Euthyroid Sick Syndrome as an Index of Prognosis in Severe COVID-19 Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population
3.2. Identification of Euthyroid Sick Syndrome
3.3. Laboratory Findings
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McIver, B.; Gorman, C.A. Euthyroid sick syndrome: An overview. Thyroid 1997, 7, 125–132. [Google Scholar] [CrossRef]
- Fliers, E.; Boelen, A. An update on non-thyroidal illness syndrome. J. Endocrinol. Investig. 2021, 44, 1597–1607. [Google Scholar] [CrossRef]
- Fliers, E.; Bianco, A.C.; Langouche, L.; Boelen, A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 2015, 3, 816–825. [Google Scholar] [CrossRef]
- Peeters, R.P.; Wouters, P.J.; Kaptein, E.; van Toor, H.; Visser, T.J.; Van den Berghe, G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J. Clin. Endocrinol. Metab. 2003, 88, 3202–3211. [Google Scholar] [CrossRef]
- Peeters, R.P.; van der Geyten, S.; Wouters, P.J.; Darras, V.M.; van Toor, H.; Kaptein, E.; Visser, T.J.; Van den Berghe, G. Tissue thyroid hormone levels in critical illness. J. Clin. Endocrinol. Metab. 2005, 90, 6498–6507. [Google Scholar] [CrossRef] [PubMed]
- Nillni, E.A.; Vaslet, C.; Harris, M.; Hollenberg, A.; Bjørbak, C.; Flier, J.S. Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways. J. Biol. Chem. 2000, 275, 36124–36133. [Google Scholar] [CrossRef] [PubMed]
- Lawson, E.A.; Klibanski, A. Endocrine abnormalities in anorexia nervosa. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Hennemann, G.; Krenning, E.P. The kinetics of thyroid hormone transporters and their role in non-thyroidal illness and starvation. Best. Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 323–338. [Google Scholar] [CrossRef]
- Douyon, L.; Schteingart, D.E. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol. Metab. Clin. N. Am. 2002, 31, 173–189. [Google Scholar] [CrossRef]
- Holland, F.W., II; Brown, P.S.; Weintraub, B.D., Jr.; Clark, R.E. Cardiopulmonary bypass and thyroid function: A “euthyroid sick syndrome”. Ann. Thorac. Surg. 1991, 52, 46–50. [Google Scholar] [CrossRef]
- Broderick, T.J.; Wechsler, A.S. Triiodothyronine in cardiac surgery. Thyroid 1997, 7, 133–137. [Google Scholar] [CrossRef]
- Lee, S.; Farwell, A.P. Euthyroid Sick Syndrome. Compr. Physiol. 2016, 6, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Nistal-Nuño, B. Euthyroid sick syndrome in paediatric and adult patients requiring extracorporeal circulatory support and the role of thyroid hormone supplementation: A review. Perfusion 2021, 36, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Cauteruccio, M.; Vitiello, R.; Perisano, C.; Covino, M.; Sircana, G.; Piccirillo, N.; Pesare, E.; Maccauro, G. Euthyroid sick syndrome in hip fractures: Evaluation of postoperative anemia. Injury 2020, 51 (Suppl. S3), S9–S12. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Y.; Yi, M.; Li, W.G.; Ye, H.Y.; Chen, Z.S.; Zhang, X.D. The prevalence, hospitalization outcomes and risk factors of euthyroid sick syndrome in patients with diabetic ketosis/ketoacidosis. BMC Endocr. Disord. 2023, 23, 195. [Google Scholar] [CrossRef]
- Akman, T.; Topaloglu, O.; Altunoglu, A.; Neselioglu, S.; Erel, O. Frequency of Euthyroid Sick Syndrome before and after renal transplantation in patients with end stage renal disease and its association with oxidative stress. Postgrad. Med. 2022, 134, 52–57. [Google Scholar] [CrossRef]
- Pappa, T.A.; Vagenakis, A.G.; Alevizaki, M. The nonthyroidal illness syndrome in the non-critically ill patient. Eur. J. Clin. Investig. 2011, 41, 212–220. [Google Scholar] [CrossRef]
