Scholar] [CrossRef]
- Neutel, J.M. Effect of the renin-angiotensin system on the vessel wall: Using ACE inhibition to improve endothelial function. J. Hum. Hypertens. 2004, 18, 599–606. [Google Scholar] [CrossRef]
- Schieffer, B.; Schieffer, E.; Hilfiker-Kleiner, D.; Hilfiker, A.; Kovanen, P.T.; Kaartinen, M.; Nussberger, J.; Harringer, W.; Drexler, H. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation 2000, 101, 1372–1378. [Google Scholar] [CrossRef]
- Rosenhek, R.; Rader, F.; Loho, N.; Gabriel, H.; Heger, M.; Klaar, U.; Schemper, M.; Binder, T.; Maurer, G.; Baumgartner, H. Statins but not angiotensin- converting enzyme inhibitors delay progression of aortic stenosis. Circulation 2004, 110, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Sukul, D.; Dweck, M.R.; Madhavan, M.V.; Arsenault, B.J.; Coylewright, M.; Merryman, W.D.; Newby, D.E.; Lewis, J.; Harrell, F.E.J.; et al. Evaluating Medical Therapy for Calcific Aortic Stenosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 2354–2376. [Google Scholar] [CrossRef] [PubMed]
- Langsted, A.; Nordestgaard, B.G.; Benn, M.; Tybjærg-Hansen, A.; Kamstrup, P.R. PCSK9 R46L Loss-of-Function Mutation Reduces Lipoprotein(a), LDL Cholesterol, and Risk of Aortic Valve Stenosis. J. Clin. Endocrinol. Metab. 2016, 101, 3281–3287. [Google Scholar] [CrossRef]
- Benn, M.; Nordestgaard, B.G.; Grande, P.; Schnohr, P.; Tybjaerg-Hansen, A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J. Am. Coll. Cardiol. 2010, 55, 2833–2842. [Google Scholar] [CrossRef]
- Bergmark, B.A.; O’Donoghue, M.L.; Murphy, S.A. An exploratory analysis of proprotein convertase subtilisin/kexin type 9 inhibition and aortic stenosis in the FOURIER trial. JAMA Cardiol. 2020, 6, 709–713. [Google Scholar] [CrossRef]
- Perrot, N.; Valerio, V.; Moschetta, D.; Boekholdt, S.M.; Dina, C.; Chen, H.Y.; Abner, E.; Martinsson, A.; Manikpurage, H.D.; Rigade, S.; et al. Genetic and In Vitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis. JACC Basic Transl. Sci. 2020, 5, 649–661. [Google Scholar] [CrossRef]
- Xiao, F.; Zha, Q.; Zhang, Q.; Wu, Q.; Chen, Z.; Yang, Y.; Yang, K.; Liu, Y. Decreased Glucagon-Like Peptide-1 Is Associated With Calcific Aortic Valve Disease: GLP-1 Suppresses the Calcification of Aortic Valve Interstitial Cells. Front. Cardiovasc. Med. 2021, 8, 709741. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yuan, Z.; Wang, M.; Zhang, Z.; Tan, C.; Yu, J.; Bi, Y.; Liao, X.; Zhou, X.; Ali Sheikh, M.S.; et al. Liraglutide Attenuates Aortic Valve Calcification in a High-Cholesterol-Diet-Induced Experimental Calcific Aortic Valve Disease Model in Apolipoprotein E-Deficient Mice. J. Cardiovasc. Dev. Dis. 2023, 10, 386. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Mazur, P.; Kopytek, M.; Ząbczyk, M.; Undas, A.; Natorska, J. Towards Personalized Therapy of Aortic Stenosis. J. Pers. Med. 2021, 11, 1292. [Google Scholar] [CrossRef]
- Di Lullo, L.; Tripepi, G.; Ronco, C.; D’Arrigo, G.; Barbera, V.; Russo, D.; Di Iorio, B.R.; Uguccioni, M.; Paoletti, E.; Ravera, M.; et al. Cardiac valve calcification and use of anticoagulants: Preliminary observation of a potentially modifiable risk factor. Int. J. Cardiol. 2019, 278, 243–249. [Google Scholar] [CrossRef]