- AlQahtani, A.; Alakkas, Z.; Althobaiti, F.; Alosaimi, M.; Abuzinadah, B.; Abdulkhalik, E.; Alswat, K. Thyroid Dysfunction in Patients Admitted in Cardiac Care Unit: Prevalence, Characteristic and Hospitalization Outcomes. Int. J. Gen. Med. 2021, 14, 505–514. [Google Scholar] [CrossRef]
- Maiden, M.J.; Torpy, D.J. Thyroid Hormones in Critical Illness. Crit. Care Clin. 2019, 35, 375–388. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, W.; Dong, R.; Liu, N.; Liu, D.; Zhou, Y. Predictors for euthyroid sick syndrome and its impact on in-hospital clinical outcomes in high-risk patients undergoing coronary artery bypass grafting. Perfusion 2019, 34, 679–688. [Google Scholar] [CrossRef]
- den Brinker, M.; Joosten, K.F.; Visser, T.J.; Hop, W.C.; de Rijke, Y.B.; Hazelzet, J.A.; Boonstra, V.H.; Hokken-Koelega, A.C. Euthyroid sick syndrome in meningococcal sepsis: The impact of peripheral thyroid hormone metabolism and binding proteins. J. Clin. Endocrinol. Metab. 2005, 90, 5613–5620. [Google Scholar] [CrossRef] [PubMed]
- Ataoğlu, H.E.; Ahbab, S.; Serez, M.K.; Yamak, M.; Kayaş, D.; Canbaz, E.T.; Çetin, F.; Seçmeler, Ş.; Şar, F.; Yenigün, M. Prognostic significance of high free T4 and low free T3 levels in non-thyroidal illness syndrome. Eur. J. Intern. Med. 2018, 57, 91–95. [Google Scholar] [CrossRef]
- Raber, J.; Sorg, O.; Horn, T.F.; Yu, N.; Koob, G.F.; Campbell, I.L.; Bloom, F.E. Inflammatory cytokines: Putative regulators of neuronal and neuro-endocrine function. Brain Res. Rev. 1998, 26, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.C.; Mak, T.W.; Chan, C.H.; Cockram, C.S. Euthyroid sick syndrome in pulmonary tuberculosis before and after treatment. Ann. Clin. Biochem. 1995, 32 Pt 4, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Sharma, L.K.; Dutta, D.; Gadpayle, A.K.; Anand, A.; Gaurav, K.; Mukherjee, S.; Bansal, R. Prevalence and Predictors of Thyroid Dysfunction in Patients with HIV Infection and Acquired Immunodeficiency Syndrome: An Indian Perspective. J. Thyroid Res. 2015, 2015, 517173. [Google Scholar] [CrossRef]
- Post, F.A.; Soule, S.G.; Willcox, P.A.; Levitt, N.S. The spectrum of endocrine dysfunction in active pulmonary tuberculosis. Clin. Endocrinol. 1994, 40, 367–371. [Google Scholar] [CrossRef]
- Zou, R.; Wu, C.; Zhang, S.; Wang, G.; Zhang, Q.; Yu, B.; Wu, Y.; Dong, H.; Wu, G.; Wu, S.; et al. Euthyroid Sick Syndrome in Patients With COVID-19. Front. Endocrinol. 2020, 11, 566439. [Google Scholar] [CrossRef]
- Girvent, M.; Maestro, S.; Hernández, R.; Carajol, I.; Monné, J.; Sancho, J.J.; Gubern, J.; Sitges-Serra, A. Euthyroid sick syndrome, associated endocrine abnormalities, and outcome in elderly patients undergoing emergency operation. Surgery 1998, 123, 560–567. [Google Scholar] [CrossRef]
- Opasich, C.; Pacini, F.; Ambrosino, N.; Riccardi, P.G.; Febo, O.; Ferrari, R.; Cobelli, F.; Tavazzi, L. Sick euthyroid syndrome in patients with moderate-to-severe chronic heart failure. Eur. Heart J. 1996, 17, 1860–1866. [Google Scholar] [CrossRef]
- Özcan, K.S.; Osmonov, D.; Toprak, E.; Güngör, B.; Tatlısu, A.; Ekmekçi, A.; Kaya, A.; Tayyareci, G.; Erdinler, I. Sick euthyroid syndrome is associated with poor prognosis in patients with ST segment elevation myocardial infarction undergoing primary percutaneous intervention. Cardiol. J. 2014, 21, 238–244. [Google Scholar] [CrossRef]
- Zeng, Y.; Xie, Y.; Chen, D.; Wang, R. Related factors of euthyroid sick syndrome in patients with sepsis. Beijing Da Xue Xue Bao Yi Xue Ban 2024, 56, 526–532. [Google Scholar] [CrossRef]
- Langouche, L.; Jacobs, A.; Van den Berghe, G. Nonthyroidal Illness Syndrome Across the Ages. J. Endocr. Soc. 2019, 3, 2313–2325. [Google Scholar] [CrossRef]
- Van den Berghe, G. Non-thyroidal illness in the ICU: A syndrome with different faces. Thyroid 2014, 24, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Fastiggi, M.; Meneghel, A.; de Rubalcava Doblas, J.G.; Vittadello, F.; Tirelli, F.; Zulian, F.; Martini, G. Prognostic role of euthyroid sick syndrome in MIS-C: Results from a single-center observational study. Front. Pediatr. 2023, 11, 1217151. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, Y.; Percik, R.; Oberman, B.; Yaffe, D.; Zimlichman, E.; Tirosh, A. Sick Euthyroid Syndrome on Presentation of Patients With COVID-19: A Potential Marker for Disease Severity. Endocr. Pract. 2021, 27, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Khoo, B.; Tan, T.; A Clarke, S.; Mills, E.G.; Patel, B.; Modi, M.; Phylactou, M.; Eng, P.C.; Thurston, L.; Alexander, E.C.; et al. Thyroid Function Before, During, and After COVID-19. J. Clin. Endocrinol. Metab. 2021, 106, e803–e811. [Google Scholar] [CrossRef]
- Świstek, M.; Broncel, M.; Gorzelak-Pabiś, P.; Morawski, P.; Fabiś, M.; Woźniak, E. Euthyroid Sick Syndrome as a Prognostic Indicator of COVID-19 Pulmonary Involvement, Associated With Poorer Disease Prognosis and Increased Mortality. Endocr. Pract. 2022, 28, 494–501. [Google Scholar] [CrossRef]
- Sparano, C.; Zago, E.; Morettini, A.; Nozzoli, C.; Yannas, D.; Adornato, V.; Caldini, E.; Vaudo, M.; Maggi, M.; Petrone, L. Euthyroid sick syndrome as an early surrogate marker of poor outcome in mild SARS-CoV-2 disease. J. Endocrinol. Investig. 2022, 45, 837–847. [Google Scholar] [CrossRef]
- Baldelli, R.; Nicastri, E.; Petrosillo, N.; Marchioni, L.; Gubbiotti, A.; Sperduti, I.; Di Giacinto, P.; Rizza, L.; Rota, F.; Franco, M.; et al. Thyroid dysfunction in COVID-19 patients. J. Endocrinol. Investig. 2021, 44, 2735–2739. [Google Scholar] [CrossRef]
- Sciacchitano, S.; De Vitis, C.; D’aScanio, M.; Giovagnoli, S.; De Dominicis, C.; Laghi, A.; Anibaldi, P.; Petrucca, A.; Salerno, G.; Santino, I.; et al. Gene signature and immune cell profiling by high-dimensional, single-cell analysis in COVID-19 patients, presenting Low T3 syndrome and coexistent hematological malignancies. J. Transl. Med. 2021, 19, 139. [Google Scholar] [CrossRef]
- Iervasi, G.; Pingitore, A.; Landi, P.; Raciti, M.; Ripoli, A.; Scarlattini, M.; L’aBbate, A.; Donato, L. Low-T3 syndrome: A strong prognostic predictor of death in patients with heart disease. Circulation 2003, 107, 708–713. [Google Scholar] [CrossRef]
- Cerillo, A.G.; Storti, S.; Kallushi, E.; Haxhiademi, D.; Miceli, A.; Murzi, M.; Berti, S.; Glauber, M.; Clerico, A.; Iervasi, G. The low triiodothyronine syndrome: A strong predictor of low cardiac output and death in patients undergoing coronary artery bypass grafting. Ann. Thorac. Surg. 2014, 97, 2089–2095. [Google Scholar] [CrossRef]
- Boelen, A.; Kwakkel, J.; Fliers, E. Beyond low plasma T3: Local thyroid hormone metabolism during inflammation and infection. Endocr. Rev. 2011, 32, 670–693. [Google Scholar] [CrossRef]
- de Vries, E.; Kwakkel, J.; Eggels, L.; Kalsbeek, A.; Barrett, P.; Fliers, E.; Boelen, A. NFκB signaling is essential for the lipopolysaccharide-induced increase of type 2 deiodinase in tanycytes. Endocrinology 2014, 155, 2000–2008. [Google Scholar] [CrossRef]
- Wajner, S.M.; Goemann, I.M.; Bueno, A.L.; Larsen, P.R.; Maia, A.L. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J. Clin. Investig. 2011, 121, 1834–1845. [Google Scholar] [CrossRef] [PubMed]