- Iwaniec, T.; Kapelak, B.; Undas, A. Effects of rivaroxaban and dabigatran on local expression of coagulation and inflammatory factors within human aortic stenotic valves. Vasc. Pharmacol. 2020, 130, 106679. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Bea, F.; Preusch, M.; Wang, H.; Isermann, B.; Shahzad, K.; Katus, H.A.; Blessing, E. Evaluation of plaque stability of advanced atherosclerotic lesions in apo E-deficient mice after treatment with the oral factor Xa inhibitor rivaroxaban. Mediat. Inflamm. 2011, 2011, 432080. [Google Scholar] [CrossRef]
- Lee, I.O.; Kratz, M.T.; Schirmer, S.H.; Baumhakel, M.; Bohm, M. The effects of direct thrombin inhibition with dabigatran on plaque formation and endothelial function in apolipoprotein E-deficient mice. J. Pharmacol. Exp. Ther. 2012, 343, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.; Moustardas, P.; Katsimpoulas, M.; Kapelouzou, A.; Kostomitsopoulos, N.; Schafer, K.; Kostakis, A.; Liapis, C.D. The beneficial effects of a direct thrombin inhibitor, dabigatran etexilate, on the development and stability of atherosclerotic lesions in apolipoprotein E-deficient mice: Dabigatran etexilate and atherosclerosis. Cardiovasc. Drugs Ther. 2012, 26, 367–374. [Google Scholar] [CrossRef]
- Hara, T.; Fukuda, D.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Nishimoto, S.; Yagi, S.; Yamada, H.; Soeki, T.; Wakatsuki, T.; et al. Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice. Atherosclerosis 2015, 242, 639–646. [Google Scholar] [CrossRef]
- van Gorp, R.H.; Dijkgraaf, I.; Bröker, V.; Bauwens, M.; Leenders, P.; Jennen, D.; Dweck, M.R.; Bucerius, J.; Briedé, J.J.; van Ryn, J.; et al. Off-target effects of oral anticoagulants-vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate. J. Thromb. Haemost. 2021, 19, 1348–1363. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, A.; Zacharias, I.; Weinert, S.; Skopp, K.; Hartmann, C.; Huth, C.; Goette, A. Coagulation factor Xa induces an inflammatory signalling by activation of protease-activated receptors in human atrial tissue. Eur. J. Pharmacol. 2013, 718, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Merćep, I.; Friščić, N.; Strikić, D.; Reiner, Ž. Advantages and Disadvantages of Inclisiran: A Small Interfering Ribonucleic Acid Molecule Targeting PCSK9-A Narrative Review. Cardiovasc. Ther. 2022, 2022, 8129513. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinezan, C.; Rus, C.B.; Ilias, I.T. Unraveling the Link Between Aortic Stenosis and Atherosclerosis: What Have We Learned? Medicina 2025, 61, 1375. https://doi.org/10.3390/medicina61081375
Cinezan C, Rus CB, Ilias IT. Unraveling the Link Between Aortic Stenosis and Atherosclerosis: What Have We Learned? Medicina. 2025; 61(8):1375. https://doi.org/10.3390/medicina61081375
Chicago/Turabian StyleCinezan, Corina, Camelia Bianca Rus, and Ioana Tiberia Ilias. 2025. "Unraveling the Link Between Aortic Stenosis and Atherosclerosis: What Have We Learned?" Medicina 61, no. 8: 1375. https://doi.org/10.3390/medicina61081375
APA StyleCinezan, C., Rus, C. B., & Ilias, I. T. (2025). Unraveling the Link Between Aortic Stenosis and Atherosclerosis: What Have We Learned? Medicina, 61(8), 1375. https://doi.org/10.3390/medicina61081375