- Feelders, R.; Swaak, A.; Romijn, J.; Eggermont, A.; Tielens, E.; Vreugdenhill, G.; Endert, E.; van Eijk, H.; Berghout, A. Characteristics of recovery from the euthyroid sick syndrome induced by tumor necrosis factor alpha in cancer patients. Metabolism 1999, 48, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef]
- Schulert, G.S.; Grom, A.A. Pathogenesis of macrophage activation syndrome and potential for cytokine- directed therapies. Annu. Rev. Med. 2015, 66, 145–159. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Murakami, M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity 2020, 52, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Kanda, T.; Kotajima, N.; Kuwabara, A.; Fukumura, Y.; Kobayashi, I. Involvement of circulating interleukin-6 and its receptor in the development of euthyroid sick syndrome in patients with acute myocardial infarction. Eur. J. Endocrinol. 2000, 143, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Boelen, A.; Schiphorst, M.C.P.-T.; Bakker, O.; Wiersinga, W.M. The role of cytokines in the lipopolysaccharide-induced sick euthyroid syndrome in mice. J. Endocrinol. 1995, 146, 475–483. [Google Scholar] [CrossRef]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.S.; et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149–168.e17. [Google Scholar] [CrossRef]
- Luan, Y.Y.; Yin, C.H.; Yao, Y.M. Update Advances on C-Reactive Protein in COVID-19 and Other Viral Infections. Front. Immunol. 2021, 12, 720363. [Google Scholar] [CrossRef]
- Molins, B.; Figueras-Roca, M.; Valero, O.; Llorenç, V.; Romero-Vázquez, S.; Sibila, O.; Adán, A.; García-Vidal, C.; Soriano, A. C-reactive protein isoforms as prognostic markers of COVID-19 severity. Front. Immunol. 2022, 13, 1105343. [Google Scholar] [CrossRef]
- Stathatos, N.; Wartofsky, L. The euthyroid sick syndrome: Is there a physiologic rationale for thyroid hormone treatment? J. Endocrinol. Investig. 2003, 26, 1174–1179. [Google Scholar] [CrossRef]
- Brent, G.A.; Hershman, J.M. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J. Clin. Endocrinol. Metab. 1986, 63, 1–8. [Google Scholar] [CrossRef]
- Mullis-Jansson, S.L.; Argenziano, M.; Corwin, S.; Homma, S.; Weinberg, A.D.; Williams, M.; Rose, E.A.; Smith, C.R. A randomized double-blind study of the effect of triiodothyronine on cardiac function and morbidity after coronary bypass surgery. J. Thorac. Cardiovasc. Surg. 1999, 117, 1128–1134. [Google Scholar] [CrossRef]
- Pingitore, A.; Nicolini, G.; Kusmic, C.; Iervasi, G.; Grigolini, P.; Forini, F. Cardioprotection and thyroid hormones. Heart Fail. Rev. 2016, 21, 391–399. [Google Scholar] [CrossRef]
- Goarin, J.-P.; Cohen, S.; Riou, B.; Jacquens, Y.; Guesde, R.; Le Bret, F.; Aurengo, A.; Coriat, P. The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors. Anesth. Analg. 1996, 83, 41–47. [Google Scholar] [CrossRef]
- Van den Berghe, G. Growth hormone secretagogues in critical illness. Horm. Res. 1999, 51 (Suppl. S3), 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L. The dilemma of non-thyroidal illness syndrome: To treat or not to treat? J. Endocrinol. Investig. 2003, 12, 1162. [Google Scholar] [CrossRef] [PubMed]
- Boelen, A.; Wiersinga, W.M.; Fliers, E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 2008, 18, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Everts, M.E.; de Jong, M.; Lim, C.-F.; Docter, R.; Krenning, E.P.; Visser, T.J.; Hennemann, G. Different regulation of thyroid hormone transport in liver and pituitary: Its possible role in the maintenance of low T3 production during nonthyroidal illness and fasting in man. Thyroid 1996, 6, 359–368. [Google Scholar] [CrossRef]
- Christensen, J.; O’CAllaghan, K.; Sinclair, H.; Hawke, K.; Love, A.; Hajkowicz, K.; Stewart, A.G. Risk factors, treatment and outcomes of subacute thyroiditis secondary to COVID-19: A systematic review. Intern. Med. J. 2022, 52, 522–529. [Google Scholar] [CrossRef]
- Seyed Resuli, A.; Bezgal, M. Subacute Thyroiditis in COVID-19 Patients. Ear Nose Throat J. 2022, 101, 501–505. [Google Scholar] [CrossRef]
- Sohrabpour, S.; Heidari, F.; Karimi, E.; Ansari, R.; Tajdini, A. Subacute Thyroiditis in COVID-19 Patients. Eur. Thyroid J. 2021, 9, 321–323. [Google Scholar] [CrossRef]
- Henke, K.; Odermatt, J.; Ziaka, M.; Rudovich, N. Subacute Thyroiditis Complicating COVID-19 Infection. Clin. Med. Insights Case Rep. 2023, 16, 11795476231181560. [Google Scholar] [CrossRef]
- Dotan, A.; Muller, S.; Kanduc, D.; David, P.; Halpert, G.; Shoenfeld, Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 2021, 20, 102792. [Google Scholar] [CrossRef]
- Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [Google Scholar] [CrossRef]
- de La Flor, J.C.; Gomez-Berrocal, A.; Marschall, A.; Valga, F.; Linares, T.; Albarracin, C.; Ruiz, E.; Gallegos, G.; Gómez, A.; de Los Santos, A.; et al. Impacto de la corrección temprana de la hiponatremia en el pronóstico de la infección del síndrome respiratorio agudo grave del coronavirus 2 (SARS-CoV-2). Med. Clin. 2022, 159, 12–18. [Google Scholar] [CrossRef]
- Chiodini, I.; Gatti, D.; Soranna, D.; Merlotti, D.; Mingiano, C.; Fassio, A.; Adami, G.; Falchetti, A.; Eller-Vainicher, C.; Rossini, M.; et al. Vitamin D Status and SARS-CoV-2 Infection and COVID-19 Clinical Outcomes. Front. Public Health 2021, 9, 736665. [Google Scholar] [CrossRef]
SARS-CoV-2 Patients | |
---|---|
Age | 72.1 ± 16.09 |
Sex | 33 F/30 M |
White blood cell count (cells/μL) | 6474.23 ± 3499.10 |
Neutrophils (%) | 70.8 ± 13.4 |
CRP | 65.1 ± 60.1 |
ESR (mm/1 h) | 43.1 ± 23.9 |
Ferritin (ng/mL) | 846.8 ± 125.1 |
d-dimers (μg/L) | 1640.1 ± 1104.1 |
Fibrinogen (ng/dL) | 547.5 ± 164.1 |
K (mmol/L) | 3.87 ± 0.59 |
PT (s) | 11.7 ± 1.05 |
APTT (s) | 30.81 ± 3.96 |
INR | 1.02 ± 0.1 |
Disease severity | 1 (23), 2 (18), 3 (16), 4 (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanassiou, L.; Kostoglou-Athanassiou, I.; Kaiafa, G.; Nikolakopoulou, S.; Konstantinou, A.; Mascha, O.; Samaras, C.; Savopoulos, C.; Shoenfeld, Y.; Athanassiou, P. Euthyroid Sick Syndrome as an Index of Prognosis in Severe COVID-19 Disease. Medicina 2025, 61, 1372. https://doi.org/10.3390/medicina61081372
Athanassiou L, Kostoglou-Athanassiou I, Kaiafa G, Nikolakopoulou S, Konstantinou A, Mascha O, Samaras C, Savopoulos C, Shoenfeld Y, Athanassiou P. Euthyroid Sick Syndrome as an Index of Prognosis in Severe COVID-19 Disease. Medicina. 2025; 61(8):1372. https://doi.org/10.3390/medicina61081372
Chicago/Turabian StyleAthanassiou, Lambros, Ifigenia Kostoglou-Athanassiou, Georgia Kaiafa, Sofia Nikolakopoulou, Alexandra Konstantinou, Olga Mascha, Charilaos Samaras, Christos Savopoulos, Yehuda Shoenfeld, and Panagiotis Athanassiou. 2025. "Euthyroid Sick Syndrome as an Index of Prognosis in Severe COVID-19 Disease" Medicina 61, no. 8: 1372. https://doi.org/10.3390/medicina61081372
APA StyleAthanassiou, L., Kostoglou-Athanassiou, I., Kaiafa, G., Nikolakopoulou, S., Konstantinou, A., Mascha, O., Samaras, C., Savopoulos, C., Shoenfeld, Y., & Athanassiou, P. (2025). Euthyroid Sick Syndrome as an Index of Prognosis in Severe COVID-19 Disease. Medicina, 61(8), 1372. https://doi.org/10.3390/medicina61081372